
Citation: Behera, S.R.; Panigrahi, N.;

Bhoi, S.K.; Sahoo, K.S.; Jhanjhi, N.Z.;

Ghoniem, R.M. Time Series-Based

Edge Resource Prediction and

Parallel Optimal Task Allocation in

Mobile Edge Computing

Environment. Processes 2023, 11, 1017.

https://doi.org/10.3390/pr11041017

Academic Editor: Florian Ion Tiberiu

Petrescu

Received: 10 February 2023

Revised: 18 March 2023

Accepted: 20 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Time Series-Based Edge Resource Prediction and Parallel
Optimal Task Allocation in Mobile Edge Computing
Environment
Sasmita Rani Behera 1, Niranjan Panigrahi 2, Sourav Kumar Bhoi 2, Kshira Sagar Sahoo 3 , N.Z. Jhanjhi 4,*
and Rania M. Ghoniem 5

1 Faculty of Engineering (Computer Science and Engineering), Biju Patnaik University of Technology (BPUT),
Rourkela 769015, Odisha, India

2 Department of Computer Science and Engineering, Parala Maharaja Engineering College (Govt.),
Berhampur 761003, Odisha, India

3 Department of Computer Science and Engineering, SRM University, Amaravati 522502, Andhra Pradesh, India
4 School of Computer Science, SCS Taylor’s University, Subang Jaya 47500, Malaysia
5 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
* Correspondence: noorzaman.jhanjhi@taylors.edu.my

Abstract: The offloading of computationally intensive tasks to edge servers is indispensable in
the mobile edge computing (MEC) environment. Once the tasks are offloaded, the subsequent
challenges lie in buffering them and assigning them to edge virtual machine (VM) resources to meet
the multicriteria requirement. Furthermore, the edge resources’ availability is dynamic in nature and
needs a joint prediction and optimal allocation for the efficient usage of resources and fulfillment of
the tasks’ requirements. To this end, this work has three contributions. First, a delay sensitivity-based
priority scheduling (DSPS) policy is presented to schedule the tasks as per their deadline. Secondly,
based on exploratory data analysis and inferred seasonal patterns in the usage of edge CPU resources
from the GWA-T-12 Bitbrains VM utilization dataset, the availability of VM resources is predicted
by using a Holt–Winters-based univariate algorithm (HWVMR) and a vector autoregression-based
multivariate algorithm (VARVMR). Finally, for optimal and fast task assignment, a parallel differential
evolution-based task allocation (pDETA) strategy is proposed. The proposed algorithms are evaluated
extensively with standard performance metrics, and the results show nearly 22%, 35%, and 69%
improvements in cost and 41%, 52%, and 78% improvements in energy when compared with MTSS,
DE, and min–min strategies, respectively.

Keywords: MEC; virtual machine; task allocator; scheduler; predictor

1. Introduction

With the increasing popularity of mobile user equipment and the evolution of 5G/6G-
enabled wireless communication, users are attracted to applications that are computa-
tionally intensive in nature, e.g., image-processing applications, augmented reality (AR)-,
and virtual reality (VR)-based applications, etc. [1,2]. Mobile equipment with limited
computational capacity and restricted battery power fail to meet the requirements of these
applications. In recent years, the emerging paradigm of mobile edge computing (MEC),
which is also regarded as the successor to mobile cloud computing (MCC), helps to al-
leviate such problems pertaining to the resource limitations of mobile equipment. This
is achieved by providing a computing facility in close proximity to the users, under the
computation offloading services, so that the users can offload their application tasks to the
MEC servers for the computation and can download their results back to their respective
mobile devices [3,4].

Processes 2023, 11, 1017. https://doi.org/10.3390/pr11041017 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-6435-5738
https://orcid.org/0000-0001-8116-4733
https://doi.org/10.3390/pr11041017
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041017?type=check_update&version=1

Processes 2023, 11, 1017 2 of 26

The computation offloading service has been shown tremendous interest by academia
and industry in the last few decades [5,6] due to advancements in smart devices and in
wireless communication technologies like 5G/6G, which makes offloading a reality. At the
same time, this service has faced several open challenges at the user level or device layer
as well as at the server level or edge layer, which is the current trend of research in the
field of MEC [7,8]. The first and foremost issue is making a suitable decision with regard to
whether the offloading is beneficial for the user or not and whether to offload a complete
set of tasks or to partition tasks based on their dependencies [9,10].

Secondly, once the tasks are offloaded to the MEC server, the subsequent challenges lie
in buffering the tasks by considering various task-oriented parameters, e.g., deadline, delay
sensitivity, priority, energy consumption, etc., and assigning edge virtual machine (VM)
resources to the tasks to meet various quality of service (QoS) requirements. Furthermore,
the edge resources availability is time-varying in nature and needs a joint prediction and
optimal allocation for efficient usage of resources and, at the same time, fulfillment of the
parameters of the task.

Nevertheless, a plethora of work has recently been reported in the literature, focusing
on the decision-making of computation offloading at the device layer [11,12] and assigning
edge VM resources at the edge layer [13–15]. However, very few of these works have
performed an exploratory datacenter resource-usage analysis to infer a temporal observa-
tion on the true usage of VM resources and accordingly devise a VM resource-assignment
mechanism for user tasks [16]. Furthermore, when the number of offloaded tasks grows
significantly, a fast resource-allocation mechanism needs to be in place for optimal resource
usage and to meet the QoS requirements of mobile users.

To this end, the present work has focused on an in-depth exploratory analysis of
VM resources of GWA-T-12 Bitbrain’s VM utilization dataset [17] and provided a time
series-based edge resource prediction algorithm by using a Holt–Winters-based univariate
algorithm (HWVMR) and a vector autoregression-based multivariate algorithm (VARVMR).
Finally, for optimal and fast task assignment, a parallel differential evolution-based task
allocation (pDETA) strategy is proposed.

The main contributions of this paper are as follows.

(i) A delay sensitivity-based priority scheduling (DSPS) policy is presented to schedule
the tasks as per their deadline.

(ii) An exploratory data analysis is carried out, and inference is made regarding sea-
sonal patterns in the usage of edge CPU resources from the GWA-T-12 Bitbrains VM
utilization dataset.

(iii) The availability of VM resources is predicted by using HWVMR and VARVMR.
(iv) For optimal and fast task assignment, a parallel differential evolution-based task

allocation (pDETA) strategy is proposed.
(v) The proposed algorithms are evaluated extensively by using standard performance

metrics, e.g., execution time, cost, and energy.

The rest of the paper is organized as follows: Section 2 highlights related work,
Section 3 presents the various system models, Section 4 describes the problem statement,
and Section 5 illustrates the proposed network architecture and task-execution process.
The proposed strategies for scheduling, resource prediction, and parallel optimal resource
allocation are presented under Section 6. Section 7 shows the simulation results, followed
by a conclusion in Section 8.

2. Related Work

This section highlights some state-of-the-art works related to computation offloading
problems in the MEC environment. The existing works can be broadly classified into three
major domains: buffering/scheduling of offloaded tasks, prediction of edge VM resources,
and VM resource allocation strategies.

Task buffering and scheduling policy is a prerequisite for offloaded tasks before they
are placed in edge servers. In [18], the effects of different types of virtualization techniques

Processes 2023, 11, 1017 3 of 26

for the edge computing concepts used in academics and the industry are discussed. Suitable
scheduling and placement algorithms are used for the improvement of the response time,
energy, cost, and better utilization of the VMs in edge computing. The authors have
highlighted the security issues while using the VMs. In [19], considering task grouping and
quadratic allocation, a service scheduling algorithm is proposed that ensures the reduction
of the scheduling delay and server load balance, which improves the server utilization rate.

