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Abstract: Skin lesions affect millions of people worldwide. They can be easily recognized based
on their typically abnormal texture and color but are difficult to diagnose due to similar symptoms
among certain types of lesions. The motivation for this study is to collate and analyze machine
learning (ML) applications in skin lesion research, with the goal of encouraging the development
of automated systems for skin disease diagnosis. To assist dermatologists in their clinical diagnosis,
several skin image datasets have been developed and published online. Such efforts have motivated
researchers and medical staff to develop automatic skin diagnosis systems using image segmentation
and classification processes. This paper summarizes the fundamental steps in skin lesion diagnosis
based on papers mainly published since 2013. The applications of ML methods (including traditional
ML and deep learning (DL)) in skin disease recognition are reviewed based on their contributions,
methods, and achieved results. Such technical analysis is beneficial to the continuing development of
reliable and effective computer-aided skin disease diagnosis systems. We believe that more research
efforts will lead to the current automatic skin diagnosis studies being used in real clinical settings in
the near future.

Keywords: skin image segmentation; skin lesion classification; machine learning; deep learning;
computer assisted diagnostics; dermatology

1. Introduction

The skin protects the human body from outside hazardous substances and is the
largest organ in the human body. Skin diseases can be induced by various causes, such as
fungal infections, bacterial infections, allergies, or viruses [1]. Skin lesions, as one of the
most common diseases, have affected a large population worldwide.

A skin lesion can be easily recognized based on its abnormal texture and/or color,
but it can be difficult to accurately diagnose due to similar symptoms occurring with
different types of lesions. Figure 1a,b, show that both contact dermatitis and eczema
present similarly with redness, swelling, and chapping on a hand. Similarly, as seen in
Figure 1c,d, measles and keratosis show red dots that are sporadically distributed on the
skin. These similarities lower diagnosis accuracy, particularly for dermatologists with less
than two years of clinical experience. To administer appropriate treatment, it is essential to
identify skin lesions correctly and as early as possible. Early diagnosis usually leads to a
better prognosis and increases the chance of full recovery in most instances. The training of
a dermatologist requires several years of clinical experience as well as high education costs.
The average tuition fee in medical school was USD 218,792 in 2021 has risen to around
USD 1500 each year since 2013 [2]. An automated solution for skin disease diagnosis is
becoming increasingly urgent. This is especially true in developing countries, which often
lack the advanced medical equipment and expertise
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(d) Keratosis (f) Nevus(b) Eczema

(a) Hair (c) Measles (e) Melanoma

Figure 1. Common skin diseases [2,3].

Artificial intelligence (AI) has made rapid progress in image recognition over the last
decade, using a combination of methods such as machine learning (ML) and deep learning
(DL). Segmentation and classification models can be developed using traditional ML and
DL methods. Traditional ML methods have simpler structures compared to DL methods,
which use extracted and selected features as inputs [4]. The DL method can automatically
discover underlying patterns and identify the most descriptive and salient features in
image recognition and processing tasks. This progress has significantly motivated medical
workers to explore the potential for the application of AI methods in disease diagnosis,
particularly for skin disease diagnosis. Moreover, DL has already demonstrated its capabil-
ity in this field by achieving similar diagnostic accuracy as dermatologists with 5 years of
clinical experience [5]. Therefore, DL is considered a potential tool for cost-effective skin
health diagnosis.

The success of AI applications heavily relies on the support of big data to ensure
reliable performance and generalization ability. To speed up the progress of AI application
in skin disease diagnosis, it is essential to establish reliable databases. Researchers from
multiple organizations worked together to create the International Skin Imaging Collab-
oration (ISIC) Dataset for skin disease research and organized challenges from 2016 to
2020 [6]. The most common research task is to detect melanoma, a life-threatening skin
cancer. According to the World Health Organization (WHO), the number of melanoma
cases is expected to increase to 466,914 with associated deaths increasing to 105,904 by
2040 [7].

Several additional datasets with macroscopic or dermoscopic images are publicly
accessible on the internet, such as the PH2 dataset [8], the Human Against Machine
with 10,000 training images (HAM 10,000) dataset [9], the BCN 20,000 dataset [10], the
Interactive Atlas of Dermoscopy (EDRA) dataset [11], and the Med-Node dataset [12]. Such
datasets can be used individually, partially, or combined based on the specific tasks under
investigation.

Macroscopic or close-up images of skin lesions on the human body are often taken
using common digital cameras or smartphone cameras. Dermoscopic images, on the other
hand, are collected using a standard procedure in preliminary diagnosis and produce
images containing fewer artifacts and more detailed features, which can visualize the
skin’s inner layer (invisible to the naked eye). Although images may vary with shooting
distance, illumination conditions, and camera resolution, dermoscopic images are more
likely to achieve higher performance in segmentation and classification than macroscopic
images [13].

