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Abstract: The anaerobic digestion (AD) of biomass is a green technology with known environmental
benefits for biogas generation. The biogas yield from existing substrates and the biodegradability of
biomasses can be improved by conventional or novel enhancement techniques, such as the addition
of iron-based nanoparticles (NPs). In this study, the effect of different concentrations of Fe2O3-based
NPs on the AD of brown macroalga Sargassum spp. has been investigated by 30 days trials. The
effect of NPs was evaluated at different concentrations. The control sample yielded a value of
80.25 ± 3.21 NmLCH4/gVS. When 5 mg/g substrate and 10 mg/g substrate of Fe2O3 NPs were added to
the control sample, the yield increased by 24.07% and 26.97%, respectively. Instead, when 50 mg/g

substrate of Fe2O3 NPs was added to the control sample, a negative effect was observed, and the
biomethane yield decreased by 38.97%. Therefore, low concentrations of Fe2O3 NPs favor the AD
process, whereas high concentrations have an inhibitory effect. Direct interspecies electron transfer
(DIET) via Fe2O3 NPs and their insolubility play an important role in facilitating the methanogenesis
process during AD.

Keywords: Fe2O3; nanoparticles; anaerobic digestion; Sargassum spp.; macroalgae

1. Introduction

Anaerobic digestion (AD) of wastes is a promising green approach to valorize various
waste streams and generate renewable bioenergy. Indeed, organic wastes are the most
profitable source of renewable energy, and the production of biogas by AD seems to be the
closest to commercial-scale exploitation [1].

Nanotechnology is an emerging technology to improve AD performance. Nano-sized
particles (1–100 nm) have excellent physicochemical properties, such as high activity, high
reactive surface area, chemical stability, high specificity for improving performance, and
ability to stimulate microbial growth in the AD process. The addition of nanoparticles
(NPs) affects the microbial community [2] and, in suitable concentrations, increases the
degradation of biomass through direct or indirect interspecies electron transfer [3,4], thus
enhancing biogas production [5–7].

Among NPs, iron-based NPs (Fe-NPs) seem to be the most promising nanomaterials
for enhancing biogas production, improving biodigester process stability, achieving better
substrate treatment, and increasing pathogen reduction [8–10]. Fe-NPs include zero-valent
iron (ZVI) with paramagnetic properties and iron oxide NPs (IONPs) with ferromagnetic
properties. Recently, their influence on the fundamental mechanisms of the anaerobic
digestion process and on the fertility of effluents have been extensively discussed [11,12].
Among IONPs, magnetite (Fe3O4) NPs have been widely applied in recent years for their
magnetic properties, non-toxicity, high coercivity, biocompatibility, and ability to improve
electron transport efficiency, increasing the activity of enzymes during methanogenesis,
providing nutrients to microorganisms, reducing the inhibiting effect of sulphate-reducing
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bacteria. Indeed, iron ions (Fe2+ and Fe3+) are essential constituents of cofactors and
enzymes, and their addition to anaerobic digesters can improve the activity of methanogen
Archaea microorganisms. However, very few experimental works have focused on the use
of Fe2O [13] and Fe2O3 [14–17].

Biogas production was found to be improved when cattle manure was exposed to
two different concentrations of Fe2O3 NPs (20 and 100 mg/L) in comparison to the control,
either individually or in combination with TiO2 NPs. Specifically, Fe2O3 NPs promoted the
production of metabolic intermediates and the activity of key enzymes in the methanogenic
Archaea, stimulated the production of extracellular polymeric substances by anaerobic
bacteria providing cell protection against microbial cytotoxicity, and reduced the amount
of H2S in the digestate by forming a ferrous sulfide deposit (FeS) [16]. Moreover, Farghali
et al. attributed the improved biogas and CH4 production efficiencies to the release of
Fe+2/+3 from Fe2O3 NPs [16]. Instead, Wang et al. stated that Fe2O3 NPs do not dissolve
easily in their liquid phase under near-neutral conditions, and no ions were released from
Fe2O3 NPs; however, low concentration of Fe2O3 NPs (100 mg/gTSS, TSS: Total Suspended
Solids) quantitatively changed the AD microorganisms and improved the activity of key
enzymes and methane yield from waste activated sludge to 117% [15]. Singh Rana et al.
tested three Fe2O3 NPs concentrations (10, 20 and 30 mg·L−1) on AD from microalgae and
the best performance was achieved at 30 mg·L−1, whereas the two lowest concentrations
did not improve biogas production significantly [17]. Moreover, the addition of Fe2O3
NPs influences the biogas composition, reaching almost 100% methane [14]. Nevertheless,
Fe2O3 NPs at different concentrations in the range of 5–500 mg/gTS decreased methane
production from waste activated sludge by 4–28.9% compared to the raw substrate. This
inhibitory effect became evident after the 12th day of AD tests [18].