Time series analysis-based prediction for cloud resource usage has attracted many
researchers. The CACTA [16] model helps to schedule the task, predict the resources, and
allocate the task to the nearby edge nodes. The authors have considered the mobility,
heterogeneity, and dynamics of the edge node, and the resource prediction is handled by
time series analysis, with or without historical data. The completion time and system cost
are minimized by using the Q-learning-based online assignment algorithm.

Considering the seasonal patterns, many papers deal with forecasting in faster ways.
In [20], the authors have proposed the Holt–Winters formula for finding the initial forecast-
ing, which results in better accuracy with fewer errors compared with the other models. In
this proposal, the authors have considered different datasets for finding the best result α, β,
and γ. The multiple seasonal Holt–Winters methods [21] is proposed for better resource
forecasting in the cloud environment. The authors have used the artificial bee colony
algorithm to obtain optimal parameters. Their model worked well with the minimum
number of observations. The model resulted in a significantly smaller percentage of errors
in comparison with the double and triple exponential smoothing methods. Sarika et al. [22]
describe the effectiveness of the resource usage prediction to avoid delays in VM. The
authors have used time series forecasting for the prediction of CPU usage, memory usage,
disk read time, and disk write time resources by considering univariate analysis. The
authors have applied different time series models, such as ARIMA, SARIMA, Holt–Winters,
and LSTM methods to the dataset and observed that the LSTM does not provide good
results due to the smaller dataset and that Holt–Winters performs well. To minimize the
delay while assigning the allocation of resources, Ouhame et al. [23] proposed a hybrid
method by considering the multivariate situation by combining the VAR model with the
LSTM model. The authors considered the two dependent metrics as CPU usage and
memory usage from the dataset for calculating the multivariate time series. The authors
produced experimental results to show the proposed hybrid model produces fewer errors
in prediction as compared with the already existing combined models.

Docker technology [24] is used for better resource allocation with the task schedule in
the edge gateway. This technology helps to schedule more tasks within less time, which
results in a reduction in waiting time for the task and faster assignment to the resources. The
authors proposed a greedy available fit model, which helps to reduce the data transmission
latency. To utilize the resource optimally, the authors used an improved DE strategy [25].
The proposed algorithm MTSS used the benefits of the clustering method and made the
clusters of the VMs and tasks. The proposed method results in the minimization of the
execution cost, time, and workload and produced better results in resource utilization.
In [26], the authors scheduled the cloud resources for their better utilization. The authors
have proposed the multi-objective optimization algorithm, which performs better than
the traditional GA and PSO algorithms. The proposed algorithm minimizes the cost and
execution time and also results in better load balancing in cloud resources.

In [27], the authors proposed the fine-grained and coarse-grained models by using
the parallel GA. The authors used several workstations for testing the models. They have
considered the different sizes of the population and observed that when the population
size increases, the number of iterations is decreased by using parallel models. The authors
implemented the models by using the SCOOP method. The proposed model results
in better computational time and reduced load balancing by effective utilization of the
hardware. Yuanjun et al. [28] proposed a method for better scheduling and resource
allocation of tasks by considering the cloud edge collaboration model. The authors made
the different groups of correlated tasks. Then, by applying the evolutionary algorithm

Processes 2023, 11, 1017 4 of 26

in a parallel manner, they assigned the requested tasks to the suitable resources once the
resource allocation was complete. To form a solution, the sub-solutions were merged,
which helps in the reduction of computation time and energy. Y. Sun et al. [29] proposed
a differential evolution algorithm for an optimized system, which results in minimum
energy consumption with a larger number of computation bits. The authors considered the
computation bits for local computing as well as edge server computing. The authors have
taken different energy consumption sources such as energy stations, edge servers, and the
users during the offloading process, which results in a reduction in the energy-consumption
process.

From the above study, we found that in scheduling strategies different papers highlight
the major focus on arrival time, size of the task, and priority, but the delay sensitivity
nature of the task is not considered as a priority. Many authors used different methods of
time series-based prediction to predict the resource, but at the same time, they have not
considered the univariate and multivariate time series analysis. As the prediction is fully
dependent on the dataset, and consequently based on the dependent and independent
nature of the parameters, the univariate and the multivariate time series analysis is required
for the better prediction of the resource. Once the scheduling and prediction are successfully
completed, many authors proposed the optimal allocation of the resource with the task
by applying different optimized techniques without considering the parallel computation.
With parallel computation, the allocation becomes faster than the conventional methods.

3. System Model

In this section, we have discussed the cost, energy, and load model based on the task
and VM model. We consider a set of user devices as UD = {UD1, UD2, . . . , UDn} from
which different sets of tasks are generated as T = {{T11, T12, . . . , T1m}, {T21, T22, . . . , T2m},
. . . , {Tn1, Tn2, . . . , Tnm}}. The tasks are computed in the edge server after receiving the
requests from the user devices. The requested task is represented by using the task model
as explained in Section 3.1. The tasks are computed in the available resources of the edge
server. The resource is represented by using the VM model as explained in Section 3.2. The
cost model, energy model, and load model of the system are discussed in Sections 3.3, 3.4
and 3.5, respectively.

3.1. Task Model

The requested task is represented by different parameters as, T = {Ts, DSt, B, TCPU ,
TMEM}, where Ts is the size of the task, DSt is the delay sensitivity of the task, B is the
required network bandwidth of the task, TCPU is the CPU rate required for the task,
and TMEM is the memory required for the task. The task model is used to calculate the
computation time of the task. The computation time is the sum of the execution time,
transmission time, and waiting time of the task.

3.2. VM Model

The VM resource can be represented by different parameters, as mentioned in the
dataset, R = {CPUc, CPUu, MEMc, MEMu, Nrt, Ntt}, where CPUc is the capacity of the
CPU, CPUu is the usage requirement of the CPU, MEMc is the capacity of the memory,
MEMu is the usage requirement of the memory, Nrt is the network received throughput,
and Ntt is the network transmitted throughput.

3.3. Cost Model

The calculation of the cost includes different types of situations based on the decision
of the computation. When the computation cost of the local device becomes greater, then
there will be a need to offload the task to minimize the cost. The effective computation

Processes 2023, 11, 1017 5 of 26

of the task will take place when the Co(ti) < Cl(ti). The total cost is represented by the
following equation,

CT = (1−Od) ∗ Cl(ti) + Od ∗ {Co(ti) + Ctr}, (1)

where CT is the total cost, Cl is the local computation cost of task ti, Co is the offloaded
computation cost of task ti, Od is the offloading decision, and Ctr, which is inherently
affected by latency, includes transmission cost from the user device to edge and delivery
cost from edge to user device of the task ti. The Od is represented in the Equation (2).

Od =

{
0 when computation is local
1 when the computation is o f f loaded.

(2)

In Equation (1), the result of Ctr is negligible when the computation cost dominates the
transmission cost.

3.4. Energy Model

The energy consumption by the task Et is categorized into three parts—El , Eo, and
Etr. El is the energy consumed during the computation of the task in the local device, Eo
is the energy consumed during the computation of the task in the edge server, and Etr is
the energy consumed during the transmission of the task and reception of the result. Etr is
inherently affected by latency. The total energy is represented by the following equation:

Et = (1−Od) ∗ El(ti) + Od ∗ {Eo(ti) + Etr}. (3)

By using Equation (2), the total energy is calculated for the local or offloaded computation
of the task.

Since the major scope of our work focuses on the edge layer assuming that the decision
of the task offloading has been done, the decision parameter Od is considered as 1 as per
Equation (2).