To conduct a rigorous and thorough review of skin lesion detection studies, we utilized
a systematic search strategy that involved the PubMed database—an authoritative, widely-
used resource for accessing biomedical and life sciences literature. Our analysis primarily
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focused on studies published after 2013 that explored the potential applications of ML in
skin lesion diagnosis. To facilitate this analysis, we sourced high-quality datasets from
reputable educational and medical organizations. These datasets served as valuable tools
not only for developing and testing new diagnostic algorithms but also for educating the
broader public on skin health and the importance of early detection. By utilizing these
datasets in our research, we gained a deeper understanding of the current state-of-the-art
in skin lesion detection and identified areas for future research and innovation.

We discuss the most relevant skin recognition studies, including datasets, image
preprocessing, up-to-date traditional ML and DL applications in segmentation and classifi-
cation, and challenges based on the original research or review papers from journals and
scientific conferences in ScienceDirect, IEEE, and SpringerLink databases. The common
schematic diagram of the automated skin image diagnosis procedure is shown in Figure 2.

Figure 2. Schematic diagram of skin image diagnosis.

2. Skin Lesion Datasets and Image Preprocessing
2.1. Skin Lesion Datasets

To develop skin diagnosis models, various datasets of different sizes and skin lesion
types have been created by educational institutions and medical organizations. These
datasets can serve as platforms to educate the general public and as tools to test newly
developed diagnosis algorithms.

The first dermoscopic image dataset, PH2, had 200 carefully selected images with
segmented lesions, as well as clinical and histological diagnosis records. The Med-Node
dataset contains a total of 170 macroscopic images, including 70 melanoma and 100 nevus
images, collected by the Department of Dermatology, University Medical Center Groningen.
Due to the limited image quantity and classes, these labeled datasets are often used together
with others in the development of diagnosis models.

The most popular skin disease detection dataset, ISIC Archive, was created through the
collaboration of 30 academic centers and companies worldwide with the aim of improving
early melanoma diagnosis and reducing related deaths and unnecessary biopsies. This
dataset contained 71,066 images with 24 skin disease classes [3], but only 11 of the 24 classes
had over 100 images. The images were organized by diagnostic attributes, such as benign,
malignant, and disease classes, and clinical attributes, such as patient and skin lesion
information, and image type. Due to the diversity and quantity of images contained,
this dataset was used to implement the ISIC challenges from 2016–2020 and dramatically
contributed to the development of automatic lesion segmentation, lesion attribute detection,
and disease classification [3].

The first ISIC 2016 dataset had 900 images for training and 350 images for testing
under 2 classes: melanoma and benign. The dataset gradually increased to cover more
disease classes from 2017 to 2020. Images in ISIC 2016–2017 were fully paired with the
disease annotation from experts, as well as the ground truth of the skin lesion in the form
of binary masks. The unique information included in the ISIC dataset is the diameter
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of each skin lesion, which can help to clarify the stage of melanoma. In the ISIC 2018
challenge, the labeled HAM 10,000 dataset served as the training set, which included 10,015
training images with uneven distribution from 7 classes. The BCN 20,000 dataset was
utilized as labeled samples in the ISIC 2019 and ISIC 2020 challenge, which consisted
of 19,424 dermoscopic images from 9 classes. It is worth noting that not all ISIC datasets
were completely labeled in the ISIC 2018–2020 datasets.

To prompt research into diverse skin diseases, images from more disease categories
have been (and continue to be) collected. Dermofit has 1300 macroscopic skin lesion images
with corresponding segmented masks over 10 classes of diseases, which were captured
by a camera under standardized conditions for quality control [14]. DermNet covers 23
classes of skin disease with 21,844 clinical images [11]. For precise diagnosis, melanoma
and nevus can be further refined into several subtypes. For example, the EDRA dataset
contains only 1011 dermoscopic images from 20 specific categories, including 8 categories
of nevus, 6 categories of melanoma, and 6 other skin diseases. The images under melanoma
were further divided into melanoma, melanoma (in situ), melanoma (less than 0.76 mm),
melanoma (0.76 to 1.5 mm), melanoma (more than 1.5 mm), and melanoma metastasis.

Table 1 summarizes these datasets according to image number, disease categories,
number of labeled images, and binary segmentation mask inclusion. It can be seen that
the ISIC Archive is the largest public repository with expert annotation from 25 types of
diseases, and PH2 and Med-Node are smaller datasets with a focus on distinguishing
between nevus and melanoma.

Table 1. Summary of publicly available skin lesion datasets.