Algae is a potential organic waste for the production of biogas. The exploitation of
macroalgae to produce biofuels has received significant interest in recent decades. Macroal-
gae, also called seaweeds, are generally composed of polysaccharides, lipids and proteins.
Recent and unprecedented blooms of brown pelagic macroalga Sargassum in the Caribbean
have caused massive coastal accumulation, with a strong impact on the environment,
ecosystems, health and the local economy. Despite adverse impacts, waste-accumulated
Sargassum is an economically viable aquatic energy crop and a potential substrate for biogas
production through AD [19]. It is an ideal biomass because of its high polysaccharide
content and negligible lignin content. Recently, many researchers have reviewed the appli-
cation of macroalgae in the bioenergy field and reported a great variability in biomethane
yields due to variations in the species and seasonal/geographical chemical composition
of the biomass. Despite many efforts, the yield of biogas from many algae varies between
19% and 81% of a theoretical maximum, but in most cases, it is less than 50% of that from
common commercially exploited feedstocks [1]. Low yields can be attributed to recalcitrant
structure and cell wall structure, non-optimal carbon-to-nitrogen ratio and the presence of
polysaccharides that are not readily hydrolysed, polyphenols, organic sulphur compounds,
toxins, heavy metals and other inhibitory compounds.

Different methods can be used to increase the efficiency of AD of macroalgae, such as
pretreatments, co-digestion with other substrates, innovative digesters, different operating
conditions and additives. Following the recent increasing interest, the addition of NPs is
also attractive for the AD of macroalgae. Despite several works related to NP-aided AD
from different substrates, very few studies have been concerned with macroalgal biomass
and focused on the positive effect of NPs on the AD of green algae. The effect of three
different treatments (ozonation, sonication and microwaves), either singly or in conjunction
with magnetite NPs, was investigated on the AD of the green macroalga Ulva intestinalis.
The results showed that NPs enhanced the microwave treatment and increased biogas
yield by 145% compared with an individual microwave treatment [20]. Furthermore, the
biogas production from green algae Enteromorpha was increased by Ni, Co, Fe3O4 and
MgO NPs [21–23], also in combination with a microwave pretreatment [24–27]. The best
performances were obtained after 170 h by adding 10 mg·L−1 of Fe3O4 or 1 mg·L−1 of Ni
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NPs, resulting in a cumulative biogas increase of 28% and 26%, respectively. The biogas
production from 20 g of dry algae powder was 624 mL for Fe3O4 and 618 mL for Ni [22].

Nevertheless, after an extensive study of the literature and to the best of our knowledge,
no other study has focused on the application of NPs for the AD of brown macroalgae.
Therefore, this paper is the first investigation concerned with the NP-aided AD of brown
macroalgae and, in particular, Sargassum. Among different possible NPs, we selected
Fe2O3 for our investigation due to its low cost compared to the most extensively used,
which is magnetite. The application of Fe2O3 NPs in biogas production is very rare in the
literature. Similar to the more used magnetite Fe3O4 [28], Fe2O3 NPs efficiently promote
direct interspecies electron transfer between bacteria and methanogens, with a positive
impact on the activity of methanogenic archaea and biogas yield [29]. Nevertheless, Fe2O3
can have an inhibition effect on the methanogenic consortium, which is strongly dependent
on concentration and time [18]. However, this study is designed to be the first aimed at
evaluating the effects of Fe2O3 NPs on biogas generation during the AD of brown algae
Sargassum from the Gulf of Mexico.

2. Materials and Methods
2.1. Sargassum spp. Characterization

Sargassum spp. was harvested in Punta Cana (Dominican Republic) during the summer
season after beaching events (Figure 1). After being washed with tap water, it was left to
dry in the open air.
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2.1.1. Physico-Chemical Characterization

Sargassum spp. was divided into four samples, each of them ground by a Philips-
ProBlend Tech mixer (Milan, Italy) for 1 min at maximum speed (2200 W). For each sample,
the total solids (TS), moisture (M), volatile solids (VS) and ash were evaluated.

Moisture and TS were determined by drying open-air pre-dried Sargassum spp. sam-
ples in an oven at 105 ◦C ± 2 ◦C.The total moisture was calculated by Equation (1):

M =
mi − md

mi
·100 (%) (1)
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The ash content was determined using calcination at 550 ◦C ± 10 ◦C for 6 h in a muffle,
where an aliquot of the test sample was incinerated in an oxidizing atmosphere until the
organic substance was completely burned and a constant mass was reached.

About 5 g of sample were weighed in the tared capsule by an analytical balance. The
capsule was placed into the muffle previously heated until complete combustion of the
organic substance and the achievement of constant mass. When the ashing was completed
(4–6 h), the capsule was removed from the muffle and cooled in a desiccator. Once the
room temperature was reached, it was weighed. VS was calculated by Equation (2):

VS =
md − mc

mi
·100 (%) (2)

The ash content was calculated by Equation (3):

Ash =
mc

mi
·100 (%) (3)

In Equations (1)–(3), mi was the initial mass of the open-air pre-dried sample before
oven drying, md was the mass of the sample after drying in oven at 105 ◦C ± 2 ◦C and mc
was the residual mass of the sample after calcination in a muffle at 550 ◦C ± 10 ◦C for 6 h.

Moreover, the content of proteins, carbohydrates, lipids, carbon, nitrogen, metals and
metalloids was evaluated.

