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Abstract: As one of the core pieces of equipment of the thermal power generation system, the
economic and environmental performance of a boiler determines the energy efficiency of the thermal
power generation unit. The oxygen content in boiler flue gas is an important parameter reflecting
the combustion status of the furnace, and accurate prediction of flue gas oxygen content is of great
significance for online boiler optimization. In order to solve the online prediction problem of the
oxygen content in boiler flue gas, a CNN is applied to build a time series prediction model, which
takes the time series samples within a fixed time window as the input of the model and uses several
feature extraction modules containing convolutional, activation, and pooling layers for feature
extraction and compression, and the model output is the oxygen content in boiler flue gas. Since
the oxygen content in boiler flue gas is not only correlated with other variables but also influenced
by its own historical trend, the input of the CNN model is improved, and an oxygen content in
boiler flue gas time series prediction model (TS-CNN) is established, which takes the historical values
of the boiler flue gas oxygen content as the input of the model. The comparison test results show
that the R2 and RMSE of the TS-CNN model are 0.8929 and 0.1684, respectively. The prediction
accuracy is higher than the CNN model, LSSVM model, and BPNN model by 18.6%, 31.2%, and
54.6%, respectively.

Keywords: oxygen content in boiler flue gas; convolutional neural network; feature extraction;
online prediction

1. Introduction

Under the background of China’s “poor in oil, deficient in natural gas, but rich in coal”
energy structure, thermal power generation is still an important part of China’s electric
power resources production. A boiler is one of the core devices of thermal power generation,
and its economic and environmental performance determines the energy efficiency of the
whole generator unit [1]. The oxygen content in boiler flue gas is an important parameter
that reflects the combustion state of the boiler furnace and is also a key indicator to measure
whether the fuel burns adequately. The air/coal ratio required for efficient combustion in
the furnace can be reasonably deduced from the oxygen content in the flue gas. Therefore,
the timely and accurate measurement of oxygen content in flue gas is of great significance
for realizing efficient and stable boiler operation [2,3]. The measurement for oxygen content
in boiler flue gas can be divided into direct measurement and soft measurement. At present,
zirconia sensors are mostly used to measure the oxygen content in the flue gas in coal-
fired power plants in China. However, this method has the disadvantages of moderate
lag, decreased measurement accuracy with the aging of sensors, high cost of hardware
replacement, short device service life, etc., which struggles to meet the actual needs of
power plants [4–6].

In recent years, with the continuous development of computer software and hardware,
the soft-sensing technology driven by historical data has been widely applied in the fields of
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boiler combustion optimization, boiler condition monitoring and control, etc. [7–9]. Among
them, the prediction of oxygen content in boiler flue gas based on modeling methods,
such as machine learning, has been studied extensively. Research by Ma [10], Zhang [11],
and Geng [12] verified the effectiveness of using the BP neural network and its improved
algorithm to establish a soft-sensing model for oxygen content in the flue gas. Su [13],
Zhang [14], and Li [15] studied the application of a support vector machine (SVM) and
a least squares support vector machine (LS-SVM) in the prediction of oxygen content in
boiler flue gas, respectively, and used intelligent optimization algorithms to optimize the
parameters of the model, improving the accuracy and stability of the model. However,
in this traditional soft-sensing model based on machine learning, the feature that the
correlation between the various parameters of boilers will change with different operating
conditions is ignored in the selection of modeling variables. In order to solve the above
problems, Tang [16–18] et al. successively proposed several dynamic correction models
for NOx emission concentration of boilers based on an extreme learning machine and a
measurement model for oxygen content in flue gas based on a deep belief network. The
core idea of their modeling is that there are large differences in the model feature variables
under different load conditions, and this method has been verified through comparison.

Compared with traditional machine learning algorithms, deep learning algorithms
such as a convolutional neural network (CNN), feedforward neural network, deep be-
lief network, recurrent neural network, and its modified version of long- and short-time
memory networks have strong advantages in the learning and expression ability of data
characteristics [19–21]. A CNN has been successfully applied in the field of boiler combus-
tion process monitoring with complex variables because of its powerful feature extraction
and feature expression capabilities. Wang [22], Liu [23], and Han [24] used the convolution
operation of the CNN model to extract the flame image features of boiler furnaces and
predict the furnace combustion state, boiler combustion efficiency, and other indicators of
power plants. However, in the above research, the furnace flame images of the boilers are
taken as the input of the model. Before practical application, it is necessary to transform
the original boilers to obtain the furnace flame images. For such a boiler system with time
delay, high nonlinearity, and multivariable coupling features, the two-dimensional matrix
composed of time series samples in a fixed time window can also be used as the object of
convolution operation to realize the feature extraction and compression of input sample
space on the premise of avoiding variable screening and time delay analysis. Xing [25] et al.
converted the historical NOx emission data and boiler combustion process data sample into
model training samples and adopted the convolution layer and pooling layer for extraction
of input features to establish a NOx emission prediction model based on CNN-LSTM.
Taking the time series samples in a fixed time window as the input of the convolutional net-
work, Li [26] and Jia [27] established the NOx emission prediction model and the multi-step
prediction model of main steam temperature based on the convolutional neural network,
respectively, verifying the effectiveness of the CNN processing timing prediction.