Dataset Image Number Disease
Category Labeled Images Segmentation

Mask

PH2 [8] 200 2 All No
Med-Node [12] 170 2 All No
ISIC Archive [3] 71,066 25 All No

ISIC 2016 [15] 1279 2 All Yes
ISIC 2017 [16] 2600 3 All Yes
ISIC 2018 [17] 11,527 7 10,015 Yes
ISIC 2019 [18] 33,569 8 25,331 No
ISIC 2020 [6] 44,108 9 33,126 No

HAM 10,000 [9] 10,015 7 All No
BCN 20,000 [10] 19,424 8 All No

EDRA [19] 1011 10 All No
DermNet [11] 19,500 23 All No
Dermofit [14] 1300 10 All No

Developing a representative dataset for accurate skin diagnosis requires tremendous
manpower and time. Hence, it is common to see that one dataset is utilized for multiple
diagnosis tasks. For example, the ISIC datasets can be used to identify melanoma or
classify diverse skin lesions, while some types of skin lesions have more representative
samples than others. Such an uneven data distribution may hinder the ability of developed
diagnostic models to handle a desired variety of tasks.

There are no clear guidelines or criteria on the dataset selection for a specific diagnosis
task; moreover, there is little discussion on the required size and distribution of a dataset.
A small dataset may lead to insufficient model learning, and a large dataset may result
in a high computational workload. The trade-off between the size and distribution of the
dataset and the accuracy of the diagnosis model should be addressed. On the other hand,
it is hard to identify diseases by a diagnosis model for unseen diseases, or diseases with
similar symptoms. These intricate factors may restrict the accuracy and, hence, adoption of
diagnosis models developed using publicly available datasets in clinical diagnoses.
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2.2. Image Preprocessing

Hair, illumination, circles, and black frames can often be found in images in the ISIC
datasets, as seen in Figure 2. Their presence lowers image quality and, therefore, hinders
subsequent analysis. To alleviate these factors, image pre-processing is utilized, which
can involve any combination or all of the following: resizing, grayscale conversion, noise
removal, and contrast enhancement. These methods generally improve the diagnosis
efficiency and effectiveness, as well as segmentation and classification processes.

Image resizing is a general go-to solution for managing images with varied sizes.
With this method, most images can be effectively resized to similar dimensions. Moreover,
DL methods can handle images with a broad range of sizes. For example, CNNs have
translation invariance, which means that the trained model can accommodate varied image
sizes without sacrificing performance [20]. Thus, researchers can confidently tackle skin
classification and segmentation tasks under diverse image scales. Resizing images involves
cropping irrelevant parts of images and standardizing the pixel count before extracting the
region of interest (ROI). This can shorten the computational time and simplify the following
diagnosis tasks. The resized images are often converted to grayscale images using grayscale
conversion to minimize the influence caused by different skin colors [21]. To eliminate
various noise artifacts, as shown in Figure 3, various filters can be introduced [22]. A
monomorphic filter can normalize image brightness and increase contrast for ROI determi-
nation. Hair removal filters are selected according to hair characteristics. A Gaussian filter,
average filter, and median filter can be utilized to remove thin hairs, while an inpainting
method can be used for thick hairs and a Dull Razor method for more hair [23,24].

Some ISIC images have colored circles, as shown in Figure 3c, which can be detected
and then refilled with healthy skin. The black framing seen in the corners of Figure 3d
is often replaced using morphological region filling. Following noise removal, contrast
enhancement is achieved for the ROI determination using a bottom-hat filter and contrast-
limited adaptive histogram equalization. Face parsing is another commonly used technique
to remove the eyes, eyebrows, nose, and mouth as part of the pre-processing process prior
to facial skin lesion analysis [25].

(a)Hair (b)Illumination (c)Circles (d)Black frame

Figure 3. Images with various types of noise from the ISIC archive.

2.3. Segmentation and Classification Evaluation Metrics

The performance of skin lesion segmentation and classification can be evaluated by pre-
cision, recall (sensitivity), specificity, accuracy, and F1-score, which are from
Equation (1) to Equation (5) [26].

Precision =
NTP

NTP + NFP
(1)

Recall =
NTP

NTP + NFN
(2)

Speci f icity =
NTN

NTN + NFP
(3)
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Accuracy =
NTP + NTN

NTP + NTN + NFP + NFN
(4)

F1 = 2 × prcision × recall
presision + recall

(5)

where NTP, NTN , NFP, and NFN are defined as the number of true-positive samples under
each class, true-negative samples under each class, false-positive samples under each class
(pixels with wrongly detected class), and false-negative samples (pixels wrongly detected
as other classes), respectively.

Other metrics for classification performance measurements include AUC and IoU.
AUC stands for the area under the ROC (receiver operating characteristic) curve, and a
higher AUC refers to a better distinguishing capability. Intersection over union (IoU) is a
good metric for measuring the overlap between two bounding boxes or masks [27]. Table 2
provides a summary of the segmentation and classification tasks, DL methods, and the
corresponding evaluation metrics.

Table 2. Summary of tasks, DL methods, and the evaluation metrics. Jac: Jaccard index, Acc: accuracy,
FS: F1-score, SP: specificity, SS: sensitivity.