The Bradford method was used for the determination of the protein content. Firstly, the
protein fraction was extracted from 2.5 g of finely ground matrix by using PDS Dulbecco’s
Phosphate-Buffered Saline solution. Then, the extract was filtered, and the supernatant was
analyzed by a spectrophotometer at a wavelength of 595 nm.

The lipid fraction was extracted in a Soxhlet apparatus with petroleum ether for 8 h at
50 ◦C. The solvent was removed by distillation, and the extract was further concentrated
by a rotary evaporator.

The carbohydrate content was determined by two-step hydrolysis in sulfuric acid,
followed by quantification of soluble carbohydrates by a spectrophotometric method (based
on derivatization of the aldehyde functional group) for an overall determination of the
combined monomeric sugar concentration.

The organic carbon content was calculated according to the CNR-IRSA Q no. 84 n5
(1985) method, while the organic nitrogen content was calculated according to the Kjeldahi
method.

Regarding the content of metals and metalloids, the samples were previously mineral-
ized by a Milestone® Star D-Microwave Digestion System microwave mineralizer. Each
sample was previously introduced into a suitable Teflon vessel with 12 mL of acid solution
(HCl:HNO3/1:3) and placed to mineralize at 250 W for 40 min. The mineralized solutions
obtained were filtered with a 0.45 µm filter and suitably diluted for ICP-MS analysis. The
concentrations of metals and metalloids in the resulting solutions were determined by a
Thermo Scientific ™ iCAP ™ TQ ICP-MS ICP-MS.

The content of metals and metalloids (CM) was calculated by Equation (4):

CM =
B·V
m

(4)

where B is the concentration obtained by the ICP-MS analysis, V is the volume of the
solution after the mineralization and m is the mass of the mineralized sample.

2.1.2. Thermogravimetric Analysis and Differential Scanning Calorimetry

The thermal stability of Sargassum spp. was evaluated by thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC) using Netzsch STA 409. Static air, a
heating rate of 10 ◦C·min−1 from 25 ◦C up to 740 ◦C and 10 ± 2 mg of sample were used.
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2.1.3. X-ray Diffractometry

The presence of crystalline phases in the Sargassum spp. sample was evaluated by
X-ray diffractometry (XRD) using a Rigaku MiniFlex 600 X-ray diffractometer with CuKα

radiation generated at 20 mA and 40 KV. The samples were scanned at 0.02 2θ step at a rate
of 1◦·min−1 between 5◦ and 50◦ (2θ angle range).

2.1.4. FT-IR Analysis

Transmittance mode FT-IR analysis was used to characterize the presence of specific
functional groups. The FT-IR was carried out by Spectrometer PerkinElmer Spectrum 100.
The resolution used to capture the spectrum is 4 cm−1 in the range of 400–4000 cm−1.

2.2. Fe2O3 NPs Characterization

Commercial Iron (III) oxide nanopowder (Fe2O3 NPs) with an average size < 50 nm
was purchased from Sigma Aldrich (lot. MKCM1032, CAS: 1309-37-1, MW: 156.69 g/mol).

The presence of crystalline phases was evaluated by X-ray diffractometry (XRD) using
a Rigaku MiniFlex 600 X-ray diffractometer with CuKα radiation generated at 20 mA and
40 KV. NPs were scanned at 0.02 2θ step at a rate of 1◦·min−1 between 20◦ and 70◦ (2θ
angle range).

2.3. Sargassum + NPs Samples

NPs were added to open-air pre-dried Sargassum samples–generically indicated with
“S”—at three different concentrations. S is the control sample, S+5 is the sample of Sargassum
spp. with the addition of NPs at a concentration of 5 mgNPs/gS; S+10 is the sample of
Sargassum spp. with a with the addition of NPs at a concentration of 10 mgNPs/gS; S+50 is
the sample of Sargassum spp. with the addition of NPs at a concentration of 50 mgNPs/gS.

2.4. Inoculum

The inoculum was prepared by diluting fresh cow manure in tap water and mixing
until complete dissolution. The total solids (TS), volatile solids (VS), ash and moisture were
determined as described in Section 2.1.1.

2.5. Long-Term Biochemical Potential Test

The biochemical methane potential (BMP) was evaluated by anaerobic digestion trials
performed by the Automatic Methane Potential Test System II (AMPTS-II®) manufactured
by BPC instruments (Lund, Sweden), shown in Figure 2. 500 mL reactors contained
inoculum, NPs and macroalgae within a working volume of 450 mL. The control reactors
contained the same components as the sample reactors except for the NPs. The BMP tests
lasted 30 days, and each condition was tested under mesophilic temperature conditions
(37 ◦C), with an inoculum VS/substrate VS ratio equal to 3. This value has been selected
because it falls within the suggested VS ratios range (between 2 and 3) for batch tests [30].
The range provides an adequate number of bacteria able to consume the substrate. Values
lower than 2 can lead to the so-called substrate inhibition, whereas values higher than
3 can lead, in the presence of a substrate with low biodegradability, to an amplification of
measurements’ errors as the amount of biogas produced by the substrate can be close to
the inoculum background noise.

Duplicate reactors were set for all conditions, and average results were used for
calculations. Experimental data were processed by Origin Pro 2019.

