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Abstract: Exploring the relationship between formation pressure and shale pore evolution is helpful
for the enrichment and development of marine shale gas accumulation theory. The thermal evolution
experiment was carried out on the Xiamaling Formation (Pr3x) lowly matured marine shale, which
has a similar sedimentary environment to the Longmaxi Formation (S1l) highly matured marine
shale. Comparative experiments of open and semi-closed pyrolysis and multiple pore structure
characterization techniques, including CO2 and N2 physisorption, mercury intrusion porosimetry,
and field emission scanning electron microscopy, were conducted. The marine shale pore evolutionary
model under formation pressure is proposed by characterizing pore evolution, and hydrocarbon
expulsion and retention for shales under and without formation fluid pressures. The results show
that the existence of formation pressure increases the percentage of quartz and reduces the content
of clay minerals. The change in formation pressure has no obvious effect on the maturity evolution
of shale samples. With the increase of formation pressure, the pore morphology of shale gradually
changes from narrow slit pores to ink bottle-shaped pores. The retained hydrocarbons in shale mainly
occupy the mesopore space, and the existence of formation pressure promotes hydrocarbon expulsion,
especially the hydrocarbon expulsion in the mesopore. In addition, formation pressure improves
pore connectivity, especially in the high-over mature stage of shale. With the increase of formation
pressure, the micropore volume decreases slightly, the mesopore volume increases significantly, and
the macropore volume changes have two stages.

Keywords: marine shale; open and semi-open system pyrolysis; formation pressure; pore
structure evolution

1. Introduction

China has huge shale gas reserves, and the marine shale of the Longmaxi Formation in
South China has a large thickness and high organic content, which contributes to high gas
production [1–3]. In recent years, increasing attention on deep fossil energy, and especially
shale oil and gas exploration, have raised concerns regarding pore evolution as well as
hydrocarbon retention in organic-rich shales [4–6]. Therefore, it is necessary to investigate
pore evolution, gas occurrence, and the diagenetic evolution mechanism of organic-rich
marine shale reservoirs [7–10]. In the process of shale thermal maturity evolution, the
variation of pore structure directly influences the flow and transport capacity of shale oil
and gas [11–14]. Thus, it is vital to research the pore structure evolution characteristics
of shale after being influenced by high temperatures and high pressures. The storage
system in shales consists of organic matter (OM) pores, mineral pores, and micro-fractures,
which can be divided into three categories according to the aperture range, according
to the IUPAC classification: micropore (<2 nm), mesopore (2–50 nm), and macropore
(>50 nm) [15]. Pore characterization methods of shale can be divided into two categories:
quantitative analysis methods and morphological visualization methods. Quantitative
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analysis methods can be used to obtain pore structure parameters, such as pore volume (PV),
specific surface area (SSA) and pore size distribution (PSD), which includes CO2/N2 gas
adsorption [16,17], mercury intrusion porosimetry (MIP) [1], nuclear magnetic resonance
(NMR) [18], small-angle neutron scattering (SANS) [19], and small-angle X-ray scattering
(SAXS) [20]. Morphological visualization methods are used for the intuitive description
of the shape, size, number, and distribution of pores and fractures, and includes a series
of analysis techniques, including scanning electron microscope (e.g., FE-SEM, FIB-SEM
and HIM) [21], atomic force microscopy (AFM) [22], transmission electron microscope
(TEM) [23] and X-ray computed tomography (CT) [11]. The applicability of characterization
methods is different. Therefore, multiple testing methods should be integrated to obtain a
full-scale of pore parameter.

The key factors influencing the pore evolution of shale include thermal evolution,
organic matter type, TOC, mineral and chemical composition, compaction, and burial
depth [5,24–27]. Thermal maturity is one of the most controlling factors for pore evolution
and the production of gaseous and liquid hydrocarbon in shales [5,6,8,25]. Recently, various
experimental research on shale evolution was carried out under different conditions, such as
electromagnetic radiation [28], pyrolytic inert and oxic environments [29], high-temperature
water vapor [6], pyrolysis under formation pressure [2,30], pyrolysis under effective stress
conditions [12], convection and conduction heating [31], and microwave heating [32].
According to system openness, shale thermal evolution experiments can be divided into
three categories: open system, semi-closed system, and closed system [33].