Task DL Methods
Metrics Ref

Jac Acc FS SP SS Dice

Skin Lesion Segmentation SkinNet X X X [28]
Skin Lesion Segmentation FrCN X X X [29]

Skin Lesion Segmentation
YOLO and Grabcut
Algorithm X X X X [30]

Skin Lesion Segmentation
and Classification Swarm Intelligence (SI) X X X X X X [31]

Skin Lesion Segmentation
UNet and
unsupervised approach X X [32]

Skin Lesion Segmentation CNN and Transformer X [20]
Skin Lesion Classification VGG and Inception V3 X X [33]
Skin Lesion Classification CNN and Transfer Learning X X X X [34]
Melanoma Classification ResNet and SVM X [35]
Melanoma Classification Fast RCNN and DenseNet X [36]

3. Skin Lesion Segmentation Methods

Segmenting the ROI is a crucial step in the diagnosis of skin lesions, directly impacting
the informative feature extraction process and accurate classification.

3.1. Traditional Segmentation Methods

Traditional image segmentation methods use pixel, region, and edge-based approaches
to extract skin lesions from images. Pixel-based segmentation methods, such as binary
or Otsu thresholding, can outline each pixel into two categories (i.e., healthy skin or skin
lesion). However, these methods can generate discontinuous results, particularly from
dermoscopic images, mainly due to low contrast and smooth transitions between lesions
and healthy skin. Region-based segmentation can identify and combine adjacent pixels to
form skin lesion regions by merging or growing regions. Merging combines adjacent pixels
with similar intensity together, while growing starts from a point and checks nearby pixels
to expand region coverage [37,38]. The difficulties faced in implementing these methods lie
in the variety of colors and textures of individual skin lesions. Edge-based segmentation
methods, such as the watershed algorithm [39], utilize intensity changes between adjacent
pixels to outline the boundary of a skin lesion. These methods are susceptible to noise,
such as hair, skin texture, and air bubbles, which can lead to convergence, especially
around noisy points, and produce erroneous segmentation results. In general, traditional
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segmentation methods often struggle to achieve accurate results when segmenting images
with noise, low contrast, and varied color and texture.

Neural networks (NNs), evolutionary computation, and fuzzy logic have been pro-
posed as methods to segment the ROI based on learning, natural evolution, and human
reasoning. These methods can be used individually or in combination to achieve better
performance [22]. For example, the fuzzy method has been applied with both splitting
and merging techniques to segment dermoscopic images [40]. This combination generated
unsupervised perceptual segmentation using fused color and texture features. Later, Devi
developed an automatic skin lesion segmentation system using fuzzy c-means (FCM) clus-
tering together with histogram properties [41]. The histogram property was used to select
the number of clusters, and the color channel for FCM clustering (hue, saturation, value)
was determined based on individual entropy. This system can effectively segment the
lesion regions from normal skin automatically with an accuracy of 95.69% when compared
with traditional methods. Moreover, there is still much space for advancement in terms of
accuracy.

3.2. DL Skin Lesion Segmentation Methods

DL approaches are capable of learning hierarchical features and extracting high-
level and powerful characteristics from images. Both supervised and unsupervised DL
approaches are used for effective computational segmentation. For example, Vesal proposed
a supervised method called SkinNet, a modified version of U-Net, to segment skin lesions
in the ISBI 2017 dataset, which is a subset of the ISIC archive that contains a larger number
of images from seborrheic keratosis, benign nevus, and melanoma [28]. Al-Masni proposed
a full-resolution convolutional network (FrCN) for skin lesion segmentation [29]. This
method can directly learn the full-resolution features of each individual pixel of the input
data without pre- or post-processing. The segmented skin lesions with fine boundaries
were reported when compared with the results from other DL approaches, such as the fully
convolutional network, U-Net, and SegNet under the same conditions and with the same
datasets.

Multiple DL methods can be combined to search for better solutions. Ünver com-
bined the YOLO and GrabCut algorithms to detect lesion locations using the PH2 and
ISBI 2017 datasets [30]. This method was capable of processing dimension-independent
images, leading to high-resolution segmentation results. A hybrid DL approach named the
Grasshopper Optimization Algorithm (GOA) based on K-means was used to extract the
ROI from dermoscopic images following hair removal and contrast enhancement [31]. This
hybrid approach achieved better segmentation accuracy when compared with traditional
K-means for the ISIC 2017, ISIC 2018, and PH2 datasets.

Due to the tedious process required to obtain pixel-level annotations in skin lesion
images, Ali compared the performance of the supervised U-Net and unsupervised methods
using F1 scores and IoU [32]. As expected, the supervised method showed much better
segmentation accuracy, while the unsupervised method was reported as a good approach
when facing a shortage of image annotations.