In summary, in this paper, a 130 t/h circulating fluidized bed boiler actually running
in a petrochemical enterprise in Shandong is the research object, and in view of the mul-
tivariable, nonlinearity, and large time delay characteristics of the boiler, the time series
samples in the fixed time window were taken as the input of model, and feature extraction
was conducted for input samples by use of convolution operation. On this basis, a predic-
tion model of oxygen content in boiler flue gas based on a convolutional neural network
was proposed.

2. Data Acquisition and Analysis
2.1. Data Acquisition

In the SIS system of the power plant, 12,000 historical operation samples of the 130 t/h
circulating fluidized bed boiler were collected from 2:19 p.m. on 26 November 2020
to 10:14 a.m. on 29 November 2020. As shown in Table 1, a single sample consists of
oxygen content in boiler flue gas and 23 variables. In order to make the established
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model more consistent with the actual production process, the historical samples collected
cover 60–100% of the load conditions, including most of the key variables of the boiler
during operation.

Table 1. Variables of the 130 t/h CFB boiler.

Variable Name Unit Scope

Main steam flow rate t/h [90.84, 162.25]
Main steam temperature ◦C [452.63, 470.31]

Main steam pressure MPa [4.45, 5.04]
Boiler load t/h [92.40, 140.22]

Drum pressure MPa [4.95, 5.51]
Furnace chamber differential pressure Pa [683.05, 1292.18]

Lower furnace temperature ◦C [854.78, 946.58]
Furnace outlet gas temperature ◦C [793.60, 919.27]

Furnace outlet air pressure kPa [−607.46, −203.32]
Economizer inlet temperature ◦C [269.64, 290.63]

Economizer inlet pressure kPa [−2767.96, −1463.91]
Secondary fan outlet temperature ◦C [4.07, 13.34]

Primary fan outlet temperature kPa [7.34, 8.46]
Secondary fan outlet pressure kPa [2.64, 5.64]

Feed water pressure MPa [5.36, 6.03]
Feed water temperature ◦C [149.52, 156.53]

Exhaust outlet temperature ◦C [123.43, 132.61]
Primary air volume Nm3/h [94,450.76, 102,729.19]

Secondary air volume Nm3/h [69,768.91, 136,108.61]
Feed water flow t/h [85.39, 160.62]

Total coal feed flow t/h [14.09, 23.66]
Current of 1# induced draft fan A [23.86, 32.37]
Current of 2# induced draft fan A [21.84, 33.74]

Oxygen content in boiler flue gas % [3.62, 7.09]
The scope in the above table represents the upper and lower bounds of each variable.

2.2. Data Analysis

Boiler operation is a process of multivariable coupling and state accumulation. That is,
different operating conditions correspond to different key variables. Moreover, the current
state is not simply described as the values of several variables at a certain moment, but
the accumulation of states in the past period of time. Generally, the mapping relationship
between the input and output of the current system is described in Formulas (1) and (2):

Xn =

xn−l+1,1 · · · xn−l+1,m
...

. . .
...

xn,1 · · · xn,m

 (1)

yn = f (Xn) (2)

However, during the boiler combustion operation, the oxygen content in the boiler
flue gas is affected not only by other relevant variables but also by its own historical change
trends. Therefore, the mapping relationship between the input and output of the system is
revised in Formulas (3) and (4) in this paper:

Xn =

xn−l+1,1 · · · xn−l+1,m yn−l+1
...

. . .
...

...
xn,1 · · · xn,m yn

 (3)

yn+1 = f (Xn) (4)
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where Xn is a sample set composed of l historical samples of the boiler at the moment n, l
is the length of the time window, m is the number of boiler variables, xi,j is the value of the
variable i of the sample j, and yi is the oxygen content in the flue gas of the sample n.

The size of Xn will increase with the increase in the time window length l, which
means a huge scale of input parameters. When such data are processed with a traditional
regression learning algorithm, it will take a long time and reduce the generalization perfor-
mance of the model due to too many parameters to be trained. Therefore, it is necessary
to extract the sample features before model training. According to the common variable
screening methods, it is often necessary to manually set a threshold and screen the model-
ing variables based on the correlation between each variable and the target variable. Such
methods usually have higher requirements for threshold selection. Different from the above
methods, the convolutional neural network can automatically learn the features required
for regression tasks from the training sample data, which can improve the model accuracy
and training efficiency without relying on the artificial selection of features.

3. Basic Principles of the Convolutional Neural Network

A complete convolutional neural network consists of five basic units: input layer,
convolution layer, activation layer, pooling layer, and full connection layer.