3.5. Load Model

Effective resource utilization takes place with the even distribution of workload among
all the available resources. The workload balancing between the VM resources of the edge
server can be computed by considering the squared difference between the workload of
the VM resource (LRi) and the average workload of the VM resource [30]. The workload
balance (LB) is given in the following equation,

LB =

√
1

m− 1 ∑
RiεR

(LRi − L)2 (4)

LRi = ∑
jεti

Lj (5)

L =
1
m ∑

RiεR
LRi, (6)

where m is the number of VMs, LRi is the workload of the resource Ri, L is the average
workload of the resources, R is the set of resources, and ti is the task. Our aim is to achieve
the proper load balance with the less available m. This can be achieved by the effective
scheduling technique and the parallel resource allocation methodology.

4. Problem Formulation

In the proposed system architecture, a user device generates m number of tasks. Fur-
thermore, the tasks are classified based on priority at the edge layer, Ts = {T1H , T2H , . . . , TnH},
{T1M, T2M, . . . , TnM}, {T1L, T2L, . . . , TnL}. They come from different priority queues and

Processes 2023, 11, 1017 6 of 26

are ready to be placed in the predicted VM resource set Rp = {VMp1, VMp2, . . . , VMpn}.
Effective placement takes place when all the tasks come from the same priority queue, but
in real life, the tasks are based on different priorities. As we will get always a mixture of the
different priority tasks, to avoid task starvation and reduce the task failure rate, we have
considered the combination of the tasks from the different priority queues with different
percentage assignments. The suitable percentages are fixed during the simulation setup.
Here, the constraints are considered as the delay sensitivity of the tasks, and the ready tasks
are arranged in the increasing order of their delay sensitivity. The tasks are served by using
the following equation,

ηti =
∣∣VMpi − DTc

∣∣, (7)

where ηti is the difference at time ti for the task, VMpi is the CPU availability of the
predicted VM, DTc is the CPU requirement for the task and the value of i = {1, 2, 3, , n}.
Find ηt, and the minimum among the ηti for the best placement by applying the constraint
by using the following equation,

ηt = Min(ηt1, ηt2, ηtn)

s.t., i1 ≤ DTc ≤ i2
, (8)

where, i1 = lower bound of delay sensitivity, i.e., 0, and i2 = upper bound of delay sensitivity,
i.e., 10, as mentioned in Section 6.1.

5. Network Architecture

The role of the network architecture is divided into two layers—the device layer and
the edge layer. In the device layer, the user devices have uploaded the tasks to the edge
server and after computation, the result of the computation is downloaded back to the user
device. When the task is reached at the edge layer, the responsibility of the edge layer is
divided into three parts—select the suitable priority queue based on the delay sensitivity
of the task, predict the available resources, and assign the task to the resource as shown
in Figure 1.

Figure 1. MEC network architecture.

When there is a request for task execution in a user device, the first step is to make
a suitable decision for finding a suitable place for the computation. Once the decision is
chosen for offloading in a suitable MEC for the computation, then the role of the edge
layer becomes activated. In the edge layer, the selected offloaded tasks will be placed in a
suitable queue scheduler as explained in the DSPS algorithm, given in Algorithm 1. When
the task is placed inside the queue, then there will be a requirement to find the suitable
VM for the computation, and the suitable VM is predicted with the forecasting of the VM
procedure by using the time series analysis.

Processes 2023, 11, 1017 7 of 26

Algorithm 1: Delay sensitivity-based priority scheduling (DSPS)
Input: DSt, SRest
Result: Task placed in a suitable priority queue

1 if ((DSt < SRest)&&(DSt >= Th1)) then
2 Place task in QHP
3 else if ((DSt = SRest)&&(Th1 > DSt > Th2)) then
4 if (QHP not Full), then
5 Place task in QHP
6 end
7 else
8 Place task in QMP
9 end

10 end
11 end
12 else
13 if ((QHP not Full)&&(DSt <= Th2)), then
14 Place task in QMP
15 end
16 else
17 Place task in QLP
18 end
19 end

The responsibility of the predictor module is divided into two parts. In the first part,
we have considered the beginning situation, in which for the first time the VM is predicted
by using the Holt-Winters seasonal method, as explained in Algorithm 2, when there is
much less historical data available. In the second part, when we have a large dataset, we
observed some of the parameters to be dependent on the other parameters for producing
a suitable result. Consequently, we used the multivariate vector autoregression (VAR)
model to predict the suitable VM as explained in Algorithm 3. We have considered the
seasonal methods for the predictions, as we have observed the presence of seasonal patterns
while studying similar types of datasets. Once the resource prediction is successfully
completed, then the role of the parallel optimized offloader Algorithm 4 becomes active,
and the mapping of the task with the most suitable VM lists is predicted by the forecasting
procedure, as shown in Figure 2.

Figure 2. Proposed task-execution process.

Processes 2023, 11, 1017 8 of 26

Algorithm 2: Holt–Winters-based univariate algorithm (HWVMR)

Input: Set of tasks = {T1, T2, T3, . . . , Tn}
Edge node: R = {VM1, VM2, . . . , VMm}
Result: Predict suitable VM

1 for each task iε{T1, T2, , Tn} do
2 while (CPU_required < CPU_available) do
3 Available_list_o f _VM()
4 for each node jε{VM1, VM2, . . . , VMm} do
5 Predict VMit using Holt Winter method by using Equation (15) and

Equation (16)
6 Assign_task_to_VM()

7 end
8 end
9 end

Algorithm 3: VAR-based multivariate algorithm (VARVMR)

Input: Set of tasks = {T1, T2, T3, . . . , Tn}
Edge node:R = {VM1, VM2, . . . , VMm}
Result: Predict VM, cost (C), and time (t) of the input task

1 Initialize t← 0, C ← 0, wait_time← 0
2 for each task iε{T1, T2, , Tn} do
3 while (CPU_required < CPU_capacity) do
4 for each node jε{VM1, VM2, . . . , VMm} do
5 Predict VMit by using multivariate VAR method by using Equation (19)

and Equation (20)
6 C ← C + C_storage + C_computation
7 CPU_available← CPU_capacity
8 CPU_assigned← CPU_required
9 CPU_remaining← CPU_available− CPU_assigned

10 end
11 t← t + wait_time
12 end
13 end

Processes 2023, 11, 1017 9 of 26

Algorithm 4: Parallel differential evolution-based task allocation (pDETA)

Input: Set of tasks: T = {T1, T2, T3, . . . , Tn}
Set of predicted VM: VM = {VMp1, VMp2, . . . , VMpm}
Result: Assign task to suitable VM

1 for eachtimeiε{t1, t2, , tn} do
2 for each VMp jε{VMp1, VMp2, , VMpm} do
3 SN [VMp]= Find the suitable VM using Equation (22)
4 SA =Ascending Sort (SN)

5 end
6 end
7 P←Make the population by randomly assigning VM of SA to tasks of T
8 for each chromosome ch ε P do
9 for each VMs of ch do

10 for each task kε{T1, T2, , Tn} do
11 if VMs[CPU_capacity] > k[CPU_required] then
12 if VMs[Mem_capacity] > k[Mem_required] then
13 Add k to the task set of assigned VMs
14 end
15 end
16 end
17 end
18 end
19 Make set of Subpop by selecting ch randomly from P
20 for each i select v1 number of Subpop do
21 M← Create Mutation
22 C ←Make Crossover
23 Fitness = {execution time, cost and energy}
24 S←Make the selection
25 end
26 Place← Best(Fitness)
27 ch← ch (Place)
28 Return ch

6. Proposed Methodologies

In this section, we discuss the proposed methodologies that consist of a priority
scheduler based on the delay sensitivity of the task, univariate and multivariate resource
prediction based on time series analysis, and optimized resource utilization based on a
parallel differential evolution model.