To balance segmentation performance and annotation workload, a semi-supervised
segmentation method was developed. It applied a combined CNN/Transformer model
followed by a decoder module to learn a semantic segmentation map and enrich the
encoder block by learning an auxiliary task during training [20]. The model’s performance
demonstrated better results when compared with the unsupervised methods in segmenting
images from the ISIC 2017, ISIC 2018, and PH2 datasets.

4. Skin Lesion Classification

Generally, classification tasks in skin lesion analysis can be categorized into binary
classification, which aims to identify melanoma for early treatment, and multi-class classifi-
cation, which is used to identify a variety of skin diseases. Different skin lesions may exhibit
similar sizes, textures, colors, and shapes, and there can be significant levels of correlation
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between skin lesions, which often poses challenges in classification. Both traditional ML
methods and DL methods can be used; however, the former requires feature extraction and
selection.

4.1. Feature Extraction and Selection

Feature extraction and selection aim to identify an optimal feature set with excellent
discrimination capability in this case to classify skin lesion images. Expert knowledge
and clinical experience are preferred, which may effectively and efficiently guide feature
extraction and selection. Image processing algorithms can generate features useful for
classification, but the effectiveness of extracted features relies on the disease symptoms
and diagnosis tasks at hand. To yield accurate melanoma diagnosis, various methods
are explored to extract color, texture, edge, and shape features. In the popular ABCD
rule, features are selected based on the knowledge that melanoma has an asymmetrical
shape, an irregular border, multiple colors and shapes, and a diameter larger than 6 mm.
Specifically, A stands for asymmetry, B stands for border, C stands for color, and D stands
for diameter [42]. Similar features are extracted using the CASH mnemonic, i.e., color,
architecture, symmetry, and homogeneity [43]. In addition, a three-point checklist method
was proposed based on the asymmetry of color and structure, atypical network, and blue–
white structures observed in melanoma diagnosis [44]. This method was further extended
to a seven-point checklist by adding the size of the lesion, itch, or altered sensation of the
lesions [45].

The color features can be extracted from the HSV space for hue, saturation, and light-
ness, the YCbCr space for illumination, and the blue-difference and red-difference chroma
and grayscale space. Texture features extracted from grayscale images can reflect the sur-
face roughness of the lesions, such as through the gray-level co-occurrence matrix (GLCM),
which includes contrast, correlation, energy, and homogeneity [46], and the neighborhood
gray-tone difference matrix, which includes coarseness, busyness, complexity, and texture
strength [47]. Additionally, the histogram of oriented gradients (HOG) can be adopted to
judge the shape and edge of skin lesions using uniformity or regularity [48].

From the above discussion above, it can be seen that many image features to be
extracted are determined from expert knowledge and practical experience, but they may
not be all-encompassing in representing skin lesions. The same feature set may not perform
well under different tasks, and the effectiveness of such features should be carefully chosen
for each specific task [49]. For example, the features extracted using the ABCD rule may
yield high accuracy in melanoma detection but not in multiple skin disease classification.

Moreover, the existence of redundant or noisy information can produce irrelevant
features that degrade overall diagnostic accuracy. Therefore, it is necessary to select
representative feature subsets based on the research tasks and available data and eventually
build a classification model with fast training, better performance, and lower complexity.

4.2. DL-Based Feature Extract and Selection Methods

To reduce feature dimensions while preserving the original feature space information,
researchers have attempted to explore DL models for feature extraction, such as VGG16,
VGG19, and Inception V3 [33]. The extracted features are used as inputs of NNs to classify
moles as benign or malignant. The features extracted by the Inception V3 model gave the
best accuracy compared to the other two VGG networks for the same classification method.
DL model-based feature extraction has also been used in multi-class classification. For
example, Kassem used the original fully connected layers with GoogLeNet architecture to
extract features and fed them into an SVM for an eight-category classification [34].

DL has also been used in feature selection, which integrates deep feature information
to generate the most discriminant feature vector for the classification task. For exam-
ple, the pre-trained ResNet-50 and ResNet-01 were utilized for feature extraction and
then the kurtosis-controlled maximal feature (KcMF) approach was utilized for promi-
nent feature selection [35]). The top 70% of features from the two ResNet models were
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fused and fed into an SVM for melanoma diagnosis using three datasets HAM 10,000,
ISBI 2017, and ISBI 2016. To recognize skin cancer, Khan combined a DenseNet pre-trained
convolutional neural network (CNN) model for deep feature extraction and an iteration-
controlled Newton Raphson (IcNR) method for feature selection [36]. For effective feature
selection, a framework with the entropy-controlled neighborhood component analysis was
proposed to select principle features and extricate redundant features [50]. The effective-
ness of this framework was validated on four benchmark datasets, including PH2, ISIC
MSK, ISIC UDA, and ISBI-2017. Similarly, Amin fused deep features extracted from the
pre-trained AlexNet and VGG16 and then applied principal component analysis (PCA) for
optimal feature selection when classifying skin images into benign and malignant [51].

