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Abstract: Composites of sawdust and crushed polyethylene were obtained by pressing at 5–10 atm.
The resulting pellets with a size of about 10–20 mm were then burned in airflow in a muffle furnace
at a temperature of 800 ◦C. The combustion process was recorded, and obtained video data were
analyzed. The data obtained made it possible to estimate the change in particle size at different
stages of combustion. An increase in linear dimensions during conversion was achieved of up to
2 times. Particle swelling led to a decrease in mechanical strength and destruction of particles before
complete burnout.
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1. Introduction

Achieving clean and sustainable environment goals (see, for example, SGS [1]) requires
managing municipal waste utilisation problems. Since such waste contains a large amount
of organic matter, it is possible to use thermal methods for its disposal. In this regard, the
issue of the efficient combustion of municipal waste and refuse-derived fuel is a subject of
great practical interest [2].

Waste incineration without prior sorting is almost impossible. First, the waste contains
a large quantity of materials that can be reused, so burning them is not economically
justified. Secondly, waste may contain hazardous components, which when combusted
can result in the formation of harmful substances (both organic and inorganic). Waste
without recoverable and hazardous components is called refuse-derived fuel (RDF). It
usually contains enough organic material for sustainable combustion. The composition of
the waste varies over a wide range. Usually, additional RDF preparation is necessary, for
example, grinding, briquetting, drying, etc. Waste gasification technologies (agricultural,
forestry, domestic) are discussed in the review [3]. The problems of waste fuel preparation
are discussed in [4].

It should be noted that a complete transition to the reuse of waste is not feasible. The
return ratio of valuable components is always less than one, so some of the waste, one way
or another, has to be disposed [5]. Thermal decomposition and combustion of waste occurs
in landfills even without burning it due to air access and self-heating [6]. Low-temperature
oxidation products may be even more harmful and dangerous than high-temperature
oxidation products [7]. During landfill oxidation, waste partially decomposes, which leads
to decrease in its calorific value [8]. In addition, the industry of waste thermal process-
ing can be one of the factors in the development of the economy [9]. Incineration is the
most mature thermal utilization technology, which may be organized in close promixity to
landfill [10]. The rule of three “T’s” (time, temperature, turbulence) enables reducing the
formation of harmful polycyclic substances under controlled combustion conditions [11].
Gasification and pyrolysis technologies may be technically and environmentally more
efficient than incineration, but their widespread use requires solving a number of problems,
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such as combustible gas conditioning and the development of suitable combustion cham-
bers [12]. Waste gasification is more flexible for energy applications because it enables the
accumulation of combustible gas and its use at peak loads [13].

The prospects for the use of waste gasification for the power supply of autonomous
consumers are discussed in [14]. A comprehensive feasibility study for the partial replace-
ment of coal by combustion is proposed in [15]. The application of high temperature waste
gasification in the energy sector is discussed in [16].

Waste may be used as an additional fuel in the combustion and gasification of fossils.
Plant biomass is gradually becoming an important energy source, so the transition to other
low-grade fuels, primarily to combustible waste, looks quite straightforward [17]. Waste
grinding enables its mixture in different compositions, resulting in multicomponent fuel
slurries for efficient combustion [18,19]. Due to reactive and thermal interaction between
components, it is possible to achieve stable combustion and low emissions during the
combustion of these mixtures [20]. However, the grindability of waste is often very low,
and the energy costs for grinding can be quite large.

The authors of [21] attempted to determine the optimal waste fraction in mixtures
with woody biomass and agricultural waste using thermodynamic modeling. In another
work [22], for the same purpose, a modified thermodynamic model was used, which took
into account the kinetics of heterogeneous reactions (fuel carbon conversion).

There are other methods of thermal waste disposal: decomposition in supercritical
fluids (including in the presence of catalysts and oxidizers) [23]; hydrothermal pyroly-
sis [24]; pyrolysis and gasification in molten slag (however, additional fuel is required to
maintain temperature) [25]; pyrolysis and gasification of waste using concentrated solar
radiation [26]; high temperature air gasification [27]; plasma gasification [28]; waste hydro-
genation [29]; and filtration combustion processing [30]. Most of these processes require
a significant amount of external energy supply, usually in the form of heat (in the case of
plasma gasification, electricity supply), which lowers energy efficiency, but contributes to
the deep decomposition of harmful substances in output gases [31].