There have been few comparative studies on these experimental results. Zhang et al. [34]
studied the influencing factors of lacustrine shale pore evolution by conducting a com-
parative experiment between closed and semi-closed system pyrolysis, and it was found
that in the semi-closed system, a large number of pre-oil and hydrocarbons are discharged
periodically, which is conducive to the development of organic pores. Zhao et al. [6] inves-
tigated the pore structure and seepage characteristics at different temperatures using oil
shale pyrolysis by water vapor injection and found that the increase in pore volume due to
pyrolysis temperatures mainly affected pores ranging from 10 nm to 100 nm and occurred
in the specific temperature range (400 ◦C to 425 ◦C). Gao et al. [5] studied the pore structure
evolution characteristics of continental shale in China through open system pyrolysis, and
found that the filling of pores by oil generated at a lower temperature resulted in the
reduction of the volume of macropores in shale samples, and these filled macropores were
released through the thermal cracking of oil at a higher temperature. Song et al. [35] carried
out a semi-closed thermal evolution experiment to study pore evolution characteristics
at different temperatures by controlling lithostatic pressure and formation pressure, and
found that evolutionary scenarios of nanopores can be divided into three stages with the
increasing of pyrolysis temperature, including pore decreasing, increasing, and transform-
ing stages. Zhao et al. [6] studied the pore evolution characteristics of shale under high
temperature fluid without involving fluid pressure, and it was found that the seepage
channel formed at 450 ◦C, and the best pore connectivity was at 550 ◦C;. Li et al. [12]
studied the relationship between the permeability of marine shale and temperature and
fluid pressure, and found that the apparent permeability decreased approximately linearly
with the increase of pore pressure and temperature. Shao et al. [30] studied the effects
of pressure on gas generation and pore evolution in shale using gold-tube pyrolysis, and
indicated that high pressure inhibits residual oil cracking but simultaneously favors the
generation of methane-rich gas. Geng et al. [11] conducted a pyrolysis experiment under
the coupled effect of temperature and pressure, and reported that the pores and fractures
in shale developed increasingly with both the temperature and pressure increasing. How-
ever, these studies do not systematically investigate the effect of formation pressure on
pore structure evolution and hydrocarbon expulsion, nor clarified the differences in pore
evolution with or without formation pressure.

Most of the marine shales in the Sichuan Basin are of high maturity. The low maturity
Xiamaling Formation (Pr3x) marine shales from northern China have a similar sedimentary
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environment to the high maturity Longmaxi Formation (S1l) marine shale, and thus they
were selected to conduct thermal evolution experiments. In this work, a comparative
experiment of open and semi-closed pyrolysis experiments was carried out, and the pore
structure of the solid product was characterized to study the thermal evolution, hydrocar-
bon expulsion and retention, and pore evolution characteristics of shale with and without
formation fluid pressure. Meanwhile, the development models of shale pores under forma-
tion pressure are proposed. This research is helpful for the enrichment and development of
marine shale gas accumulation theory.

2. Samples and Methodology
2.1. Sample Preparation and Basic Information

An organic-rich and immature shale sample with a total organic carbon (TOC) of
5.74% and an equivalent vitrinite reflectance (EqVRo) of 0.67% was collected from the
Neoproterozoic Xiamaling Formation (Pr3x) in Xiahuayuan region of northern China.
Before the tests, samples were crushed into small blocks with a size of 1–2 cm. Then the
samples were evenly divided into fifteen parts after being mixed to minimize sample errors.
One was used for basic analysis (Ro, XRD, and geochemical analysis), seven were used
to carry out open-system pyrolysis, and the remaining parts were used for semi-closed
thermo-compression pyrolysis experiments. The same experimental temperature points
were selected for the pyrolysis experiments of the open and semi-open systems, and the
only difference was whether there was formation pressure or not. After the pyrolysis
experiments, all of the solid products from the two contrast experiments were provided for
Ro, XRD, TOC, geochemical analysis, and pore characterization experiments (including
CO2 and N2 adsorption), MIP, and FE-SEM.

2.2. Thermal Evolution Contrast Experiments
2.2.1. Open System Thermal Evolution Experiments

According to the principle of time-temperature compensation [36], a series of high
temperatures with short time can simulate the long-time and low-temperature geological
process [37]. In this research, the open system pyrolysis experiments were conducted
using an OTF-1200X high-temperature pyrolysis simulator, as shown in Figure 1. The open
system pyrolysis instrument contains a control system, reaction system with a furnace
tube, heating system, gas supplement system that provided N2, and a tail gas treating unit.
Seven paired low-mature Longmaxi shale samples were selected for thermal evolution
experiments at 300 ◦C, 350 ◦C, 400 ◦C, 450 ◦C, 500 ◦C, 550 ◦C, and 600 ◦C (Table 1). Each
sample was heated to a preset experimental temperature with a constant rising rate of
5 ◦C/min, after which they remained at a constant temperature for 72 h.

Table 1. Experimental conditions for open and semi-closed pyrolysis experiments.

Sample No. XHY-1 XHY-2 XHY-3 XHY-4 XHY-5 XHY-6 XHY-7

T, (◦C) 300 350 400 450 500 550 600

Sample no. XHY-01 XHY-02 XHY-03 XHY-04 XHY-05 XHY-06 XHY-07

T, (◦C) 300 350 400 450 500 550 600
H, (m) 2500 3000 3500 4000 4500 5000 5500

Pf, (MPa) 33.15 39.78 46.41 53.04 59.67 66.3 72.93
Pl, (MPa) 56.75 68.1 79.45 90.8 102.15 113.5 124.85

Note: T = Simulated temperature, ◦C; H = Simulated burial depth, m; Pf = Formation pressure, MPa;
Pl = Lithostatic pressure, MPa.
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Figure 1. Schematic diagram of open system pyrolysis experiment.