The classification results vary with combinations of feature sets and classifiers. Hegde
combined color and texture features in three ways and fed them into four classification
models [52], the artificial neural network (ANN), linear discriminant analysis (LDA), SVM,
and Naïve Bayes. The extracted features were derived from the ABCD rule, HOG, and
GLCM, which were then compared individually and in a hybrid way. The LDA classifier
using color features and the SVM classifier using texture features gave the best accuracy in
both binary and multi-class classification. The features obtained from the application of
the ABCD rule were more informative than the others when applied individually. Among
the combined texture and color features, the combination of HOG and GLCM was the best
choice when classifying using either LDA or SVM [52].

With very limited training data, more representative features were generated using
a deep CNN and feature encoding strategy [53]. The generated features could deal with
large variations within melanoma classes, as well as small variations between melanoma
and non-melanoma classes in this classification task.

4.3. Traditional ML Models for Skin Disease Classification

The traditional ML methods shown in Figure 4 use extracted and selected features
as inputs for classification tasks. After feature selection, traditional ML models such as
the SVM, Naïve Bayes (NB) classifier, and K-nearest neighbor (KNN) are widely used to
classify skin diseases or identify melanoma as opposed to pigmentation. These traditional
ML algorithms with standard structures can generally produce good results in terms of
both precision and accuracy [54].

Figure 4. Traditional ML-based skin lesion classification.

The SVM can categorize skin lesions by creating a decision plane to separate different
classes based on extracted color, texture, shape, and edge features. The K-nearest neighbor
(KNN) differentiates normal skin and skin lesions by comparing the similarity of the
input features. Tree-structured classification methods, such as decision tree (DT) and
random forest (RF), can handle non-numeric features from the ABCD rule, such as an
asymmetrical shape and an irregular border. The NB can classify skin lesion images into
their corresponding disease categories based on the highest probability [54].

To compare multi-class categorization performance, Hameed used two strategies to
classify skin images [55]. One is a three-category classification: healthy, inflammatory
diseases (acne, psoriasis, and eczema), and non-inflammatory diseases (benign and malig-
nant). The other is a six-category classification: healthy, acne, eczema, psoriasis, benign,
and malignant. DT, SVM, K-NN, and ensemble classifiers with different kernels were
applied to the two classification strategies. The result showed that the classification accu-
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racy decreased for all classifiers when the number of categorized classes increased, and
quadratic SVM achieved the highest classification accuracy in both strategies. For the
same identification task, Hameed also compared the performance of multi-level multi-class
classification and single-level multi-class classification [23]. The multi-level multi-class
ML classification system achieved better classification accuracy, implemented using both
traditional ML and DL.

In summary, the research activities in traditional ML classification models focus on
the relevant parameter optimization and input feature selection. Researchers continue to
explore the combination of ML algorithms, parameters, and extracted features. Although
these activities have been addressed in several studies and successful applications have
been made, there is potential to develop new methodologies and improve classification
performance.

4.4. Deep Learning Models for Skin Disease Classification

DL has become more sophisticated in its use for image recognition and has achieved
increasingly good outcomes [56–59]. As a subcategory of ML, it can automatically discover
underlying patterns and identify the most descriptive and salient features for image binary
and multi-class classifications, as described by Figure 5.

Figure 5. DL-based skin lesion classification.

DL methods are able to process raw image data directly, without the need for a feature
preparation step, although they require higher computational costs. Researchers have
compared the performance of various DL methods to balance computational cost and
classification performance. For example, Ali et al. reported that the DCNN model achieved
better performance with less computation time in skin lesion recognition using the HAM
10,000 dataset, compared with the ResNet, AlexNet, MobileNet, VGG-16, and DenseNet
models [60]. Additionally, modified DL model architectures have been adopted to enhance
multi-class skin lesion classification [34]. One method is to replace the last three layers of
the GoogLeNet architecture with a fully-connected SoftMax and a classification output
layer for the eight-class classification task. The same task can also be achieved by using the
original fully connected layers of the GoogLeNet architecture to extract features and feed
them into an SVM. The former achieved better multi-class classification performance for
the imbalanced data distribution of the ISIC 2019 dataset.

To take advantage of multiple DL methods, hybrid networks are proposed to diagnose
skin diseases. Ahmed combined two CNN architectures, i.e., ResNet and Inception V3 [61],
and classified skin lesions into seven types. This ensemble network achieved better accuracy
and precision compared to an individual network for the ISIC 2018 dataset. To detect
different perspectives of skin lesions, multiple classifiers are used and each classifier
focuses on learning one specific aspect. The outputs of these classifiers can be combined to
determine the final decision. For example, a two-level system with multiple classifiers was
used to exploit the different characteristics of melanoma [62]. The first layer included five
individual classifiers: a perceptron combined with color local binary patterns, a perceptron
combined with color HOG, one GAN for segmentation coupled with the classic ABCD
rule, and two end-to-end individual CNNs (ResNet and AlexNet). A final perceptron
was designed to combine these classifiers for melanoma diagnosis. The result exceeded
the performance of the individual classifiers when testing with the ISIC 2019 and PH2
databases.