6.1. Delay Sensitivity-Based Priority Scheduler

When multiple tasks are requested for offloading, then there is a requirement for an
optimized scheduling procedure to ensure the smooth execution of the requested tasks
by considering the nature of the tasks. Here, we have considered the simplest form of the
scheduling procedure by considering [31]. The requested tasks are categorized into three
different types based on their sensitivity nature toward the delay. Here, the delay of the
task is represented as

DEt = DLSR − PT. (9)

With the resulting values of the DEt, the delay sensitivity is categorized into three types
based on the delay scales ranging from (0 to 10), when (1) DEt ranges from 0 to 3, known as
higher DSt, (2) DEt ranges from 4 to 6, known as medium DSt, and (3) DEt ranges from 7 to
10, known as lower DSt. DSt is the delay sensitivity of the task, DLSR is the service request
deadline and PT = current time of the request. Based on the type of delay sensitivity, the

Processes 2023, 11, 1017 10 of 26

type of queue is decided to place the task. When the sensitivity is high, the task needs to be
executed with high priority at the beginning, and when the sensitivity is medium, the task
needs to be executed with medium priority. Similarly, when the sensitivity is low, it means
the task is latency-tolerable in nature, and it needs to be executed with low priority after the
completion of the previous two cases, at the end. The task will be placed in a queue based
on the threshold values of Th1 and Th2. The values of the Th1 and Th2 are set during the
experiments. The threshold value of Th1 should always be greater than Th2. The decision
on the suitable queue for the task placement is based on the following conditions:

• DSt >= Th1, the task is placed in QHP.
• DSt <= Th2, the task is placed in QLP.
• Th1 > DSt > Th2, the task is placed in QMP.

To ensure a better QoS environment, the total time spent by a service request in the
queues should not be greater than the total delay of the task represented below,

SRest <= DEt, (10)

where SRest is the total estimated time of the service request. The DSPS process is repre-
sented step-wise in Algorithm 1. This algorithm explains the scheduling of the requested
tasks into different priority queues by considering the DSt, SRest as inputs. In step 1, when
DSt is less than SRest and DSt is greater than or equal to Th1, it results in step 2 where the
task is placed in the QHP. In step 3, when DSt is equal to SRest and DSt is greater than Th2
and less than Th1, then two conditions arise as explained in steps 4 and 7. Step 4 checks
whether the QHP is not full, and then the task is placed in QHP or otherwise placed in QMP,
as given in step 8. Step 13 explains when the QHP is not full and DSt is less than or equal
to Th2, then the task is placed in QMP or else placed in QLP as given in step 17.

6.2. Time Series-Based VM Resource Predictor

In this section, we discuss the analysis of resource prediction in Section 6.2.1. After
the analysis, we explain the process of univariate-based prediction in Section 6.2.2 and
multivariate-based prediction in Section 6.2.3. Here, the suitable VM is predicted to provide
the best service to the user’s requested task. The main job of this module is to find the best
suitable VM from the available list of VMs at a particular time. The prediction module helps
in reducing the waiting time of the task so that the ready task will be served very quickly as
the suitable VM is ready to serve the state. The reduction in waiting time produced a better
result for the delay sensitivity tasks. The next section discusses the prediction analysis
process.

6.2.1. Exploratory Analysis of Resource Prediction

During the thorough review of the different types of predictions [16,21,32–36], we
have observed the different types of situations available in the case of the different datasets.
Some datasets are univariate (parameters are not dependent on each other) and some are
multivariate (parameters are dependent on each other). While observing the seasonal
patterns, we found that some of the datasets support seasonal patterns and some are non-
seasonal patterns. Consequently, we have concluded that the prediction is fully dependent
on the nature of the dataset. As we have used the Bitbrains dataset in our simulation,
we found univariate and multivariate seasonal patterns present in the dataset, as shown
in Figure 3. Consequently, we have considered the univariate and multivariate seasonal
methods to predict the suitable VM.

Processes 2023, 11, 1017 11 of 26

Figure 3. Analysis of trend and seasonal components of CPU usage.

To deal with the seasonality pattern, we have considered the best suitable Holt–Winters
method for prediction, as discussed in Algorithm 2, where considering the task requested
by the user, the estimated CPU required is calculated and compared with the available
CPU in the VM. The VM is taken from the list of available VMs after predicting the most
suitable VM by using the Holt–Winters method.

Based on the dependency among the different parameters to predict the result, we
have used the multivariate VAR method for the prediction as explained in Algorithm 3.
Once the suitable VM is predicted for a particular task, then the required cost to use the
selected VM is calculated by considering the storage cost and computation cost. Here, based
on the remaining CPU left, the future service is calculated along with the time required to
complete the task successfully.

6.2.2. Applied Holt–Winters-Based Resource Prediction

The Holt–Winters seasonal method is used for forecasting. The forecasting equa-
tion comprises three smoothing equations for calculating the level Lt, trend Tt, and the
seasonality St with the three smoothing constants as α, β, and γ, as given below,

Lt = α
Dt

St−M
+ (1− α)(Lt−1 + Tt−1) (11)

Tt = β(Lt − Lt−1) + (1− β)Tt−1 (12)

St = γ
Dt

Lt
+ (1− γ)St−M, (13)

where M is calculated by the equation given below:

M = time period/year. (14)

The values are M = 4 for quarterly data and M = 12 for yearly data. To forecast the
future value Ft+1 of the required data within the available dataset values we used the
Equation (15). To forecast the future value Ft+k of the required data within the available
dataset values we used the Equation (16). Here, the value of the k is a constant ranging

Processes 2023, 11, 1017 12 of 26

from the {1, 2, 3, , c}. The value of the c depends on the requirement of the future
forecast. The constant values of the α, β, and γ are set during the experiment:

Ft+1 = (Lt + Tt)St−M+1 (15)

Ft+k = (Lt + kTt)St−M+k. (16)

A forecasting error (or residual) is calculated by using the equation given below:

Error = Ft+1 − Dt+1. (17)

In Algorithm 2, while considering the task requested by the user, the estimated
CPU_required is calculated and compared with the CPU_available in the VM, from the list
of available VMs to predict the most suitable VM by using the Holt–Winters method.

6.2.3. Applied VAR Based Resource Prediction

This is a type of forecasting method, where the present forecasting is calculated based
on the previous past value. Here, the forecasting of the resource at the present time t; Ft
depends on the product of the past value of the resource (i.e., Ft−1 with the corresponding
coefficients and C is added with the error term Et, as shown in the equation given below):

Ft = CFt−1 + εt. (18)

In this paper, we have calculated the forecasting of the CPU_usage(Xt) and Memory_usage(Yt)
by using the Equation (19) and Equation (20), where Xt is calculated by using the coefficients
C11 and C12 by multiplying with the previous value of the Xt, i.e., Xt−1, which is added
with the corresponding error term. Here, Yt is calculated in a similar way. Equation (21) is
a general vector representation of the forecasting of resources. We have

Xt = C11Xt−1 + C12Xt−1 + εt1 (19)

Yt = C21Yt−1 + C22Yt−1 + εt2 (20)

[
Xt
Yt

]
=

[
C11 C12
C21 C22

][
Xt−1
Yt−1

]
+

[
εt1
εt2

]
, (21)

where Xt and Yt are the forecasting variables at time t. C11, C12, C21 and C22 are the
corresponding coefficients. Xt−1 and Yt−1 are the past values of the Xt and Yt, respectively.
εt1 and εt2 are the error terms.