A high fraction of polymers in the waste can be both a positive and a negative fac-
tor [32]. On the one hand, the decomposition of polymers results in products with a
stable composition and high heating value. On the other hand, incomplete decomposi-
tion products are undesirable due to complex thermal behavior and adhesive/corrosive
properties. Various methods are used to capture chlorine compounds and aromatic sub-
stances, such as the binding of halogens with minerals [33], catalytic filtration [34], and
plasma-assisted purification [35].

To prevent the agglomeration of waste during heating and decomposition, devices
with moving parts are often used, for example, furnaces and pyrolysers with rotating
sections [36], augers [37], and special grates [38]. The mineral part influences the design of
waste disposal furnaces since it makes a significant contribution to the corrosion of heat
exchange surfaces. The corrosion rate for waste incineration is an order of magnitude
higher than for fossil fuels [39]. This is due to the high reactivity of mineral deposits, which
contain large amounts of halogens [40]. The characteristic temperature points of waste ash
and other solid fuels are comparable, but the qualitative behavior during melting can differ
significantly due to the high proportion of particulates [41]. The composition of the mineral
part affects, among other things, the waste decomposition products [42]. The halogens
formed during the dissociation of salts may inhibit some combustion chain reactions [39].
With suitable treatment, bottom ash can be used in the production of building materials [43].

Fixed bed waste gasification is also accompanied by agglomeration, which leads to the
formation of clinkers [44]. Increasing the proportion of plastics improves the gas yield and
its calorific value but increases the yield of resinous substances [45]. Therefore, the highest
possible fraction of plastic for gasification is usually about 20–30% [46]. Waste particles
agglomerate, both due to the formation of liquid decomposition products and swelling
during heating (which is a subject of the present work). Another possible reason is low-
melting ash compositions [47]. The melting of polymers, together with the inhomogeneity
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of the composition and non-combustible inclusions, leads to instability of the fixed bed
combustion front [48].

Experimental studies are often carried out on mixtures of biomass and waste/
plastics [49,50]. Experiments on co-gasification of pellets from biomass and waste in a
downdraft gasifier with capacity of 100 kg/h [51] have shown that an increase in the waste
fraction led to an increase in underburning and bed agglomeration. The achieved reaction
temperature was about 800 ◦C, and the cold gas efficiency was 50–60%. The authors of [52]
reported on the study of an internal combustion engine fed by producer gas obtained
from the co-gasification of biomass and waste mixtures (the waste fraction was up to 40%).
With cold gas efficiency of the same values, the electrical efficiency of the power plant was
19–22%. With an increase in the waste fraction waste, the efficiency decreased. The authors
of [53] investigated the updraft fixed bed gasification process, achieving a cold gas efficiency
of 45–60% (reaction temperatures were higher compared to typical downdraft reactors).
In this case, however, a higher yield of tarry products was observed. The tar generated
during waste gasification contained high concentrations of aromatic components [54,55].
The paper [56] reported on fixed bed waste gasification experiments, where a special device
was used to agitate the bed (with a time period of 10–15 min) to prevent agglomeration
and the formation of burnouts. In this case, losses with underburning were up to 20%.
The authors of [57] carried out low-temperature waste conversion in a laboratory reactor
with external heating. Conversion degrees of 90% and higher have been reported (with
air-assisted conversion). Oxygen gasification of waste was studied in [58].

The experimental units for studying the processes of decomposition and oxidation of
waste can be divided into several groups: quartz tube furnaces; drop tube reactors; and
fixed-bed and fluidized bed reactors. These units enable study of the kinetics of pyrolysis
and combustion of individual particles, the composition of conversion products (including
harmful substances), critical ignition conditions, etc. Fixed bed reactors make it possible to
study the dynamics of bed burn-up (velocity of the combustion front, critical air flow) [59],
as well as the interaction between different areas of the bed, for example, the deposition
of tar on the char [60]. The processes of high-temperature steam waste gasification were
studied in [61]. Microwave heating of waste was studied in [62]. The processes of slow
low-temperature oxidation were studied in [63]. The authors of [64] described a pilot
plant for plasma gasification processes studies (with a capacity of 20 kg/h), which made it
possible to obtain gas with a heating value of up to 12 MJ/Nm3.