2.2.2. Thermocompression Pyrolysis Experiments

The semi-closed thermocompression pyrolysis experiments were carried out using
HXHTST-II and HXSRDE-II high-pressure pyrolysis and diagenetic evolution simulators.
As shown in Figure 2, the semi-closed pyrolysis system includes six parts: heating system,
fluid supplement system, reaction system, hydraulic control system, software control
system, and collecting system [24,38]. The same low-mature marine shale samples that were
used for open system pyrolysis were used for semi-closed thermocompression pyrolysis
under formation pressure and lithostatic pressure corresponding to seven temperature
points (Table 1). The lithostatic pressure and formation pressure were set as the burial
and evolution conditions of organic-rich Longmaxi Formation marine shales from the
eastern Sichuan Basin of southern China. Each sample was heated to a preset experimental
temperature with a constant rising rate of 5 ◦C/min, after which they were kept at a
constant temperature for 72 h.
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2.3. Methodologies for Pore Structure Characteristic

Morphological characteristics of micro-nano pores in shales were performed by FESEM.
The tests were carried out using the MERLIN FESEM system. Integrated MIP, and N2 and
CO2 adsorption methods were employed to quantify the pore volumes (PV), surface area
(SA), and pore size distribution (PSD) for full-scale pore sizes. Tests for CO2 physisorption
were used to determine pore data of micropores (<2 nm), N2 physisorption was adopted to
detect the pore structure parameter of mesopores (2–50 nm), and MIP measurements were
carried out to obtain the pore date of macropores (>50 nm) [16,17,39]. The experimental
methods were carefully described in our previous works [16,21,40].

3. Results
3.1. Open and Semi-Closed Pyrolysis Experiments

Vitrinite reflectance (Ro), representing a measure of the percentage of incident light re-
flected from the surface of vitrinite particles in sedimentary rock, is usually used to acquire
shale maturity [41]. However, since there were no higher plants in the Neoproterozoic Era
and only algae and fungi developed in the ocean, biogenic vitrinite could not be found in
these marine shales. In this work, the equivalent vitrinite reflectance (EqVRo) was used
to characterize shale maturity. Wang et al. [42] have studied the relationship between
equivalent vitrinite and bitumen reflectance (BRo) of the marine shale of Longmaxi Forma-
tion: EqVRo =1.125 × BRo−0.2062. After the thermal evolution experiment, the bitumen
reflectance (BRo) was measured by high solution laser Raman spectroscopy analysis, and
the EqVRo was calculated. The results show that the EqVRo increases from 0.68% to 3.09%
in the open system pyrolysis while the temperature rises from 300 ◦C to 600 ◦C, and EqVRo
varied from 0.69% to 3.02% in the semi-closed system pyrolysis from 300 ◦C to 600 ◦C. The
comparison of these two systems’ pyrolysis is shown in Figure 3. The EqVRo increases with
increasing temperature, however, formation pressure has no obvious effect on the maturity
evolution of shales. To obtain the quantitative relationship between formation pressure
and shale maturity, a comparative experiment of different formation pressures at the same
temperature point should be conducted.
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The total organic carbon (TOC) decreased from 5.71% to 2.93% in the open system
pyrolysis and varied from 5.03% to 1.19% in the semi-closed system when the experimental
temperature increased from 300 ◦C to 600 ◦C. The quantities of gaseous and liquid hy-
drocarbon products during open and semi-closed system pyrolysis experiments are listed
in Table 2. Due to no pressure being applied in the open system pyrolysis, uncollected
liquid hydrocarbons were sporadically stored in the pore, fracture, and sample surface.
Gaseous hydrocarbon products, which vary from 0.1 mg/g to 2.68 mg/g, are estimated by
the thermal weight loss method. In a semi-closed system, kerogen generates oil and gas as
thermal evolution proceeds. Due to the existence of formation pressure, part of the liquid
hydrocarbon product is collected after discharge, namely expelled oil. The other part of the
liquid hydrocarbon product retained in the pore-fracture system is called residual oil. With
the increase of thermal maturity, the liquid hydrocarbon yield increases from 1.64 mg/g to
6.60 mg/g when EqVRo < 1.51%, and then decreases from 6.60 mg/g to 8.81 mg/g when
1.51% < EqVRo < 3.02%. Gaseous hydrocarbons were collected by drainage method, and
the gaseous product yield of shale increased gradually from 0.01 mg/g to 3.23 mg/g with
the increase of shale thermal maturity [21].

Table 2. Results of open and semi-closed pyrolysis experiments and Rock-Eval pyrolysis parameters.

Sample
Type

Sample
No.