During the analysis of the dataset, we found some dependencies among the different
parameters while applying Pearson’s correlation. Figure 4 shows the correlation analysis
result. As the Pearson coefficient of memory usage is high with respect to CPU usage, we
have considered the CPU usage and memory usage parameter for the prediction. Figure 5
shows the behaviour of the actual CPU usage and Figure 6 shows the behaviour of the
actual memory usage. Based on the observed dependency, we have applied VAR model to
generate the behaviour of the actual CPU usage versus the prediction as shown in Figure 7
and the actual memory usage versus the prediction as shown in Figure 8.

Processes 2023, 11, 1017 13 of 26

Figure 4. Pearson’s correlation of CPU usage with other VM parameters.

Figure 5. Behaviour of actual CPU usage.

Figure 6. Behaviour of actual memory usage.

Processes 2023, 11, 1017 14 of 26

Figure 7. Behaviour of actual CPU usage and prediction result.

Figure 8. Behaviour of actual memory usage and prediction result.

In Algorithm 3, we have predicted the capacity of the VM and calculated the execution
cost (C) and the total time (t) taken by the input task during the process, by considering the
set of tasks {T1, T2, , Tn} as inputs. In step 1, we have initialized all the variables as t,
C, and wait_time as 0. In step 2, a loop is used for a single task in the set of tasks calculating
the desired results. In step 4, for each VM in the set of VM lists {VM1, VM2, . . . , VMm},
we find that after checking the condition, the CPU_required is less than the CPU_capacity
in step 3. Step 5 is used to predict the VM by using the multivariate VAR method by using
Equations (19) and (20). Once the suitable VM is predicted for a particular task, then the
required cost to use the selected VM is calculated by considering the storage cost and
computation cost in step 6. In step 7, the CPU capacity of the VM is assigned to the CPU
available for the computation of the task. CPU required for the computation of the task is
assigned to the CPU_assigned in step 8. Step 9 is used for calculating the remaining CPU
left out in the VM resource for the future service, after assigning the task by subtracting
the CPU_assigned from the CPU_available by the VM resource. When the suitable VM is

Processes 2023, 11, 1017 15 of 26

predicted for the task, the total time required to complete the process is calculated in step
11, by the addition of the previously calculated time and the waiting time.

6.3. Parallel Optimal Allocator

In this section, we discuss the finding of a suitable VM in Section 6.3.1 and then
assign the requested task to the suitable VM by applying the parallel differential evolution
algorithm as explained in Section 6.3.2 (Figures 9–11). Once the forecasting of the available
VM resources is listed successfully, the next part is to find the suitable VM for the mapping
with the requested task. The suitable VM is found by using the Algorithm 4. Here, we first
find the suitable VMs by using Equation (22), and then we sort all the VMs in ascending
order of their distances. Then, for each requested task, with sufficient availability of the
CPU and memory capacity, the suitable VM is chosen by the parallel differential evolution
Algorithm 4 as explained in Section 6.3.2. Then, the placement of the requested task with
the most suitable VM is executed.

6.3.1. Finding Suitable VM by Using Minkowski Distance

To find the suitable VM for task assignment, the deviation between the resource avail-
ability in VMs and the resource required by the task is computed by using the Minkowski
distance as given in Equation (22). The suitable VM is selected where the deviation is
minimum. In Equation (22), the value of p is an integer. The equation behaves differently
when the value of the p is changed. If p = 1, it is considered as a Manhattan distance, and if
p = 2, it is considered as a Euclidean distance. Consequently, depending on the demand of
the requirement we can consider the value of p as 1 or 2. The p value will be 1 when the
dimension in the data will become very high. In this work, we have considered the value
of p as 2, which is similar to the Euclidean distance. We have

Distance =

(
n

∑
i=1
|Ri[CPU, Mem]− ri[CPU, Mem]|p

)1/p

. (22)

6.3.2. Parallel Differential Evolution Algorithm

Edge servers have limited resources, so the possible numbers of VMs are fewer
compared with the cloud servers. One solution for getting a faster computation result is by
making the process parallel. The parallel differential evolution algorithm helps to optimize
parallel computation with limited resources in less time with the mutation, crossover, and
selection procedure of the differential evolution algorithm shown in Figure 9. We select
the suitable task placement with the available predicted VMs in a much faster and easier
way than the other machine learning algorithms by using the parallel differential evolution
process as shown in Figure 11.

To apply the differential evolution algorithm in our procedure, we need to set the
following parameters.

• Problem definition: Our aim is to assign the task to a suitable predicted VM from the
predicted VM lists with the optimum allocation of resources considering minimum
distance by applying Equation (22). The mapping of the available VM resources with
the required task resources. Here, the resources are CPU usage and memory usage for
the VMs and tasks. The task is assigned to the VM only when the following equation
will be satisfied:

Ri[CPU, Mem] > ri[CPU, Mem]. (23)

• Problem parameters: The population size (N) is Ps, the dimension of the problem (D)
is 4, the stopping criteria (maximum number of iterations) is set to 5, the scaling factor
(F) is 0.5, and the crossover probability Pcr is 0.7. The value of the scaling factor is
inversely proportional to the local search ability, so we have considered a minimum
value for the scaling factor, i.e., 0.5 to become strong in the local search algorithm.

Processes 2023, 11, 1017 16 of 26

Figure 9. Differential evolution procedure.

• Initialization: Based on Ps, the number of initial solutions are obtained by satisfying
the problem definition. Here, all the possible assignments take place and discover the
best solution having minimum result by applying Equation (22).

• Differential evolution position update: Here we have considered the suitable strategy
as DE/Best/1/2 for binomial crossover based on two randomly assigned pairs. The
generations are formed based on the above procedure. Here, we have discussed the
process followed in one generation.

• Chromosome formation: In the beginning, we assign the predicted VM resources from
the set of {VMp1, VMp2, , VMpm}with the set of requested tasks {T11, T21, ,
Tnm} available in the priority scheduled queues. The active tasks will become 1, and
the inactive tasks will become 0 in the different task sets present in the chromosome.
The chromosome is represented in Figure 10.

Figure 10. Representation of chromosome.

• Population: We collect all the chromosomes, and make them ready for the parallel
computation of the individual population by using the differential evolution algo-
rithm.

• Subpopulation: We consider a single population for finding the fitness function until
the termination condition arrives. Here, the subpopulations are implemented in
parallel to finding the fitness function for an individual one.

• Fitness function: This refers to the calculation of the computation time, cost, and
energy required for the computation in edge resources.
The best fitness function = {Min(Ct(i)), Min(CT(i)), Min(Et(i))}.

• Mutation: The predicted VM resource is assigned with the possible set of requested
tasks from the priority scheduled queues. The output of the mutation module is the

Processes 2023, 11, 1017 17 of 26

input to the crossover module. Once the single output is released to the crossover
module for the individual assignment, the mutation module is ready with the next
possible assignment of the task to the VM resource. The best suitable mutation strategy
is the “DE/Best/1/2” as

VµG = XµG
best + F(XµG

r1 − XµG
r2), (24)

where XµG
best is the best solution produced during the initialization process, XµG

r1 and

XµG
r2 are the random solutions selected from the population, and XµG

r1 6= XµG
r2 , F is a

scaling factor, and VµG is mutant donor vector.
• Crossover: The crossover method increases the diversity of the population. This

module is ready for the calculation of the fitness function for the input to the mutation
module. The crossover method is shown below,

Uc
i =

{
Vc

i i f r ≤ Cp or i = δ

Xc
i i f r > Cp and i 6= δ

, (25)

where Uc
i is the ith variable of the trial vector, Vc

i is the ith variable of the donor vector,
Xc

i is the ith variable of the target vector, r is the random number between 0 and 1, Cp
is the crossover probability, δ is the randomly selected variable location, and δ ε {1, 2,
3, . . . , D}.