2.6. Mathematical Models

Kinetic models of the anaerobic digestion process represent useful instruments to be
used for the scale-up of bioprocesses. They provide significant information that allows
for the development of more stable processes. In the present investigation, the authors
proposed three kinetic models, the first-order kinetic model (Equation (5)), the modified
Gompertz model (Equation (6)) and the logistic function model (Equation (7)) to evaluate
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the performance of the AD of Sargassum spp. without and with the addition of different
amounts of Fe2O3 NPs.

y (t) = A∗
(

1 − e−kt
)

(5)

y (t) = A ∗ e− exp [ u∗e
A (m−t)+1] (6)

y (t) =
A

1 + e
4u∗(m−t)

A +2
(7)

where y(t) is the cumulative biogas production (NmL·g−1
VS), A is the biogas production

potential (NmL·g−1
VS), u is maximum biogas production rate (NmL·g−1

VS·day−1), e is a
mathematical constant (2.718282), m is the lag phase period (days) and t is the cumulative
time for biogas production (days). It is possible to determine the kinetic constants A, u and
m applying a nonlinear regression model by OriginPro software. It is assumed that the
biogas production corresponds to the specific growth rate of the methanogenic bacteria in
the digester [24,31].
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3. Results and Discussion
3.1. Sargassum spp. Characterization

Sargassum spp. is a very heterogeneous biomass. Indeed, TS, moisture, VS and ash val-
ues were in the following ranges: 76.30–82.47%, 17.53–23.70%, 37.42–55.95%, 26.52–41.60%,
respectively. It is evident that an important content of ash is inert for AD. Based on these
values, the dosage of NPs can be normalized, as shown in Table 1, where the mass of
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substrate refers to gram of open-air pre-dried biomass, total solids, and volatile solids,
respectively.

Table 1. Dosage of NPs at different measure units.

Sample
Open-Air Pre-Dried

Substrate
[mg NPs/g S]

Total Solids of
Substrate

[mg NPs/g TS]

Volatile Solids of
Substrate

[mg NPs/g VS]

S+5 5 6.6 14.4
S+10 10 12.1 17.9
S+50 50 60.6 89.4

The chemical composition of macroalgal biomass is summarized in Table 2.

Table 2. Proximate and elemental analysis of Sargassum spp.

Compound Content
[%]

Carbohydrates 51.9
Percentage of open-air pre-dried sampleLipids 1.65

Proteins 0.62

C 19 Percentage of open-air pre-dried sample
N 2.4

Na 1.22

Percentage of total solids after oven drying

Mg 0.76
Al 0.013
K 3.36
Ca 1.93
Mn 0.003
Fe <10−3

Ni 0.001
Cu <10−4

Zn 0.006
Ba <10−3

Pb 0.003
B 0.002
P 0.009
As <10−4

The chemical composition of macroalgae is very important and influences the anaer-
obic digestion to produce biogas when macroalgae are used as the substrate. Consistent
with the literature [19], the most abundant compounds were carbohydrates and ash, while
the content of lipids and proteins was low. The most abundant elements in our biomass
were potassium, calcium and sodium, whereas other elements had a content lower than 1%.
This result substantiates previous studies on pelagic Sargassum [32]. Macronutrients (Na,
Mg, Al, P, K and Ca) are essential for anaerobic growth, metabolic activity and biodigester
stability. In particular, the Na level that depends on oceanic growth conditions has been
found to be relevant because it reduces the potential of NH3-N toxicity, but at excessively
high content, it causes severe inhibition of methanogen proliferation [33]. Heavy metal
concentrations, which can be toxic and disrupt digester function, are all within the range
documented in the literature for optimal microbial bioconversion efficiency [34,35]. The
concentration of carbon and nitrogen is critical because the carbon-to-nitrogen (C/N) ratio
strongly affects the AD process. When C/N is very high, nitrogen consumption happens
quickly, and biogas production decreases. On the contrary, a low C/N ratio cause the release
and accumulation of nitrogen in the form of ammonium ions, whose high level increases
the pH in the digester and is toxic for methanogens bacteria. The biomass used in this work
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had a C/N of 7.92, significantly lower than the optimal C/N ratio of 20–30 required for a
stable digestion process [19].

The TGA and its derivative DTGA of the Sargassum sample (Figure 2a) showed a first
zone from 50 ◦C to 150 ◦C with an index of water loss equal to 9.2% in mass, indicating
dehydration [36]. The second zone, from 150 ◦C to 581 ◦C with a mass loss of 50.90%,
had two important peaks in the DTG curve at 260 ◦C and 320 ◦C. These peaks have been
attributed to the decomposition of hemicellulose and cellulose, respectively [24]. The peak
at 461.19 ◦C indicates the decomposition of lignin-based compounds [36]. The peak at
683.69 ◦C indicates the decomposition of inorganic material, such as the transformation of
some carbonates and the elimination of heavy metals [37]. A third zone was observed from
581 ◦C to 740 ◦C with a weight loss of 18.60%, indicating the inorganic components of the
sample [37] due to the presence of calcite, dolomite and quartz.