T EqVRo L G TOC Tmax HI S1 S2
(◦C) (%) (mg/g) (mg/g) (%) (◦C) (mg/gTOC) (mg/g) (mg/g)

Original XHY - 0.67 - - 5.74 432 308.06 0.89 10.55

Open
system

XHY-1 300 0.68 - 0.03 5.71 436 295.3 2.45 6.31
XHY-2 350 0.86 - 0.21 5.68 446 285.19 3.21 4.29
XHY-3 400 1.23 - 0.58 5.32 466 232.1 4.32 3.19
XHY-4 450 1.61 - 1.49 4.89 487 201.59 6.13 3.21
XHY-5 500 2.01 - 2.33 4.01 509 178.58 5.17 2.14
XHY-6 550 2.58 - 3.68 3.44 541 141.46 5.24 1.19
XHY-7 600 3.09 - 4.41 2.93 569 114.51 4.32 0.32

Semi-
closed
system

XHY-01 300 0.69 1.64 0.00 5.03 440 268.6 0.32 4.62
XHY-02 350 0.89 2.57 0.01 4.32 447 181.21 0.39 2.99
XHY-03 400 1.25 6.12 0.22 2.15 535 175.91 0.07 2.41
XHY-04 450 1.51 6.60 1.69 1.83 560 121.8 0.06 1.83
XHY-05 500 1.95 5.42 1.81 1.53 559 84.96 0.05 1.1
XHY-06 550 2.6 5.56 2.61 1.24 434 27.42 0.04 0.34
XHY-07 600 3.02 3.81 3.23 1.19 449 3.48 0.03 0.04

Notes: T = experimental temperature, ◦C; EqVRo = equivalent vitrinite reflectance, %; L = liquid hydrocarbon
yield, mg/g; G = gaseous hydrocarbon yield, mg/g; TOC = total organic carbon, %; Tmax = the temperature at
the maximum release of hydrocarbons occurs during Rock-Eval pyrolysis, ◦C; HI = hydrogen index, mg/gTOC;
S1 = hydrocarbon released from source rock under 300 ◦C, mg/g; S2 = hydrocarbon released from source rock
under 300–600 ◦C, mg/g. Data of semi-closed pyrolysis are cited from Fang et al. [21].

3.2. Mineral Evolution Characteristics

According to XRD analysis, the shale samples are mainly composed of quartz, clay
mineral orthoclase, apatite, and pyrite. For both experiments, quartz is the most abundant
mineral, followed by clay, and pyrite is the least abundant (Figure 4a). Overall comparison
of mineral content between open and semi-closed system pyrolysis experiments are shown
in Figure 4b. The mineral contents at each temperature point are distributed near the
straight line of 1:1. To make the comparison of mineral content by the two pyrolysis
experiments more obvious, a separate comparison was provided for each mineral (Figure 5).
For both open and semi-closed system pyrolysis experiments, the quartz content increases
with the thermal maturity, while the content of clay minerals decreases with the thermal
evolution. Previous studies showed that organic matter produces a large amount of organic
acid during thermal evolution. Clay and feldspar can be dissolved by organic acids [43],
and the catalytic activity of clay minerals can be strengthened by treatment with weak
organic or inorganic acids [27,44]. During thermal evolution, organic acid accelerates the
transformation from smectite to illite [27]. After being dissolved by organic acids, feldspar
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releases K ions and forms quartz; this results in the quartz-filling phenomenon [27,45],
which explains the increase in quartz content with the shale thermal evolution. For each
of the experimental temperature points, the existence of formation pressure increases the
percentage of quartz and decreases the content of clay minerals (Figure 5a,b). This indicates
that the formation pressure inhibits the formation of quartz. At the same time, high pressure
is conducive to the conversion of montmorillonite and kaolinite to illite. This is because the
higher formation pressure promotes the formation of quartz. At the same time, high liquid
pressure is conducive to the transformation of montmorillonite and kaolinite to illite [46].
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Figure 5. Changes of (a) quartz and (b) clay mineral content during thermal evolution of shale under
two pyrolysis experiments Data of semi-closed pyrolysis are cited from Fang et al. [21].

3.3. Pore Structure Evolution Characteristics

To intuitively observe the development of organic pores, FESEM was conducted using
shale samples after two pyrolysis experiments (Figure 6). For shales based on open system
pyrolysis experiments, there are a large number of inorganic pores and micro-cracks at
the lowly matured stage (300 ◦C–350 ◦C), and no primary pores can be seen in solid
kerogen. During the oil generation stage (350 ◦C–400 ◦C), mineral shrinkage fractures occur
and smaller pores are difficult to identify due to oil filling because there is no pressure
exerted to drive hydrocarbon expulsion in the open system pyrolysis. At the wet gas
stage (400 ◦C–500 ◦C), solid bitumen and petroleum were generated, pores and cracks
developed, gas was released, and the smaller pores appeared. The proportion of smaller
pores in the identifiable pore volume in the visual field increased, and secondary minerals
were generated due to recrystallization. At the dry gas stage (550 ◦C–600 ◦C), organic matter