Different loss functions have been explored for the precise detection of melanoma.
Since the size of the skin lesion is critical to identifying the disease stage, in two-stage and
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three-stage melanoma cancer classifications, Patil combined the CNN architecture with
various loss functions, including hinge, loss KL, loss MSE, loss cosine, loss cross-entropy,
and similarity measure for text processing (SMTP) [63]. Eventually, an improved CNN
architecture with SMTP loss function was chosen due to its better classification performance
and efficiency.

The loss function choice can significantly impact the performance of DL models. In
image segmentation tasks, commonly used loss functions include (a) Dice loss, which mea-
sures the overlap between predicted and ground truth segmentations [64,65], (b) Jaccard
loss, which calculates the ratio of intersection over the union of the two sets [66], (c) binary
cross-entropy loss, which measures the distance between predicted and true binary masks
in binary segmentation [67], and (d) categorical cross-entropy loss for multi-class segmenta-
tion under several object classes [65]. In classification tasks, common loss functions include
(1) binary cross-entropy loss, which measures the probability distribution over the two
classes [68], (2) categorical cross-entropy loss for multi-class classification [68], (3) focal
loss, which addresses class imbalance problems by giving more weight to misclassified
examples of the minority class, and (4) label smoothing loss, which regularizes the output
of the network by adding noise to the ground truth labels. Overall, the loss function should
be selected based on the nature of the task and the characteristics of the datasets, which is
often an important aspect of designing and training DL models.

As discussed in Section 2.1, some skin lesion datasets are unlabeled, which requires
more effective learning rules. A convolutional spiking NN with an unsupervised spike
timing–dependent plasticity (STDP) learning rule was developed to distinguish melanoma
from melanocytic nevi [69]. As an unsupervised process, this method can learn from small
training datasets effectively without the obvious negative influence of overfitting.

In short, research on DL-based skin lesion classification is moving towards exploring
available methods, developing new ones, and combining different DL techniques. These
efforts include network structure design, layer connection, loss function application, and
activation function design. For datasets with large numbers of images per class, DL
performs better than traditional ML, and even for datasets with few images, DL can
overcome this issue through data augmentation.

There is no solid evidence that DL methods always outperform ML methods in skin
disease diagnosis. ML can outperform DL models where representative features are well
extracted in the recognition tasks. For example, Alsaade et al. reported that the performance
of an ANN model was superior to that of the AlexNet and ResNet50 models when tested
on the ISIC 2018 and PH2 datasets [70]. In this study, 216 features were retrieved using
the local binary pattern and GLCM, and then fed into the ANN algorithm to detect skin
diseases.

5. Current Status, Challenges, and Outlook

Automatic skin lesion image segmentation and classification is a well-established and
continuously expanding area of research focus and interest. Its aim is to provide systematic
solutions for quantitatively analyzing images, rapidly detecting ROI areas, and reliably
diagnosing diseases. With the advancement of image processing methods, these studies
offer the potential for developing online diagnosis platforms. However, several challenges
and concerns must be addressed before further exploitation.

5.1. Current Research Publication Status

To explain the current research status in skin lesion detection, we conducted a search
on the PubMed database on 7 February 2022; this is a free resource that supports the
search and retrieval of biomedical and life sciences literature, which can be found in the
supplementary material. The research papers were searched using the keywords “skin
lesion classification”, “skin lesion segmentation”, “skin lesion detection”, and “skin lesion
recognition”, while removing papers without “skin” in the title. The search results, shown
in Table 3, indicate a dramatic increase in skin diagnosis publications from 2020, with the
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number of publications reaching 300 in 2022. Melanoma and skin cancer are identified
as the principal areas of focus in skin lesion recognition and have been discussed in 246
papers.

Table 3. Number of publications for skin diagnosis.

Year 2018 2019 2020 2021 2022

Publication No. 179 173 214 258 300

From the collected publications, ML and DL applications in skin disease recognition
were discussed in 266 papers as shown in the supplementary document. Out of these,
224 papers mentioned DL application in skin lesion diagnosis, while the remaining 42
research papers used ML methods. The other 28 papers discussed AI applications in skin
diagnosis. Thus, the preference of the methodologies adopted by researchers is DL, ML,
and other AI methods. The most popular DL method reported is the CNN, which appeared
in 43 papers. This coincides with the CNN contribution to image recognition tasks. An
interesting observation is the significant number of transfer learning methods found in
recent publications, indicating a research trend in skin image diagnosis [71]. As expected,
dermoscopic images were the most popular image used in melanoma and skin lesion
identification processing.