Among the analytical methods for studying the processes of waste processing, com-
plex thermal analysis has become widespread. Thermogravimetry data, combined with
calorimetry and product detection, make it possible to evaluate the reactivity of the waste,
the reaction heat of conversion, and the composition of products under different conditions
(heating rates, oxidant concentrations, etc. [65]). As a rule, individual waste components
(polymers, rubbers, pulp and paper products) or their mixtures [66], including fossils, are
studied. Chars obtained during the pyrolysis of different types of waste also have different
reactivity [67]. During the mixture decomposition, a qualitative correspondence is usu-
ally observed with the decomposition of individual components [68] (in some conditions
this correspondence becomes quantitative [69]). However, in the general case, during
co-decomposition, the components interact thermochemically. Chemical reactions of de-
struction and oxidation of polymer molecules, which usually have a radical nature, can
influence each other, often in a non-linear manner [70]. More active components can initiate
the decomposition of less active ones; moreover, the mineral part may have a catalytic
effect. One of the mechanisms of interaction can also be the formation of films, the filling of
pores, and the encapsulation of particles during the melting of polymers.

The lack of understanding of the mechanisms of decomposition and combustion of
fuel particles hinders the development of mathematical models for describing the processes
of waste incineration. Among the problems of municipal solid waste incineration processes
modeling, there are issues of providing a detailed description of the interfacial interaction
and mechanics of a granular medium [71]. It is also necessary to mention the problems
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of appropriate estimation of the component composition [72] and the thermophysical
properties [73] of waste.

When heated, the waste particles swell and release a significant quantity of viscous
products, as a result of which the particles become covered with a film and stick to-
gether [74,75]. The main factors determining the swelling are the melting component
fraction and the temperature ranges of its softening and charring, as well as the particle
residence time in this temperature range. The effect of particle swelling when heated was
studied for coals [76,77]. The swelling of coal particles occurred due to the formation and
growth of gas bubbles during the decomposition of the melting organic mass. Similar
effects were observed during the degradation of artificial polymers [78].

In the present work, we study features of a wood-polyethylene pellet decomposition
to estimate the effect of swelling on single particle combustion. The results may be useful
for the analysis of the refuse-derived fuel incineration process. To this end, it is necessary
to choose appropriate experimental conditions.

The combustion of single biomass (mainly wood) and waste particles was studied in
several works. Statistical models for the ignition and burnout times of wood and sewage
sludge particles were proposed in [79]. The authors of [80] used optical diagnostics to
detect volatile flame structures and particle size dynamics. Wood particle ignition and
burnout in airflow were investigated in [81] using visualisation techniques. An estimate of
the drying front position at the ignition moment is given in [82].

Homogeneous and heterogeneous ignition of wood particles at different oxygen
concentrations was studied in [83]. The authors of [84] considered the influence of cavity
size on cubic-shaped particle ignition. Wet particle ignition for different shapes of wood
particles was studied in [85]. The boundaries of different ignition mechanisms for biomass
powder ignition were established in [86]. Radiative ignition in a photothermal reactor was
used in [87].

Experiments have shown that torrefaction decreases pyrolysis stage reactivity but
increases char conversion reactivity [88]. The influence of CO2 addition and varying O2
concentration was studied in [89]. Flame dynamics in oxyfuel-combustion conditions were
visualised in [90]. The ignition of particle sets was investigated in [91]. Dust explosion
experiments were carried out in [92]. Flame diagnostics during the combustion of waste
particles with the analysis of released ions was carried out in [93].

Fuel mixtures often demonstrate non-additive behaviour during combustion, which
relates to the thermal and chemical interaction between components (and their decom-
position products). Mixtures of biofuel and fossils are widely used, both in pellet and
slurry form. Methods for studying phase transitions and the combustion of single particles
of fuel-water suspensions were proposed in [94,95]. The authors of [96] investigated the
combustion of wood particles under intense light radiation conditions. The combustion of
coal-biomass pellets was studied in [87,97]. The co-conversion of wood and polyethylene
was studied in thermogravimetry methods (for example, see [98]). The pyrolysis of waste
and refuse-derived pellets was studied in [75] (cardboard and polyethylene) and [99] (waste
and straw).

There are many factors influencing single-particle combustion. When burning, the
shape of the particles is smoothed out [100]. Low-temperature melting ash may form a slag
film and block access of the oxidizer [101]. During the thermal decomposition of particles,
as a rule, shrinking of wood particles occurs; however, upon rapid heating, the particles
can expand due to the pressure of water vapour and thermal stresses [102,103]. According
to [99], when heated, particles of polymer-containing waste swell, increasing their size up
to 1.5 times. Detailed investigation of these phenomena may help in searching for more
efficient ways to utilise waste with heat and power production [104].

In our previous works [105,106], we studied the combustion and gasification of saw-
dust and polyethylene mixtures in a thermogravimetric apparatus and a fixed-bed reactor.
The single particle level was an intermediate one, which allowed consideration of chemical
interaction and transfer processes linking different scales of the problem. In this work,
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we investigated the combustion and fragmentation of model waste particles (sawdust
and polyethylene composites) in a muffle furnace. For the first time, we measured wood-
polyethylene pellet combustion dynamics under conditions of high-velocity air jet injection.
To this end, the technique and equipment proposed in [107,108] were used.