Processes 2023, 11, 1007 8 of 21

and liquid hydrocarbon were further cracked to produce gas, the pore size of identifiable
organic pores became smaller, and the connectivity noticeably increased.
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Figure 6. (1) SEM images of pyrolysis samples at temperatures from 300 to 450 ◦C. (2) SEM images of
pyrolysis samples at temperatures from 500 to 600 ◦C. Notes: (a1–g1) samples based on open system
pyrolysis: (a1) micro-fracture in inorganic mineral at 300 ◦C, Ro = 0.68%; (b1) mineral shrinkage pore
and interpores at 350 ◦C, Ro = 0.86%; (c1) secondary mineral at 400 ◦C, Ro = 1.23%; (d1) OM pore at
450 ◦C, Ro = 1.61%; (e1) OM pore at 500 ◦C, Ro = 2.01%; (f1) OM pore at 550 ◦C, Ro = 2.58%; (g1) OM
pore at 600 ◦C, Ro = 3.09%. (a2–g2) Samples based on semi-closed system pyrolysis: (a2) dissolved
pores and pyrite at 300 ◦C, Ro = 0.69%; (b2) original OM pores developed at 350 ◦C, Ro = 0.89%;
(c2) liquid hydrocarbon and microfracture at 400 ◦C, Ro = 1.25%; (d2) there are a large number of OM
pores in the pyrobitumen of shale at 450 ◦C, Ro = 1.51%; (e2) OM pores at 500 ◦C, Ro = 1.95%; (f2) OM
pores with good connectivity in shale at 550 ◦C, Ro = 2.60%; and (g2) large size OM pore with good
connectivity in shale at 600 ◦C, Ro = 3.02%. (a2–g2) are cited from Fang et al. [21].

For shale samples based on semi-closed system pyrolysis experiments, organic pores
begin to appear in organic matter on shale at the oil generation stage (350 ◦C–400 ◦C), and
mineral-related pores are reduced by compaction and cementation [8]. At the wet gas stage
(400 ◦C–500 ◦C), the solid bitumen and petroleum in pores cracking produce secondary
organic pores. The presence of fluid pressure makes hydrocarbon expulsion easier, OM
pores generated in pyrobitumen were isolatedly distributed with irregular shapes. At
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the dry gas stage (550 ◦C–600 ◦C), organic matter and liquid hydrocarbon were further
cracked [21]. The relatively thin pore wall ruptures due to fluid pressure resulting in the
formation of connected larger pores, thus improving the connectivity of shale pores [47].
It can be seen from the SEM images of the shale samples in two the thermal evolution
experiments that the presence of fluid pressure causes part of the hydrocarbons originally
stored in the pores to discharge, increasing the pore volume, especially those with small
pore size. Meanwhile, formation pressure breaks down some of the thinner pore walls,
increasing the pore connectivity.

The applicability of characterization technologies is variable. Several technologies
should be integrated to get the full-scale pore parameter. In this work, CO2 and N2
adsorption/desorption and MIP were used to characterize the pores in shale. Many pieces
of research have shown the applicability of this full-scale method [1,26,44]. The CO2, N2,
and MIP curves of the shale samples from the two pyrolysis experiments are shown in
Figure 7. According to the IUPAC classification, the N2 adsorption/desorption isotherms
of the shale samples based on open and semi-closed system pyrolysis are mainly of type
IV owning to an obvious hysteresis loop [15]. The type of N2 adsorption hysteresis loop
in open system shale samples is Type H4, representing narrow slit pores. However, with
the increase of thermal evolution maturity, the hysteresis loop type of shale samples in the
semi-closed system gradually changes from Type H4 to Type H2, which represents the pore
type gradually changing from narrow slit pore to ink bottle-shaped.
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The MIP curve type of the open system is relatively constant. The mercury injection
curve has two stages, and the mercury withdrawal efficiency is between 30–40%. After
the formation pressure is applied, the first half of the mercury injection curve slows down,
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indicating that the pore connectivity becomes better. To intuitively describe the evolution
characteristics of pore structure, the pore volume of three pore size scales at each thermal
evolution stage is shown in Figure 8. With the increase of Ro, the pore volume of the
shale samples from the two pyrolysis experiment changes greatly. The volume difference
between micropores, mesopores, and macropores of shale samples in the open system is
significantly smaller than that in the semi-closed system. The mesopores content of shale
samples in the semi-closed system obviously accounts for the largest proportion (Figure 8).
The mesopore volumes of the two pyrolysis samples decrease first and then increase with
the thermal evolution of shale maturity, however, the change of micropore volume is not
obvious. The macropore volume of shales in open-system pyrolysis is increased with the
increase of evolution degree, while the changing trend in shales of the semi-closed system
pyrolysis is not obvious.
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4. Discussion
4.1. Influence of Formation Pressure on Pore Structure

A full-scale pore size distribution (PSD) based on open system and semi-closed system
pyrolysis experiments obtained by MIP, CO2, and N2 physisorption is shown in Figure 9.
It is apparent that the mesopore volume of the shale samples at each temperature point
increases significantly after formation pressure is applied, while the changes of macropore
and micropore volume do not follow an obvious trend. At 400 ◦C–500 ◦C, part of the
micropore size distribution curve of the semi-closed system pyrolysis is higher than that of
the open system, indicating that there is a small segment of micropore volume increase due
to the existence of formation pressure. At 500 ◦C and 550 ◦C, the macropore volume in the
50 nm–100 nm range is higher in the open system than in the semi-open system, indicating
that the pore pressure reduces the pore volume at this stage. Therefore, it is inferred that the
pressure drives the hydrocarbon flow and occupies the pores in the 50–100 nm pore range.