The DSC curve of the Sargassum sample (Figure 2b) was characterized by the presence
of an exothermic peak at 311.7 ◦C associated with the thermal depolymerization of the hemi-
cellulose [38], an exothermic peak at 471.1 ◦C was associated with lignin decomposition,
and an endothermic peak around 700 ◦C indicated the decomposition of calcite.

The XRD patterns of a sample of Sargassum spp. are shown in Figure 2c, where it is
possible to observe several peaks. The highest peak at 2θ = 29.28◦ is associated with the
calcite plane (104), followed by the peaks corresponding to 2θ = 39.40–43.18–47.76–48.70◦,
associated with the planes (113)–(202)–(018)–(116) of calcite, respectively [39]. Furthermore,
two peaks at 2θ = 13.80–22.76 are associated with the cellulose planes (110) and (002),
respectively [38]. In addition to calcite and cellulose, there are traces of dolomite and
quartz. Dolomite peaks at 2θ = 24.58–32.62–37.34–37.88◦ are associated with the planes
(012)–(015)–(110)–(110), respectively [39]. Quartz is present in almost negligible quantities
with only one peak at 2θ = 25.56◦ corresponding to the plane (011) [40]. The presence of
calcite in Sargassum spp. is due to the exoskeletons of brioza living on the surface of the
macroalgae [41].

The FT-IR spectrum of the sample in the range of 500–4000 cm−1 is shown in Figure 2d.
The broad absorption band centered at 3300 cm−1 and 1622 cm−1 are associated with
O-H stretching and the bending vibration of water [42]. Bands at around 2932 cm−1

can be attributed to methyl and methylene stretching groups of both hemicellulose and
cellulose [38]. The absorption bands at 1100–1000 cm−1 are associated with several modes,
such as C-H deformation or C-O or C-C stretching pertaining to carbohydrates [43] and
polysaccharides [44]. The peaks at 875 and 1425 cm−1 correspond to the O–C–O out-of-
plane bending and asymmetric stretching vibration peaks of calcite, respectively [45].

3.2. Fe2O3 NPs Characterization

Fe2O3 NPs were analyzed by XRD (Figure 3). The obtained pattern corresponds to
maghemite (γ-Fe2O3) (PDF 9006317) [46]. Maghemite exhibits a cubic spinel structure, con-
taining only iron cations in the trivalent state (Fe3+). The charge neutrality is guaranteed by
the presence of the cation octahedral vacancies. Maghemite exhibits ferromagnetic/super-
paramagnetic properties, and its chemical stability and low cost led to different applica-
tions [47].

3.3. Inoculum

Inoculum was characterized by total solids TS (4.04 ± 0.21%), moisture (95.96 ± 0.26%),
volatile solids VS (2.38 ± 0.23%) and ash (1.66 ± 0.25%). These data are essential to know
the mass of substrate to add in order to have an inoculum VS/substrate VS ratio of 3.

3.4. Anaerobic Digestion

Biogas production was influenced by Fe2O3 NPs. The experimental findings of biogas
output were collected over a 30-day period.
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Since the Sargassum spp. sample was very heterogeneous, and the BMP values were
reported as a function of VS. The average values of BMP obtained at the end of the anaerobic
digestion tests after 30 days (BMP30) are shown in Table 3.

Table 3. BMP30 of samples.

Sample BMP30 (NmL·g−1
VS) Variation Compared to Control

S 80.25 ± 3.21 -
S+5 99.57 ± 2.76 +24.07
S+10 101.90 ± 2.98 +26.97
S+50 48.97 ± 2.32 −38.97

The control sample (S) has a yield of 80.25 ± 3.21 NmL·g−1
VS, in line with the char-

acteristic range of Sargassum yield of 65–145 L·kg−1
VS [19]. The theoretical yields of

methane from lipids, proteins and carbohydrates are 1.014, 0.851 and 0.415 LCH4 g−1
VS,

respectively [19]. Therefore, lipids provide the highest theoretical yield, but their level in
Sargassum is very low and it justifies the low yield, together with the low C/N value. Based
on the content of lipids, proteins and carbohydrates (Table 2), the approximate value of the
theoretical BMP was calculated by Equation (8):

BMPt =
BMPC·mC + BMPP·mP + BMPL·mL

mC + mP + mL
(8)

where BMPC, BMPP and BMPL are the theoretical BMP values of carbohydrates, proteins
and lipids, respectively; mC, mP and mL are the masses of carbohydrates, proteins and lipids
in the substrate, respectively.

The approximate theoretical BMP was 438 NmL·g−1
VS. Therefore, the experimental

BMP is just 18% of the theoretical value, consistent with previous literature [1].
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The maximum total biogas yield of 101.90 ± 2.98 NmL·g−1
VS (+26.97%) was achieved

with the S+10 sample. S+5 and S+50 produced 99.57 ± 2.76 NmL·g−1
VS (+24.07%) and

48.97 ± 2.32 NmL·g−1
VS (−38.97%) of methane, respectively.

Average cumulative methane production values are given in Figure 4.
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digestion without NPs (S) and with NPs addition (S+5, S+10, S+50).