• Selection: This module selects the best mapping of the predicted VM resource with
the requested task by applying Equation (22). It takes the output of the crossover
module and finds the best fitness function for the selection of the task placement of
the individual subpopulation.

• Termination: The termination condition arrives when we obtained the best fitness
function with the minimum computation time, cost, and energy after merging all the
fitness functions calculated from the individual subpopulations. After the termination
condition was reached, we obtained the optimized placement of the requested task in
the VM.

The whole process of parallel differential evolution is expressed in Algorithm 4, which
explains the mapping of the tasks (available in the priority queues; QHP, QMP, and QLP)
into the selected predicted VM lists {VMp1, VMp2, . . . , VMpm}. The tasks are the outputs
of Algorithm 1, and the predicted VMs are the outputs from Algorithm 2 or Algorithm 3
based on the nature of the dependencies of the different available parameters of the dataset.
Considering a particular time period from the predicted list of VMs of step 1 and step 2, we
learn the suitable VM resources by using the Minkowski distance, as explained in Equation
(22). All the suitable VMs are stored in a list in step 3. In step 4, we perform the sorting
in ascending order of the suitable VM from the SN list and assigned it to the new list SA.
In step 7, we make the population by randomly assigning VM from the list of SA to the
available task set T. In step 8, for each available chromosome ch from the population P, we
assign the task to the suitable VM from the sorted list VMs. For each suitable VM from the
chromosome in step 9, we choose the task k from the task set in step 10 by checking whether
the CPU capacity of the VM should be greater than the CPU required by the requested
task in step 11. Similarly, we check if the memory capacity of the VM resources should be
greater than the memory required by the requested task in step 12. When both conditions
are satisfied, then we have added the task to the task set of assigned VMs in step 13. In
step 19, we make a set of subpopulations by selecting chromosomes randomly from the
population P. To make all the executions parallel, we select v (taken as 50) as the number
of subpopulations at a time for computing steps 21 to 24. For each subpopulation, the
mutation is done in step 21 and assigned to M; in step 22, we perform the corresponding
crossover and assign it to C. The fitness function is calculated based on the execution time,
cost, and energy in step 23. The suitable selection is assigned to S in step 24. In step 26,
the best fitness value is assigned to the variable Place. We assign the chromosome of the

Processes 2023, 11, 1017 18 of 26

variable Place to variable ch in step 27, and finally, the best-fitting chromosome having the
suitable VM with the task assignment is returned in step 28.

Figure 11. Parallel differential evolution process.

7. Simulation Results

In this section, our proposed approach is simulated, and the benefits of computation
offloading processes in the MEC environment are justified. The proposed method is
evaluated by using the average waiting time, scheduled task, makespan(s), load-balancing
level, and different types of time series analysis, cost, and energy with respect to the number
of service requests, tasks, and VMs. For performance verification, our method is compared
with the RR, priority, GAF [24], min–min, DE, and MTSS [25] algorithms. The simulation
is performed by using Python 3.8 with 4 GB RAM, and an i5 processor in Windows 8
environment. The proposed Algorithm 4 is implemented by using the multithreading class
ThreadPoolExecutor of concurrent.futures module in Python to achieve parallelism. The
simulation setup uses the simulation parameters available in Table 1.

Table 1. Simulation parameters.

Parameter Value
Number of tasks 50 to 600
Size of the task 2 to 20 GI
Number of VMs 5 to 30
VM processing speed 10 GIPS
Latency–sensitivity 0 to 10

Figure 12 shows the average waiting time of the tasks based on the number of service
requests arrived. Here, the RR scheduling algorithm consumes maximum waiting time as

Processes 2023, 11, 1017 19 of 26

they followed the time slice quantum rules, where a larger task fails to meet the require-
ments as it consumes maximum time quantum to finish its request. In priority scheduling,
the highest-priority task takes more attention, due to which the lowest-priority tasks suffer
and result in the maximum waiting time to fulfill the service request. In GAF scheduling,
they have set a baseline based on the largest deadline received, which becomes inactive in
a random environment when a larger deadline task arrives later after setting the baseline,
but this scheduling performs better than the above two until the larger deadline of the task
is not changed in the future. Our proposed scheduling algorithm performs better than the
RR, priority, and GAF, as it combines the best features of the priority and RR scheduling by
considering the latency sensitivity of the tasks.

Figure 12. Performance evaluation by using average waiting time with the number of service requests.

Figure 13 shows the task scheduling performance based on the number of service
requests. When there is a lesser number of tasks, limited to 60 numbers of tasks, then all the
scheduling algorithms perform almost similarly. The difference in scheduling tasks arises
when the tasks are more than 60 in number. Our proposed algorithm outperforms other
scheduling algorithms. Our approach results in 98% of the tasks being scheduled with
minimum processing time, as our scheme is based on priority and RR scheduling. GAF also
performs better than the priority and RR algorithms, as it considers the largest deadline
task at the end. As we are getting the set of tasks with a mixture of different priorities, so
by experimenting with the different set of percentages, we have fixed the percentage as
70% from the high-priority queue, 20% from the medium-priority queue, and 10% from the
low-priority queue; as a result, we will always get the set of ready tasks with a mixed type,
which results in all the tasks being easily scheduled with minimum waiting time and able
to overcome the starvation problem.

Processes 2023, 11, 1017 20 of 26

Figure 13. Performance evaluation by using number of service requests with the scheduled tasks.

We have considered Holt–Winters time series method to predict future VM resources.
We have used the GWA-T-12 Bitbrains dataset [17] for our implementation. By using the
additive decomposition model, we have found the graph as shown in Figure 3. The graph
is divided into four different parts. The first part describes the general representation of the
actual time series data of CPU usage, the second part describes the trend patterns available
in the dataset, the third part describes the changes in the seasonal components, and the
fourth part describes the residual errors available in the prediction of the CPU usages.
Figure 14 shows the CPU usage plots, where the blue colour represents the training dataset
and the orange colour represents the testing of the dataset. Here, the training and testing of
the dataset are in the ratio of 90:10. Figure 15 shows the train and test data with the future
prediction of CPU usage. Here, we have obtained 35.17% of the mean absolute percentage
error.

Figure 14. Training and testing result of the CPU usage.

Processes 2023, 11, 1017 21 of 26

Figure 15. Prediction of CPU usage by using Holt–Winters method.

Figure 16 shows a faster task-completion time than the other algorithms while the
number of tasks is increasing further. Here, we have assumed the situation in which the
performance of the task-completion time observes while increasing the number of tasks
in a constant VM environment. The task-completion time increases when the number of
tasks increases. The DE performs better than the min–min algorithm with the optimization
strategy and MTSS performs better than the DE with the advanced and improved DE
strategy. Our proposed approach performs better than the MTSS with the improved and
parallel DE algorithm. The parallel DE helps in the improvement by 18.95%, 26.46%, and
34.43% with the approaches MTSS, DE, and min–min respectively.

Figure 16. Performance evaluation by using task completion time with the number of tasks.

Figure 17 shows the task-completion time based on the number of VMs available in
the MEC environment. Here, we have considered 100 scheduled tasks. The task-completion
time results in better performance when the available resources are greater, representing
that the task-completion time is inversely proportional to the number of VMs. Here, the
MTSS algorithm performs better than the conventional DE and min–min algorithm, as it
has considered the improved version of DE. However, our proposed approach improves the
performance by 18.95%, 26.46%, and 34.43% with the approaches MTSS, DE, and min–min
respectively, due to the applied parallel computation in the improved DE algorithm.