To determine the effect of formation pressure on the pores at different pore diameters,
pore structure parameters of micropores, mesopores, and macropores from open and semi-
closed system pyrolysis were calculated. The PSD-based two pyrolysis systems are shown in
Table 3. Based on open system pyrolysis, the pore volume of micropores (<2 nm) varied
from 7.83 × 10−4 cm3/g to 44.62 × 10−4 cm3/g with an average of 21.68 × 10−4 cm3/g,
the pore volume of mesopores changed from 9.80 × 10−4 cm3/g to 57.37 × 10−4 cm3/g
with an average of 22.57 × 10−4 cm3/g, and the pore volume of macropores were be-
tween 3.86 × 10−4 cm3/g and 42.94 × 10−4 cm3/g with an average of 16.25 × 10−4 cm3/g.
Based on semi-closed system pyrolysis, the pore volume of micropores varied from
5.52 × 10−4 cm3/g to 13.81 × 10−4 cm3/g with an average of 10.83 × 10−4 cm3/g, the pore
volume of mesopores changed from 37.30 × 10−4 cm3/g to 166.49 × 10−4 cm3/g with an
average of 88.45 × 10−4 cm3/g, and the PV of macropores were between 8.22 × 10−4 cm3/g
and 26.94 × 10−4 cm3/g with an average of 14.81 × 10−4 cm3/g. Based on open system
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pyrolysis, the total pore volume (TPV) of shale samples varied from 21.60 × 10−4 cm3/g to
144.92 × 10−4 cm3/g with an average of 60.49 × 10−4 cm3/g, and the TPV of shales based
on semi-closed system pyrolysis changed from 54.94 × 10−4 cm3/g to 206.30 × 10−4 cm3/g
with an average of 114.09 × 10−4 cm3/g [21].
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ysis experiments by MIP, and CO2 and N2 physisorption. (a) Full-scale PSD of all samples; the
dashed lines are data of open system pyrolysis, and the solid lines are semi-closed system pyrolysis.
(b–h) Full-scale PSD of shale with temperature from 300 to 600 ◦C; the red curves are data of open
system pyrolysis, the green curves are data of semi-closed system pyrolysis. Data of semi-closed
pyrolysis are cited from Fang et al. [21].
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Table 3. PSD and fractal dimension of shale samples based on open and semi-closed pyrolysis experiments.

Sample
no.

PV-OSP (10−4 cm3/g)
D1-OSP D2-OSP

Sample
no.

PV-SSP (10−4 cm3/g )
D1-SSP D2-SSP<2 nm 2–50 nm >50 nm TPV-OSP <2 nm 2–50 nm >50 nm TPV-SSP

XHY-1 10.39 14.37 4.91 29.67 2.45 2.62 XHY-01 7.08 51.70 9.28 68.06 2.37 2.55
XHY-2 12.86 15.50 3.86 32.22 2.41 2.56 XHY-02 5.52 45.62 11.14 62.28 2.36 2.48
XHY-3 7.83 9.80 3.97 21.60 2.50 2.49 XHY-03 9.42 37.30 8.22 54.94 2.39 2.63
XHY-4 17.38 11.63 5.98 34.99 2.44 2.56 XHY-04 13.48 79.14 13.81 106.44 2.43 2.53
XHY-5 28.98 21.38 20.20 70.55 2.78 2.72 XHY-05 13.81 104.19 16.92 134.92 2.49 2.61
XHY-6 29.68 27.94 31.87 89.49 2.86 2.87 XHY-06 13.63 134.68 17.39 165.71 2.55 2.60
XHY-7 44.62 57.37 42.94 144.92 2.86 2.91 XHY-07 12.87 166.49 26.94 206.30 2.58 2.59