Low concentrations of NPs (5 mg·g−1
S and 10 mg·g−1

S) improved the biogas produc-
tion compared to the control (S). Sample S showed an increasing trend up to the 25th day
and then remained constant. Samples S+5 and S+10 showed a similar trend with a higher
reaction rate for sample S+10. The addition of NPs in low concentration leads to a daily
increase in biogas production compared to sample S. This behavior can be attributed to
accelerated hydrolysis and enzymatic uptake activity [48]. The highest concentration, S+50,
resulted in the inhibition of AD and no further methane production after 16 days. The be-
havior has also been observed by Ünşar et al. [18]. They reported that the methane potential
of waste activated sludge (WAS) using 500 mg Fe2O3NPs/g TS inhibited the methanogenic
consortium and caused decreased biogas production and specific methane production rate.
Specifically, inhibition in that study, also confirmed by the present investigation, emerged
after the 12th day of the long-term BMP test. They also reported that lower concentrations
of Fe2O3 NPs, instead, slightly enhanced the methane production on the first days of the
BMP test. The finding is also consistent with our results and with other outcomes of using
Fe2O3 NPs on AD reported in the literature for short-term investigations.

The possible causes of the found behavior in methane production were identified
by Wu et al. [49]. They stated that the attached Fe2O3 NPs on the cell surface or their
internalization would directly cause cell physical deformation, perforation and membrane
or internal content disorganization. Therefore, the increase in CH4 production in the early
stages of experiments arises from the trace elements’ impact of Fe2O3 NPs on anaerobic
microorganisms. In later stages, as a result of the increasing accumulation of Fe in the cells
of anaerobic microorganisms, it exceeds the necessary trace concentration and causes cell
death, thus stopping biogas production.

Therefore, the effect of NPs on AD was dosage-dependent. In proper concentration,
the addition of Fe2O3-NPs improved AD and resulted in higher methane production and
organic matter degradation. Instead, an excessive dosage of NPs hindered the overall
process resulting in reductions in biogas production. Similar results were obtained in
previous research by varying the dosages of Ag NPs, MgO NPs, nZVI and Fe2O3 NPs and
they were attributed to the shift in the microbial community structure of the anaerobic
digestion system and numbers of copies [15].
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The prediction and the action mechanism of NPs on AD are challenges due to the
variety of species of bacteria that are involved in the digestion systems. Few investigations
have been reported in the literature on this topic [15], and none of them were focused
on the AD of brown macroalgae; thus it is not possible to compare our findings with
previous results.

The increase in methane production can be assigned to both the direct interspecies
electron transfer (DIET) via Fe2O3 and the insolubility of Fe2O3 NPs [50]. The DIET may
facilitate the methanogenesis by conductive materials used for electron transfer. Fe2O3
NPs are semi-conductive and act as electron conduits between the electron donors and
acceptors, thus accelerating methane production from the reduced electron carriers and
CO2, resembling the behavior of enzymes in catalytic reactions in a sequence of biochemical
reactions [15]. The insolubility of Fe2O3 NPs prevents the release of toxic metal ions that
are primarily responsible for toxicity to certain living organisms [51–53]. Nevertheless,
high Fe2O3 NPs concentrations show an inhibitory effect.

Our results were consistent with novel literature related to Fe2O3 NPs [14–18].

3.5. Mathematical Models

The three kinetic models were fitted on the experimental data based on the average
cumulative production of net volume of methane during anaerobic digestion of each exper-
imental group. Three main regions can be observed in the fitted curves reported in Figure 5:
the lag phase region, the exponential phase region characterized by a sharp increase in
the cumulative biogas yield and a plateau region, where biomethane production nearly
stops. Each of the three kinetic models delivers specific and additional information [54].
The first-order kinetic model provides information about the hydrolysis rate constant. The
modified Gompertz model describes the cell density during microbial growth periods in
terms of exponential growth rates and lag phase. The logistic function model is appropriate
to describe the initial exponential increase and a final stabilization at the highest production
level [55]. Thus, all three kinetic models were used in this investigation to determine
the cumulative biogas production potential, hydrolysis kinetics, lag phase duration, and
maximum methane production.
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All of the parameters estimated using the three fitted kinetic, specifically, the hydrolysis
rate constant (first order, k), lag phase duration (m), maximum biogas production rate (u)
and maximum biogas yield potential (A), are reported in Table 4.

Table 4. Estimated kinetic parameters for the three kinetic models (first order, modified Gompertz,
logistic function).

S S+5 S+10 S+50

First-order kinetic

A (NmL·g−1
VS) 165.542 126.443 204.634 56.221

k (day−1) 0.021 0.063 0.022 0.082
R2 0.983 0.992 0.997 0.948

Modified Gompertz model

A (NmL·g−1
VS) 86.749 101.217 113.595 48.517

u (NmL·g−1
VS·day−1) 4.468 6.045 4.595 4.949

m (day) 2.289 0.768 0.829 2.440
R2 0.996 0.997 0.998 0.998

Logistic function model

A (NmL·g−1
VS) 81.111 97.483 103.412 47.792

u (NmL·g−1
VS·day−1) 11.701 9.203 12.382 7.502

m (day) 0.110 0.121 0.093 0.207
R2 0.989 0.987 0.992 0.997

All three kinetic models reasonably described the experimental data. The modified
Gompertz model showed the most robust estimation, followed by the logistic function
model, whereas the first-order kinetic model is less accurate in estimation.