Processes 2023, 11, 1017 22 of 26

Figure 17. Performance evaluation by using task-completion time with the number of VMs.

The resource utilization of VM is measured by using the workload-balancing level.
Figure 18 shows the changes in the load-balancing level with the increasing number of
tasks. When the number of tasks increases, the load-balancing level gradually becomes
difficult as the number of VMs is constant. Here the min–min algorithm does not perform
well, as it considers only the execution time of the task. The DE algorithm performs better
than the min–min as it considers the global optimization-based algorithm. The MTSS
algorithm performs better than the DE and min–min as it considers the “Q-value method”
in its algorithm. Our proposed approach performs better than the other three algorithms, as
it uses the parallel DE algorithm, due to which the waiting time for the tasks also decreases
to a greater extent. The workload balance factor improved by 28.78%, 38.58%, and 62.87%
with the approaches MTSS, DE, and min–min respectively.

Figure 18. Performance evaluation by using load balancing with number of tasks.

Figure 19 shows the change in the cost of execution of the task based on the increasing
number of tasks. Here the cost increases with an increase in the number of tasks. The
min–min algorithm shows the worst performance when compared with the other algo-
rithms, as it uses the high-performance VM for task computation. Our proposed approach
shows better performance than the other algorithms, as it uses the most suitable VM for

Processes 2023, 11, 1017 23 of 26

the execution of the task. For choosing the suitable VM, we first checked the capacity of the
available resources of the VM, and based on the availability, the delay sensitivity of the task
has been assigned to the predicted VM. This process minimizes the waiting time, which
results in a decrease in the cost of the execution by 22.41%, 35.35%, and 68.63% with the
approaches MTSS, DE, and min–min, respectively.

Figure 19. Performance evaluation of cost with number of tasks.

Figure 20 shows the energy consumption by the edge server with the increase in the
number of tasks. The min–min algorithm shows the worst performance when compared
with the other algorithms, as it uses the high-performance VM for task computation.
Our proposed approach shows better performance than the other algorithms as it uses
the nearby most suitable VM for the execution of the task. By considering the effective
resource utilization of the edge server, the delay sensitivity task has been assigned to the
nearby predicted VM. This process minimizes the energy consumption, which results in the
decrease in energy of the computation by 40.78%, 51.76%, and 77.68% with the approaches
MTSS, DE, and min–min, respectively.

Figure 20. Performance evaluation of average energy with a number of tasks.

Processes 2023, 11, 1017 24 of 26

8. Conclusions and Future Work

Task offloading of resource-hungry applications and edge VM resource allocation
has been a thrust area of focus due to its vast applications in the 5G/6G-enabled MEC
environment. In this paper, edge server-side issues are considered once the tasks are
decided to be offloaded, and we propose a DSPS policy to schedule the tasks as per their
deadline. Furthermore, exploratory data analysis is carried out, and inference has been
made regarding seasonal patterns in the usage of edge CPU resources from the GWA-T-12
Bitbrains VM utilization dataset. Based on the analysis, the availability of VM resources
of the edge server is predicted by using the HWVMR and VARVMR algorithms. Finally,
for optimal and fast task assignment, the pDETA algorithm is proposed. The proposed
algorithms are compared with some state-of-the-art algorithms like MTSS, traditional DE,
and min–min, and the performance evaluations measure the cost and energy matrix. The
improvements observed are 22%, 35%, and 69% for cost and 41%, 52%, and 78% for energy,
respectively. In the future, different optimization techniques can be used to optimize the
performance of the algorithm, and this algorithm can be analyzed in a heterogeneous and
multiuser environment. Further, mobility-based task allocation and orchestration can be
integrated considering multiple server scenarios.

Author Contributions: Conceptualization, S.R.B., N.P. and S.K.B.; methodology, S.R.B.; software,
S.R.B.; validation, S.R.B., N.P. and S.K.B.; formal analysis, S.R.B.; investigation, N.P. and S.K.B.;
resources, S.R.B., N.P., S.K.B. and K.S.S.; data curation, S.R.B.; writing—original draft preparation,
S.R.B.; writing—review and editing, N.P., S.K.B., K.S.S., N.Z.J., R.M.G.; visualization, K.S.S., N.Z.J.,
and R.M.G.; supervision, N.P. and S.K.B.; project administration, N.Z.J., R.M.G.; funding acquisition,
N.Z.J., R.M.G. All authors have read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R138), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: Data and materials are available on request.

Acknowledgments: We acknowledge the support from Princess Nourah bint Abdulrahman Univer-
sity Researchers Supporting Project number (PNURSP2023R138), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

T Task
VM Virtual machine resource
QHP High-priority queue
QMP Medium-priority queue
QLP Low-priority queue
TH High-priority task
TM Medium-priority task
TL Low-priority task
DEt Delay of the task
DSt Delay sensitivity of the task
SRest Estimation time of the service request
Th1, Th2 Threshold value
VMp Predicted VM
VMs Sorted VM
t Time period
Ct Computation time of the task
Lt Level at time t
Lt−1 Level at time t−1

Processes 2023, 11, 1017 25 of 26

Tt Trend at time t
Tt−1 Trend at time t−1
St Season at time t
St−1 Season at time t−1
Ft+1 Forecasting at time t+1
Ft+k Forecasting at time t+k
Dt Data at time t

References
1. Abdullah, A.; Ibrahim, E.; Muthanna, A.; Alghamdi, A.; Mohammed, A.; Adel, A. Efficient multi-player computation offloading

for VR edge-cloud computing systems. Appl. Sci. 2020, 10, 5515.
2. Kai, P.; Peichen, L.; Tao, H. A privacy-aware computation offloading method for virtual reality application. CEUR Workshop Proc.

2021, 3052.
3. Ke, Z.; Yuming, M.; Supeng, L.; Quanxin, Z.; Longjiang, L.; Xin, P.; Li, P.; Sabita, M.; Yan, Z. Energy-efficient offloading for mobile

edge computing in 5g heterogeneous networks. IEEE Access 2016, 4, 5896–5907.
4. Jinke, R.; Guanding, Y.; Yunlong, C.; Yinghui, H. Latency optimization for resource allocation in mobile-edge computation

offloading. IEEE Trans. Wirel. Commun. 2018, 17, 5506–5519.
5. Mian, G.; Mithun, M.; Gen, L.; Jinyou, Z. Computation offloading for machine learning in industrial environments. In Proceedings

of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020;
pp. 4465–4470.

6. Juan, F.; Jiamei, S.; Shuaibing, L.; Mengyuan, Z.; Zhiyuan, Y. An efficient computation offloading strategy with mobile edge
computing for IoT. Micromachines 2021, 12, 204.

7. Sharma, V.; Rai, V.P.; Sharma, K.K. Edge computing: Needs, concerns and challenges. Int. J. Sci. Eng. Res. 2017, 8, 154–166.
8. Junaid, Q.; Beatriz, S.-D.-A.; Anwar, K.; Begoña, G.-Z.; Isabel, D.L.T.-D.; Hasan, M. Towards mobile edge computing: Taxonomy,

challenges, applications and future realms. IEEE Access 2020, 8, 189129–189162.
9. Huaming, W.; William, K.; Katinka, W. An efficient application partitioning algorithm in mobile environments. IEEE Trans.