Note: OSP = pore data based on open system pyrolysis; SSP = pore data based on semi-closed system pyrolysis; PV = pore volume; TPV = total pore volume; D1 is the pore surface
fractal dimension; D2 is the pore structure fractal dimension. Data of semi-closed pyrolysis are cited from Fang et al. [21].
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The pore volume initially decreased, but then increased during open-system pyrolysis
(Figure 10a). The pore volume transition is basically consistent with the four stages of
thermal maturation. At the maturity stage (300 ◦C–400 ◦C, 0.68% < EqVRo < 1.23%), the
volume of the mesopores are the largest, followed by micropores and macropores. At
the highly matured stage (400 ◦C–550 ◦C, 1.23% < EqVRo < 2.58%), before 550 ◦C, the
micropores volume becomes the largest, mesopores follows and the macropores volume are
the least. After 500 ◦C, the volume of the micropores are still the largest, however, they are
now followed by the volume of macropores, and the mesopores volume are the smallest.
At the overmatured stage (500 ◦C–600 ◦C, 2.58% < EqVRo < 3.09%), the mesopores volume
are the largest, and the volume of the macropores are equivalent to that of the micropores.
For the semi-closed system, the volume of mesopores decreases first and then increases
significantly during the thermal evolution of shale, while the volume of micropores and
macropores change insignificantly (Figure 10b). Mesopores account for most of the volume
(nearly 70% of the total pore volume), which indicates the volume of mesopores is more
significantly affected by formation pressure than micropore and macropore.
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To intuitively understand the difference in pore volume, the variations in the pore
volumes between the two pyrolysis experiments are proposed in Figure 11. The micropore
volumes of the shale samples from the semi-closed system pyrolysis is smaller than that of
the open system. It shows that in the process of hydrocarbon expulsion driven by formation
pressure, the migration of hydrocarbons will block some micropores and reduce the pore
volume of micropores [5,48]. However, at the peak of oil generation (EqVRo = 1.23 %), the
liquid hydrocarbons and solid bitumen produced by the open system would have filled the
pores and reduced the micropore volume at this stage [35,47]. Thus, the micropore volumes
of the samples from the two pyrolysis systems is similar at about 400 ◦C (EqVRo = 1.23 %)
(Figure 11b). The mesopore volumes of shale from the semi-closed system pyrolysis
greatly exceeds that of the open system (Figure 11c), which shows that the volumes of the
mesopores increases significantly after the formation pressure applied. The reason should
be that a large number of hydrocarbons are discharged from the pores and the application
of pressure causes some thinner pore walls to break, which increases porosity [13,35]. At the
same time, it also shows that the retained hydrocarbons are mainly stored in the mesopores
of shale. The influence of formation pressure on the macropores of the shale samples
presents two stages. Before 500 ◦C (EqVRo = 2.01%), the macropore volumes of the shale in
the semi-closed system is larger than that of the open system, while after 500 ◦C, the trend
is the opposite. Before 500 ◦C, the open system has no hydrocarbon expulsion pressure.
Therefore, more retained hydrocarbons were blocked in the large pores, causing the pore
volumes to be smaller than that in the semi-closed system. After 500 ◦C, solid bitumen and
oil cracked to form gas, and the volume of macropores increased. Due to the existence of
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fluid pressure in the shale of the semi-closed system, the hydrocarbons discharged from
the mesopores will occupy parts of the macropore volume or cracks [2,34], therefore, the
macropore volumes of the semi-closed volume will be smaller.
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4.2. Influence of Formation Pressure on Pore Heterogeneity

The description of pore heterogeneity is difficult in shale gas reservoirs. The fractal
theory is a common way to characterize the heterogeneity of shale pores, which are usually
used to characterize the complexity of the pore surface and pore structure of porous
material [28,49–51]. Through the data of N2 physisorption, the fractal dimension (D) can
be obtained to quantitatively describe the pore structure and surface heterogeneity. The
relative pressure and adsorption capacity were used to quantitatively acquire the fractal
characteristics of shale pores using the Frenkel–Halsey–Hill (FHH) method [28,49,51]:

lnV = (D − 3) ln
[

ln
(

P0

P

)]
+ C (1)

where D is the fractal dimension of pore structure; P0 is the vapor saturation pressure of
gas (MPa); C is a constant; P is the equilibrium pressure of N2 (MPa); V is the volume of
adsorbed gas molecules at P (cm3/g).

According to N2 physisorption, there are two distinct segments on the plot of lnV
vs ln[ln(P0/P)]. At low relative pressure (P/P0 < 0.5), the N2 physisorption is controlled
by the van der Waals force. When P/P0 > 0.5, N2 physisorption is mainly dominated by
surface tension [20,28,51,52]. The fractal dimension of the two segments can be calculated
by using ln(V) and ln[ln(P0/P)] from the N2 adsorption/desorption experiment according
to Equation (1). D1 can represent the heterogeneity of pore surface, and D2 can represent
the heterogeneity of pore volume and structure [20,28,49–51].

Figure 12 shows the fractal dimension fitted curves of the shale samples in the two
pyrolysis systems, which show that the adsorption data of the semi-closed system pyrolysis
samples are higher than those of the open system except for the two points of 550 ◦C and
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600 ◦C. The calculation results of the fractal dimensions are shown in Table 3, which shows
that the heterogeneity of pore surface and pore volume decreases initially before increasing
(creating a “U” shape) during the open system pyrolysis experiments (Figure 13a). Based
on the semi-closed system pyrolysis experiment, D1 increases with the increase of shale
thermal evolution, while the pore volume heterogeneity (D2) did not show a correlation
with shale maturity (Figure 13b). To make the difference of fractal dimension more intu-
itive, the variations in D1 and D2 between the two pyrolysis experiments are shown in
Figure 13c,d. The existence of formation pressure significantly reduced the pore surface
heterogeneity because the formation pressure promotes hydrocarbon expulsion, which
makes the pore surface rougher and reduces the heterogeneity of the pore surface. The
effect of formation pressure on pore structure heterogeneity is three-stage:

1. When EqVRo < 1.03%, the formation pressure reduces the heterogeneity of pore
volume in the other stages. The reason is that the amount of oil produced is low at
this stage, the migration of hydrocarbons will block some micropores and reduce the
pore volume of micropores (Figure 11b). Thus, the pore volume distribution is more
concentrated, reducing the pore heterogeneity.

2. At the peak of oil generation (1.03% < EqVRo < 1.51%), the formation pressure in-
creases pore heterogeneity. The reason is that the retained hydrocarbons occupy
the pores before the formation pressure is applied, which makes a small difference
between micropore, mesopore, and macropore volumes (Figure 10a). After applying
pressure, the difference between these pore volumes becomes larger due to hydrocar-
bon expulsion (Figure 10b), which increases the heterogeneity of the pore structure.