The maximum predicted biomethane yield (A) derived from the modified Gompertz
model and the logistic function model were close to the experimental data. The difference
between the experimental A value and the A value obtained by the modified Gompertz
model for systems S, S+5, S+10, S+50 were 8.1%, 1.7%, 10.3% and 0.9%, respectively. The
differences using the logistic function model for systems S, S+5, S+10, S+50 were 0.9%, 2.1%,
1.5% and 2.38%, respectively. The first-order kinetic model, instead, failed in accurately
fitting the biomethane yield with differences for systems S, S+5, S+10, S+50 equal to 106%,
27%, 100% and 14.8%, respectively. Similar findings were obtained by Li et al. [56].

The hydrolysis rate constants (k) of the different systems have been determined from
the first-order model, and they are, for system S, S+5, S+10, S+50, equal to 0.021, 0.063, 0.022
and 0.082 (day−1). The first-order kinetic model assumes that hydrolysis is the rate-limiting
step during the AD process of complex feedstocks. In this case, faster degradation and
biogas production rates are associated with higher k values. In the present investigation,
the highest k value was obtained for the system S+50, which showed the lowest degradation
and biogas production. The explanation can be found by observing that the first-order
model poorly fits that set of experimental data.

The parameter u (NmL·g−1
VS·day−1) indicates the maximum biogas production rate

that can be obtained in each system. The highest value, using Gompertz modified model,
was achieved by system S+5. It was equal to 6.045 NmL·g−1

VS·day−1, and it can be at-
tributed to the attached Fe2O3 NPs on the cell surface or their internalization that directly
causes cell physical deformation, perforation and membrane or internal content disorgani-
zation, thus increasing the specific methane production rate in the early stages [49].

The parameter m indicates the delay period. According to the modified Gompertz
model, the period required to start the production of biomethane was 2.289 days for system
S, whereas at low concentrations of NPs, this period was reduced to 0.768 for the sample
S+5 and 0.829 for the sample S+10. This behavior can be attributed to the acceleration of
hydrolysis due to the presence of NPs. Additionally, the amounts of NPs to VS were
close, so their effect was similar. The sample at a high concentration of NPs (S+50) showed
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different behavior. In this case, the estimated delay time was 2.440 days, longer than the
other systems containing Fe2O3 NPs. Furthermore, the system S+50 was characterized by a
shorter effective biogas production period obtained by subtracting the lag phase duration
from the period taken to achieve 90% of total biogas production, indicating a shorter AD
period and an irreversible inhibition process [55]. It can be explained by the increasing
accumulation of Fe in the cells of anaerobic microorganisms that causes cell death, thus
prematurely stopping biogas production.

4. Conclusions

One of the most important problems of the anaerobic digestion (AD) of brown algae is
the low biomethane yield. The use of nanoparticles (NPs) with proper concentration can
improve the process due to their ability to enhance the performance of biogas production,
shorten the lag phase, and improve process stability. The impact of maghemite-based
NPs on the anaerobic digestion of brown macroalgae Sargassum spp. was investigated for
the first time in this study. The biochemical methane potential (BMP) test was used to
investigate the possible benefits of Fe2O3-NPs at three different concentrations on Sargassum
macroalgae treatment. The effectiveness of NPs for enhancing methane production was
dose-dependent. Coherently with previous studies on other biomasses, the addition of NPs
influenced the process performace in the opposite way, showing a promoting effect at low
concentrations (5–10 mg·g−1) and inhibition at the highest dosage (50 mg·g−1). The results
showed that the highest biomethane yield was obtained by adding 10 mgNPs·g−1 with
an increase of 26.97% compared to the control sample. Fe2O3 NPs, at low concentrations,
improved AD by promoting direct interspecies electron transfer (DIET) and negligible metal
ions release. Higher concentrations inhibited AD. Therefore, this work lays a foundation
for an improved biogas yield by Fe2O3-NPs addition in AD of brown algae.

Author Contributions: Conceptualization, R.P. and C.G.L.; methodology, R.P. and P.F.; software, R.P.;
validation, R.P. and S.C.; formal analysis, R.P. and S.C.; investigation, R.P.; data curation, R.P. and
C.G.L.; writing—original draft preparation, R.P. and C.G.L.; writing—review and editing, S.C. and
C.G.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Milledge, J.J.; Nielsen, B.V.; Maneein, S.; Harvey, P.J. A Brief Review of Anaerobic Digestion of Algae for BioEnergy. Energies 2019,

12, 1166. [CrossRef]
2. Zhang, Y.; Xu, R.; Xiang, Y.; Lu, Y.; Jia, M.; Huang, J.; Xu, Z.; Cao, J.; Xiong, W.; Yang, Z. Addition of Nanoparticles Increases the

Abundance of Mobile Genetic Elements and Changes Microbial Community in the Sludge Anaerobic Digestion System. J. Hazard
Mater. 2021, 405, 124206. [CrossRef]