2. Raw Materials and Experimental Setup

The model refuse-derived fuel under study was a mixture of sawdust and polyethylene.
Sawdust is a typical representative of lignocellulosic mixtures, and polyethylene is the
most common plastic. Lignocellulosic waste and plastic make up the largest fraction of the
combustible mass of municipal waste [109]. The raw materials were mixed and pressed
under different conditions to obtain pellets. Calibrated pine sawdust of 0.6–1.0 mm and
polyethylene granules of 1 mm were used. The polyethylene fraction varied from 0 to
40 wt %. For the pressing, we used samples of 4–5 g. The diameter of the cylindrical pellets
was determined by the size of the steel tubes used (20 mm). The height depended on the
mixture composition and the pressing conditions. In our experiments, the density varied
from 0.8 to 1.28 g/cm3, which corresponded to a pellet height from 8 to 18 mm.

One of the problems of wood and polyethylene mixture pressing is the elasticity of
the polymer. After removing the load, the pellets were partially restored in size, so the
mechanical strength and density of the mixed pellets were low. To solve this problem,
we preheated the mixture to a temperature of about 160 ◦C. Under these conditions, the
polyethylene partially melted, and the pellets were strong even at pressures of about
5 atm (although a small part of the polyethylene was sometimes squeezed out from under
the press). For comparison with mixed pellets, experiments were carried out with the
combustion of wood pellets without polyethylene additives. Table 1 presents the properties
of the pellets.

Table 1. Composition and properties of pellets.

Sample No. 1 2 3 4 5 6 7

PE fraction, % wt. 0 20 20 40 20 20 40

d0, mm 20 20 20 20 20 20 20

L0, mm 13.2 15.0 18.0 20.0 8.0 12.3 13.0

m0, g 4.25 5.01 5.02 4.99 3.22 5.15 4.80

Preheating, ◦C - - - - 160 160 160

P, atm 10 10 10 10 5 5 5

ρ, g/cm3 1.02 1.06 0.89 0.79 1.28 1.33 1.18

The combustion of single particles fixed on a thermocouple was carried out in a muffle
furnace (EKPS-10, internal volume 10 L, maximum temperature deviation 20 ◦C) at a wall
temperature of 800 ◦C in an airflow (Figure 1). The air was supplied from a nozzle with a
diameter of 2 mm at a speed of 20 m/s to ensure a sufficiently high combustion rate. Due
to its high velocity, the air jet had an indoor temperature (unlike experiments described
in [110]). A particle was transported into a heated muffle furnace by a thermocouple-
bearing holder. The following thermal decomposition was recorded by a video camera
Panasonic HC-V770 (image size 1920 × 1080, 50 fps). For a more detailed description of
the experimental rig, see [107,108]. After the experiment, the video images were processed,
which made it possible to determine the change in particle size during combustion.

The main goal of the experiments was to observe the swelling of particles upon fast
heating. Tests showed that the swelling of particles pressed without heat treatment (even
for sawdust without polyethylene) led to rapid fragmentation. The particles pressed
after preheating proved to be resistant to fragmentation until the very late stages of
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burnout when the air jet pierced the channel at the place where the particle was attached to
the thermocouple.

Figure 1. Experimental rig scheme.

3. Experimental Results

Figures 2–4 shows a typical burnout pattern of a single particle (a mixture of sawdust
and polyethylene in a mass ratio of 80/20, pressing after preheating, sample No. 5 in
Table 1). The whole process can be divided into several characteristic stages: ignition and
combustion of volatiles; swelling and burning of the solid residue; particle fragmentation.
The combustion of volatiles occurred in a diffusion countercurrent flame with large flow
strain rates (about 103 s−1). Stabilization of the flame was possible due to the char, which
acted as a bluff body. During the heating, the frontal surface of the particle began to smolder.
Combustion occurred mainly on the surface, which glowed brightly. The outer layer of
the particle became porous and loose, which allowed the air jet to penetrate deeper into
the particle.

Figure 5 shows the temperature measurement results (before particle fragmentation).
The particles under study had a size of the order of several centimetres; therefore, they
had significant thermal inertia. The ignition of volatiles in the near-surface region oc-
curred already by 2–6 s after the particle entered the muffle furnace, but the temperature
in the centre of the particle rose slowly. Devolatilization and char oxidation occurred
simultaneously [108].