Parallel Distrib. Syst. 2019, 30, 1464–1480.
10. Delowar, H.M.; Tangina, S.; Alamgir, H.M.; Imtiaz, H.M.; Junyoung, H.L.N.P.; Nam, H.E. Fuzzy decision-based efficient task

offloading management scheme in multi-tier MEC-enabled networks. Sensors 2021, 21, 1–26.
11. Jiuyun, X.; Zhuangyuan, H.; Xiaoting, S. Optimal offloading decision strategies and their influence analysis of mobile edge

computing. Sensors 2019, 19, 3231.
12. Jun, C.; Dejun, G. Research on task-offloading decision mechanism in mo- bile edge computing-based internet of vehicle. Eurasip

J. Wirel. Commun. Netw. 2021, 2021, 1–14.
13. Changsheng, Y.; Kaibin, H.; Hyukjin, C.; Byoung-Hoon, K. Energy-efficient resource allocation for mobile-edge computation

offloading. IEEE Trans. Wirel. Commun. 2017, 16, 1397–1411.
14. Xihan, C.; Yunlong, C.; Liyan, L.; Minjian, Z.; Benoit, C.; Lajos, H. Energy-efficient resource allocation for latency-sensitive mobile

edge computing. IEEE Trans. Veh. Technol. 2020, 69, 2246–2262.
15. Jiadai, W.; Lei, Z.; Jiajia, L.; Nei, K. Smart resource allocation for mobile edge computing: A deep reinforcement learning approach.

IEEE Trans. Emerg. Top. Comput. 2021, 9, 1529–1541.
16. Deng, X.; Li, J.; Liu, E.; Zhang, H. Task allocation algorithm and optimization model on edge collaboration. J. Syst. Archit. 2020,

110, 1–12. [CrossRef]
17. The Grid Workloads Gwa-t-12 Bitbrains. Available online: http://gwa.ewi.tudelft.nl/datasets (accessed on 27 September 2022).
18. Zeyi, T.; Qi, X.; Zijiang, H.; Cheng, L.; Lele, M.; Shanhe, Y.; Qun, L. A survey of virtual machine management in edge computing.

Proc. IEEE 2019, 107, 1482–1499.
19. Sun, L.; Li, Z.; Lv, J.; Wang, C.; Wang, Y.; Chen, L.; He, D. Edge computing task scheduling strategy based on load balancing.

MATEC Web Conf. 2020, 309, 3025. [CrossRef]
20. Hansun, S.; Charles, V.; Indrati, C.R.; Saleh, S.S. Revisiting the holt-winters’ additive method for better forecasting. Int. J. Enterp.

Inf. Syst. 2019, 15, 43–57. [CrossRef]
21. Shahin, A.A. Using Multiple Seasonal Holt-Winters Exponential Smoothing to Predict Cloud Resource Provisioning. Int. J. Adv.

Comput. Sci. Appl. 2016, 7, 91–96.
22. Sarikaa, S.; Niranjana, S.; Deepika, K.S.V. Time Series Forecasting of Cloud Resource Usage. In Proceedings of the 2021 IEEE

6th International Conference on Computing, Communication and Automation (ICCCA), Arad, Romania, 17–19 December 2021;
pp. 372–382.

23. Ouhame, S.; Hadi, Y. Multivariate workload prediction using Vector Autoregressive and Stacked LSTM models. In Proceedings
of the ACM SMC Conference (SMC’19), ACM, Kenitra, Morocco, 28–29 March 2019; pp. 1–7.

24. Tseng, C.W.; Tseng, F.H.; Yang, Y.T.; Liu, C.C.; Chou, L.D. Task Scheduling for Edge Computing with Agile VNFs On-Demand
Service Model toward 5G and beyond. Wirel. Commun. Mob. Comput. 2018, 2018, 1–13. [CrossRef]

25. Zhou, Z.; Li, F.; Yang, S. A Novel Resource Optimization Algorithm Based on Clustering and Improved Differential Evolution
Strategy under a Cloud Environment. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2021, 20, 5. [CrossRef]

http://doi.org/10.1016/j.sysarc.2020.101778
http://gwa.ewi.tudelft.nl/datasets
http://dx.doi.org/10.1051/matecconf/202030903025
http://dx.doi.org/10.4018/IJEIS.2019040103
http://dx.doi.org/10.1155/2018/7802797
http://dx.doi.org/10.1145/3462761

Processes 2023, 11, 1017 26 of 26

26. Sardaraz, M.; Tahir, M. A parallel multi-objective genetic algorithm for scheduling scientific workflows in cloud computing. Int. J.
Distrib. Sens. Netw. 2020, 16, 8. [CrossRef]

27. Skorpil, V.; Oujezsky, V. Parallel genetic algorithms’ implementation using a scalable concurrent operation in python. Sensors
2022, 22, 2389. [CrossRef]

28. Laili, Y.; Guo, F.; Ren, L.; Li, X.; Li, Y.; Zhang, L. Parallel scheduling of large-scale tasks for industrial cloud-edge collaboration.
IEEE Internet Things J. 2021, 4662, 1–13. [CrossRef]

29. Sun, Y.; Song, C.; Yu, S.; Liu, Y.; Pan, H.; Zeng, P. Energy-efficient task offloading based on differential evolution in edge computing
system with energy harvesting. IEEE Access 2021, 9, 16383–16391. [CrossRef]

30. Li, X.; Zeng, F.; Fang, G.; Huang, Y.; Tao, X. Load balancing edge server placement method with QoS requirements in wireless
metropolitan area networks. IET Commun. 2020, 14, 3907–3916. [CrossRef]

31. Guruprasad, H.S.; Dakshayini, M. An optimal model for priority based service scheduling policy for cloud computing environ-
ment. Int. J. Comput. Appl. 2011, 32, 975–8887.

32. Tu, Y.; Chen, H.; Yan, L.; Zhou, X. Task offloading based on LSTM prediction and deep reinforcement learning for efficient edge
computing in IoT. Future Internet 2022, 14, 30. [CrossRef]

33. Rob, H.J.; Anne, K.B.; Ralph, S.D.; Simone, G. A state space framework for automatic forecasting using exponential smoothing
methods. Int. J. Forecast. 2002, 18, 439–454.

34. Prieto, O.J.; Alonso-González, C.J.; Rodríguez, J.J. Stacking for multivariate time series classification. Pattern Anal. Appl. 2015, 18,
297–312. [CrossRef]

35. Dissanayake, B.; Hemachandra, O.; Lakshitha, N.; Haputhanthri, D.; Wijayasiri, A. A comparison of ARIMAX, VAR and LSTM on
multivariate short-term traffic volume forecasting. In Proceedings of the 2021 28th Conference of Open Innovations Association,
Moscow, Russia, 27–29 January 2021; pp. 564–570.

36. Zoltan, B.; Laszlo, D.; Janos, A. Dynamic principal component analysis in multivariate time-series segmentation. Conserv. Inf.
Evol. 2011, 1, 11–24.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/1550147720949142
http://dx.doi.org/10.3390/s22062389
http://dx.doi.org/10.1109/JIOT.2021.3139689
http://dx.doi.org/10.1109/ACCESS.2021.3052901
http://dx.doi.org/10.1049/iet-com.2020.0651
http://dx.doi.org/10.3390/fi14020030
http://dx.doi.org/10.1007/s10044-013-0351-9

	Introduction
	Related Work
	System Model
	Task Model
	VM Model
	Cost Model
	Energy Model
	Load Model

	Problem Formulation
	Network Architecture
	Proposed Methodologies
	Delay Sensitivity-Based Priority Scheduler
	Time Series-Based VM Resource Predictor
	Exploratory Analysis of Resource Prediction
	Applied Holt–Winters-Based Resource Prediction
	Applied VAR Based Resource Prediction

	Parallel Optimal Allocator
	Finding Suitable VM by Using Minkowski Distance
	Parallel Differential Evolution Algorithm

	Simulation Results
	Conclusions and Future Work
	References