3. Tsui, T.H.; Zhang, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Methodological Framework for Wastewater Treatment Plants Delivering
Expanded Service: Economic Tradeoffs and Technological Decisions. Sci. Total Environ. 2022, 823, 153616. [CrossRef] [PubMed]

4. Tsui, T.H.; Zhang, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Engineering Interface between Bioenergy Recovery and Biogas Desulfurization:
Sustainability Interplays of Biochar Application. Renew. Sustain. Energy Rev. 2022, 157, 112053. [CrossRef]

5. Jadhava, P.; Muhammad, N.; Bhuyar, P.; Krishnan, S.; Razak, A.S.A.; Zularisam, A.W.; Nasrullah, M. A Review on the Impact of
Conductive Nanoparticles (CNPs) in Anaerobic Digestion: Applications and Limitations. Environ. Technol. Innov. 2021, 23, 101526.
[CrossRef]

6. Jadhav, P.; Nasrullah, M.; Zularisam, A.W.; Bhuyar, P.; Krishnan, S.; Mishra, P. Direct Interspecies Electron Transfer Performance
through Nanoparticles (NPs) for Biogas Production in the Anaerobic Digestion Process. Int. J. Environ. Sci. Technol. 2022, 19,
10427–10439. [CrossRef]

7. Kumar, S.S.; Ghosh, P.; Kataria, N.; Kumar, D.; Thakur, S.; Pathania, D.; Kumar, V.; Nasrullah, M.; Singh, L. The Role of Conductive
Nanoparticles in Anaerobic Digestion: Mechanism, Current Status and Future Perspectives. Chemosphere 2021, 280, 130601.
[CrossRef]

http://doi.org/10.3390/en12061166
http://doi.org/10.1016/j.jhazmat.2020.124206
http://doi.org/10.1016/j.scitotenv.2022.153616
http://www.ncbi.nlm.nih.gov/pubmed/35124054
http://doi.org/10.1016/j.rser.2021.112053
http://doi.org/10.1016/j.eti.2021.101526
http://doi.org/10.1007/s13762-021-03664-w
http://doi.org/10.1016/j.chemosphere.2021.130601


Processes 2023, 11, 1016 14 of 15

8. Dehhaghi, M.; Tabatabaei, M.; Aghbashlo, M.; Kazemi Shariat Panahi, H.; Nizami, A.S. A State-of-the-Art Review on the
Application of Nanomaterials for Enhancing Biogas Production. J. Environ. Manag. 2019, 251, 109597. [CrossRef]

9. Ossinga, C.G. Application of Iron Oxide Nanoparticles for Biogas Yield Optimization from Winery Solid Waste and Sorghum
Stover. Master’s Thesis, Chemical Engineering, Cape Peninsula University of Technology, Bellville, South Africa, 2020.

10. Ugwu, S.N.; Enweremadu, C.C. Enhancement of Biogas Production Process from Biomass Wastes Using Iron-Based Additives:
Types, Impacts, and Implications. Energy Source Part A Recovery Util. Environ. Eff. 2020, 44, 4458–4480. [CrossRef]

11. Abdelwahab, T.A.M.; Fodah, A.E.M. Utilization of Nanoparticles for Biogas Production Focusing on Process Stability and Effluent
Quality. SN Appl. Sci. 2022, 4, 332. [CrossRef]

12. Jadhav, P.; Khalid, Z.B.; Zularisam, A.W.; Krishnan, S.; Nasrullah, M. The Role of Iron-Based Nanoparticles (Fe-NPs) on
Methanogenesis in Anaerobic Digestion (AD) Performance. Environ. Res 2022, 204, 112043. [CrossRef]

13. Bharathi, P.; Dayana, R.; Rangaraju, M.; Varsha, V.; Subathra, M.; Gayathri; Sundramurthy, V.P. Biogas Production from Food
Waste Using Nanocatalyst. J. Nanomater. 2022, 2022, 7529036. [CrossRef]

14. Tetteh, E.K.; Rathilal, S. Application of Biomagnetic Nanoparticles for Biostimulation of Biogas Production from Wastewater
Treatment. Mater. Today Proc. 2021, 45, 5214–5220. [CrossRef]

15. Wang, T.; Zhang, D.; Dai, L.; Chen, Y.; Dai, X. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge
and Microorganism Community Shift in Anaerobic Granular Sludge. Sci. Rep. 2016, 6, 25857. [CrossRef] [PubMed]

16. Farghali, M.; Andriamanohiarisoamanana, F.J.; Ahmed, M.M.; Kotb, S.; Yamashiro, T.; Iwasaki, M.; Umetsu, K. Impacts of Iron
Oxide and Titanium Dioxide Nanoparticles on Biogas Production: Hydrogen Sulfide Mitigation, Process Stability, and Prospective
Challenges. J. Environ. Manag. 2019, 240, 160–167. [CrossRef] [PubMed]

17. Rana, M.S.; Bhushan, S.; Prajapati, S.K. New Insights on Improved Growth and Biogas Production Potential of Chlorella
Pyrenoidosa through Intermittent Iron Oxide Nanoparticle Supplementation. Sci. Rep. 2020, 10, 14119. [CrossRef]
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