Figure 2. Ignition and combustion of volatiles.
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Figure 3. Solid residue combustion and swelling.

Figure 4. Particle fragmentation.

Figure 5. The temperature inside particles.
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Particles with a lower mass heated up faster (for example, sample no. 5 compared to
sample no. 6). However, large particles began to break down earlier (for example, sample
no. 3 compared to sample no. 2). A sharp temperature rise was accompanied by intense
combustion of the solid residue and rather quickly led to the fragmentation of the particle.

When processing the images, we measured the particle size at different times by pixels.
For comparison, Figure 6 shows the ratio of the current size to the initial size, L/L0. In our
experiments, the particle size increase was up to 1.6–2 times compared to the initial size. In
this case, the observed values were determined not only by the mechanical but also by the
reaction properties of the particles. On the one hand, there was a straightening of wood
fibres and swelling of the polymer mass; on the other hand, a decrease in size was observed
due to combustion.

Figure 6. Size of particles, L/L0.

Interestingly, swelling was observed even for the sample without polyethylene. The
sawdust particles used in this work were longer in the direction of the fibres. When pressed,
these fibres were deformed, but meshed or adhered during preliminary heat treatment.
During thermal decomposition, when gaseous pyrolysis products were formed inside
the particle, and the organic matter became more brittle, the packing density decreased.
Therefore, when heated, the pellets increased in size—the structure of the pellets led to
deviations from the well-known behaviour of solid wood particles [111].

Swelling was the main cause of particle fragmentation. Particles with less density
(with a lower polyethylene content and pressed without preheating) fragmented much
faster due to intraporous combustion. In denser particles, the solid residue burning period
lasted longer. Polyethylene acted as a binder [112], and particle fragmentation occurred
after the decomposition of the polymer component.

4. Discussion

It is interesting to compare the results of the measurements with other works and with
fixed-bed combustion.

The authors of [99] studied the swelling of refuse-derived fuel particles during pyroly-
sis. They observed an increase in particle size of 60%. The authors of [103,113,114] reported
slight swelling for sawdust pellets (up to 10–15% of the initial size). It can be assumed that
the pelletisation conditions in the present work were closer to [99].

In [106], the results of sawdust and polyethylene fixed-bed co-combustion experiments
are presented. It was shown that, after the wood pyrolysis stage, further thermal decompo-
sition of the mixtures significantly slowed down, and with a large polyethylene fraction in
the mixture (up to 80%), it practically stopped. This was due both to the chemical interac-
tion of woody biomass with polyethylene [105] and mechanical effects. During fixed-bed
conversion, particles were agglomerated, so the air distribution in a bed became very un-
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even. During the combustion of single pellets, an intense air jet provided an oxidizer supply
straight to the burning surface. Therefore, in contrast, particle fragmentation was observed.
It should be noted that an intensive air supply is a feature of the tuyere-equipped downdraft
gasifiers; therefore, this organization of air supply may prevent agglomeration during the
gasification of polymer-containing wastes. For incineration, similar recommendations are
given in [114].

It is necessary to mention the limitations in terms of the applicability of the obtained
results. In the present work, we used pellets of the same shape and of a constant diameter.
As shown in experimental works [115,116], the particle shape can have a significant effect
on the ignition characteristics. In large particles, the devolatilization can be slowed down
due to diffusion and hydraulic resistance; therefore, patterns may differ for other particle
sizes [117,118]. The sawdust used in the study was dried, which can reduce the mechanical
strength of the pellets (for example, the authors of [119] obtained pellet refuse-derived fuel
with a moisture content of 20% at a lower temperature, although with a higher pressing
pressure). Finally, fixed-bed combustion study requires considering collective effects
associated with the interaction of particles [91,120]. In the present work and in the previous
work [106], these phenomena were not taken into account.

5. Conclusions

The features of combustion and fragmentation of pellets made of sawdust and polyethy-
lene in a muffle furnace heated to 800 ◦C were investigated. Visialisation methods were
used to measure the decomposing particles’ dimensions. When heated and burned, the
particles increased in size 1.6–2 times due to the straightening of wood fibres and the ther-
mal decomposition of polyethylene. Swelling led to particle fragmentation which occurred
simultaneously with pyrolysis and combustion. The pellets obtained by preheating press-
ing and containing a higher polyethylene fraction (20–40%) demonstrated higher resistance
to fragmentation during heating and combustion. The wood-polyethylene mixtures can
be considered as model refuse-derived fuels; therefore, the presented results may be of
interest for maintaining the stability of municipal waste combustion processes.
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