3. When EqVRo > 1.51%, the formation pressure reduces the heterogeneity of pore volume.
In this stage, the partial micropore volume begins to transform into mesopore volume [35],
and the existence of formation pressure makes some thinner pore walls rupture, which
increases pore connectivity [35,53] and decreases the heterogeneity of pore structure.
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stored in pores, which reduces the pore volume of shale. After the formation pressure is 
applied, the micropore volume increases slightly and the mesopore volume increases sig-
nificantly. Organic acids produced during hydrocarbon generation dissolves the organic 
matter and clay minerals, and secondary quartz begins to form [44,45]. The formation of 
shrinkage cracks is related to hydrocarbon generation (Figure 6(b1)). In the third stage 
(1.25% < EqVRo < 2.60%), solid bitumen and crude oil began to pyrolyze to form wet gas, 
while kerogen is condensed to pyrobitumen. A large number of isolated and dispersed 
circular pores appear in pyrobitumen. The volume of the micropores in this stage is 
greatly affected by pressure. The transition from partial micropore volume to mesopore 
volume makes the micropore volume increase slowly [35]. At the same time, due to hy-
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ink bottle-shaped pores, and the transformation of kaolinite and montmorillonite into il-
lite is common [48]. The fourth stage (2.60% < EqVRo < 3.02%) is the dry gas stage, and 

Figure 13. Relationships between fractal dimension and Ro based on (a) the open system and
(b) semi-closed system pyrolysis experiments; (c) pore surface fractal dimension variation between
the open and semi-closed system pyrolysis experiments during shale thermal evolution; (d) pore
structure fractal dimension variation between the open and semi-closed system pyrolysis experiments
during shale thermal evolution. Note: D1 is the pore surface fractal dimension, and D2 is the pore
structure fractal dimension. Data of semi-closed pyrolysis are cited from Fang et al. [21].

4.3. Pore Evolutionary Pattern for Marine Shale

A shale pore evolutionary model based on fluid pressure was established by com-
paring the evolution process of pore structures and minerals, as well as the generation,
expulsion, and retention of hydrocarbons in shale during the two pyrolysis experiments
(Figure 14). The coupling relationships between the evolutionary characteristics of organic
matter and the pore structure of Neoproterozoic marine shales can be roughly divided into
four stages. In the first stage (EqVRo < 0.69%) the evolution of organic matter is in the low
mature period, and the shale has not yet entered the oil window. The pores are mostly
mineral pores, and there are almost no primary organic pores in the FEM images. The trans-
formation of clay minerals is not obvious. In the second stage (0.69% < EqVRo < 1.25%),
a large amount of the liquid hydrocarbons generated by kerogen pyrolysis are stored in
pores, which reduces the pore volume of shale. After the formation pressure is applied, the
micropore volume increases slightly and the mesopore volume increases significantly. Or-
ganic acids produced during hydrocarbon generation dissolves the organic matter and clay
minerals, and secondary quartz begins to form [44,45]. The formation of shrinkage cracks is
related to hydrocarbon generation (Figure 6b1). In the third stage (1.25% < EqVRo < 2.60%),
solid bitumen and crude oil began to pyrolyze to form wet gas, while kerogen is condensed
to pyrobitumen. A large number of isolated and dispersed circular pores appear in py-
robitumen. The volume of the micropores in this stage is greatly affected by pressure.
The transition from partial micropore volume to mesopore volume makes the micropore
volume increase slowly [35]. At the same time, due to hydrocarbon expulsion, the pore
morphology gradually changes from narrow slit pores to ink bottle-shaped pores, and the
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transformation of kaolinite and montmorillonite into illite is common [48]. The fourth stage
(2.60% < EqVRo < 3.02%) is the dry gas stage, and light hydrocarbons are rapidly generated.
The existence of formation pressure makes some thinner pore walls crack, and increases
pore connectivity [35,53].
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5. Conclusions

(1) With the thermal evolution process of marine shale, the quartz content increased,
while the content of clay minerals decreased in both the open and semi-closed system
pyrolysis experiments. The existence of formation pressure increased the percentage
of quartz and decreased the content of clay minerals, and the change of formation
pressure had no obvious influence on the maturity evolution of marine shales.

(2) The relationship between formation pressure and pore development is revealed. With
the increase of formation pressure, the pore type of shale gradually changes from
narrow slit pore to ink bottle-shaped. Formation pressure improves pore connectivity,
especially in the high-overmature stage of shale. With the increase of formation
pressure, the volume of micropores decreases slightly, the volume of mesopores
increases significantly, and the volume of macropores changes in two stages.

(3) The relationship between formation pressure and pore heterogeneity is revealed. After
applying formation pressure, the volume difference between the micropores, meso-
pores, and macropores of the shale samples became larger. Formation pressure makes
the pore surface heterogeneity significantly reduced, while the effect of formation
pressure on pore structure heterogeneity is three-stage.

(4) The pore size/volume results of the comparative thermal evolution experiment show
that the retained hydrocarbons mainly occupy the mesopore space of shale, and
the existence of formation pressure promotes hydrocarbon expulsion, especially the
hydrocarbons in the mesopores.
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