5.2. Challenges and Outlooks
5.2.1. Macroscopic Images with Robust Diagnosis

Different characteristics of macroscopic and dermoscopic images require particular
rules and methods in skin lesion diagnosis, and a direct inference between the two types
of images has not been established yet. From the published datasets, one may conclude
that dermoscopic images are more commonly collected and, therefore, used more often
in computational diagnosis with better segmentation and classification performance. The
diagnosis performance of macroscopic or close-up images is not so robust due to the limited
number of available images and inconsistent image quality. However, the growing usage
of smartphones makes the captured macroscopic images more convenient for online skin
lesion diagnosis. To advance recognition model development in skin diagnosis, images
collected using smartphones should coincide with the clinician’s views during skin lesion
examination, and the related features from those images should comprehensively support
the diagnosis. Moreover, ethical issues in the dataset collection process should be taken into
consideration, especially regarding facial images. Finally, recognition model development
should not only target well-known diseases but also progressive or unknown diseases.

5.2.2. Racial and Geographical Biases in Public Datasets

Advances in automatic diagnostics are largely driven by the use of datasets with
large repositories of digital images. Public datasets are a compilation of data accessible
through an online platform, typically made available by government agencies, academic
institutions, or private organizations. Due to the challenges associated with gathering skin
lesion images, utilizing publicly available datasets is frequently a more practical alternative
to collaborating with medical institutions to obtain such datasets. Public datasets such as
the ISIC contain skin disease images mostly from subjects with light-colored skin, collected
in the USA, Europe, and Australia. The current recognition models are trained using
these unequal distribution datasets. While such recognition models may have outstanding
capabilities to recognize lesions on subjects with light-colored skin, their effectiveness is
in question when dealing with skin lesion images from subjects from other geographical
regions. Moreover, the prevalence and characteristics of skin disease vary with racial and
ethnic groups. Traditional ML and DL models fail to offer correct recognition when a test
image is from an under-represented skin color group and/or lesion type. More balanced
datasets are needed, with clinical data based on gender, age, skin type, and race. This is
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critical when using AI diagnosis to improve healthcare in rural areas and increase global
access to specialist expertise.

5.2.3. Dataset Characteristics and DL Methods

Along with the rapid development of DL methods, skin lesion diagnosis is moving
from an expertise-oriented approach towards a computational intelligence-based approach.
When the training datasets are correctly labeled, most DL methods applied for skin lesion
analysis are supervised. However, the number of labeled images is not always sufficient for
classification model building. Thus, semi-supervised DL methods and weakly-supervised
DL methods may be good alternative choices, although they may not achieve comparable
performance to supervised methods due to incomplete, inexact, and inaccurate labeled skin
lesion datasets. However, in some cases, semi-supervised DL methods can be trained using
incompletely labeled datasets, and weakly-supervised methods can handle inaccurate and
inexact labeled datasets. Hence, it may be possible to adopt unsupervised DL methods
in the cases of unlabeled skin disease images. For example, GAN-based unsupervised
methods can learn relatively consistent patterns from a large scale of data without expensive
annotation and personal bias [58,72]. Some efforts have been reported on the use of
unsupervised methods in biomedical image processing [4].

Meanwhile, unsupervised domain adaptation (UDA) is also a good alternative to
reduce the requirement of annotation by transferring the knowledge on labeled data to
unlabeled data. Few studies have been reported using fully unlabeled datasets in skin
disease recognition, which is likely due to the expected task difficulty and low model
performance [71].

Most researchers working on the diagnosis method development are from computer
science backgrounds and do not have a fundamental clinical understanding of the diagnosis
domain. As such, the current ML and DL models are developed using publicly accessible
datasets, which may not be suitable for analyzing real clinical data collected from daily
consultations. In other words, the effectiveness of the developed diagnosis models needs
to be verified against further independent data not currently available. In addition, future
diagnosis frameworks should consider user requirements from the perspectives of both
doctors and patients.

6. Conclusions

AI-based skin lesion diagnosis is an increasingly attractive research area, which has
been largely driven by the availability of appropriate methods and continually updated
abundant datasets. Although relevant topics have been addressed over the last decade,
there are still many aspects for investigation and room for improvement.

This paper reviews public skin lesion datasets, the applied image preprocessing meth-
ods, and the subsequent skin lesion segmentation and classification methods. The current
status, challenges, and outlook in ML-driven skin disease diagnosis are also discussed.
Such studies can empower the development of advanced concepts and methodologies. In
conclusion, future trends regarding image segmentation and classification of skin lesions
require the development of more comprehensive datasets, investigation of more robust
models, particularly for macroscopic image recognition, and methods for increasingly
reliable automated diagnosis.
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