3.1. Convolution Layer

The convolution operation is a special feature extraction algorithm that gives prac-
tical significance to the convolutional neural network. The convolution layer can extract
high-level features with translation invariance from all input parameters through matrix
operation and can express the original features effectively. Different from the convolution
function in the mathematical sense, for the input matrix A and the convolution kernel
of size r × c, the convolution operation is as shown in Formulas (5)–(7), and Gi,j is the
output matrix.

A =

a1,1 . . . a1,m
...

. . .
...

an,1 · · · an,m

 (5)

W =

w1,1 . . . w1,c
...

. . .
...

wr,1 · · · wr,c

 (6)

Gi,j = (A×W)i,j =
r

∑
u=1

c

∑
v=1

(
ai+u−1,j+v−1wu,v

)
+ bi,j (7)

An example of a two-dimensional convolution operation is shown in Figure 1. The
input matrix of the original 4× 4 is transformed into the output matrix of 3× 3 under the
convolution operation of the convolution kernel that is 2× 2 in size.

The type of extracted features depends on the size and number of convolution kernels.
For the same input matrix, each convolution kernel corresponds to one feature. The size
of the convolution kernel is significantly smaller than that of the input matrix, which
greatly reduces the scale of the parameters to be trained in the model, thereby reducing
the complexity of the model. As shown in Figure 2, different features can be extracted by
increasing the number of convolution kernels. Each convolution kernel corresponds to one
output channel, the outputs of all channels are summarized into the final feature map, and
the output of each layer is used as the input matrix for the next layer.
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3.2. Activation Layer

The matrix operation of the convolution layer is a linear operation, which is chal-
lenging when dealing with nonlinear problems. When modeling complex systems such
as boilers, it is usually necessary to carry out nonlinear mapping of features to make the
trained model more in line with the actual production situation. In this paper, the Relu
function is selected as the activation layer after the convolution layer. For the output matrix
G of the convolution layer, the calculation rule for activating it into the feature matrix H by
the Relu function is as follows:

Hi,j = ϕ
(
Gi,j
)
= max

(
0, Gi,j

)
(8)

3.3. Pooling Layer

The role of the pooling layer is feature dimension reduction. For the input feature
matrix, there are following two pooling methods. Maximize pooling, which selects the
maximum value from a definition window as a new feature and mean pooling, which
selects the mean from a definition window as a new feature. In this paper, the maximum
pooling is selected as the pooling layer, as shown in Figure 3. A window with a size of
2× 2 and a moving step of 2 compresses the features.
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3.4. Full Connection Layer

After feature extraction of the input matrix, the full connection layer is used for
parameter training according to the extracted features to achieve the fitting task of the
target variables. The structure of the full connection layer is shown in Figure 4. The feature
map is flattened and used as the input of the full connection layer, and after passing through
several layers of neurons, it is output by the regression layer for the calculation of results.
The relationship between the output and input of a single neuron is shown in Formula (9):

ut
i =

nt−1

∑
j=1

(
wt,t−1

i,j · ut−1
j

)
+ bt

i (9)

where ut
i , ut−1

j represents the output of the neuron i of the layer t and the output of neuron

j of the layer t− 1, respectively, wt,t−1
i,j represents the connection weight between the neuron

i of the layer t and the neuron j of the layer t− 1, nt−1 represents the number of neurons on
the layer t− 1, and bt

i represents the bias term of the neuron i of the layer t.

Processes 2023, 11, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 3. Example of max pooling. 

3.4. Full Connection Layer 
After feature extraction of the input matrix, the full connection layer is used for 

parameter training according to the extracted features to achieve the fitting task of the 
target variables. The structure of the full connection layer is shown in Figure 4. The feature 
map is flattened and used as the input of the full connection layer, and after passing 
through several layers of neurons, it is output by the regression layer for the calculation 
of results. The relationship between the output and input of a single neuron is shown in 
Formula (9): 

𝑢 = 𝑤 ,, ⋅ 𝑢 + 𝑏  (9)

where 𝑢 , 𝑢  represents the output of the neuron 𝑖 of the layer 𝑡 and the output of neuron 𝑗  of the layer 𝑡 − 1 , respectively, 𝑤 ,,   represents the connection weight between the 
neuron 𝑖 of the layer 𝑡 and the neuron 𝑗 of the layer 𝑡 − 1, 𝑛  represents the number of 
neurons on the layer 𝑡 − 1, and 𝑏  represents the bias term of the neuron 𝑖 of the layer 𝑡. 

In summary, the model parameters that require optimization calculation in the 
training process of the CNN model mainly include the convolution kernel parameters of 
the convolution layer, the weight and bias term of the full connection layer, etc. the basic 
procedure of model parameters training is as follows: first, the training set samples are 
divided into a number of small batch sample sets in each iteration in order to avoid model 
over-fitting, and then the model parameters are adjusted in the negative gradient direction 
of the small batch training error by using the gradient descent algorithm. Training will be 
terminated while the preset convergence precision or the maximum number of iterations 
are reached. finally, the training results of the model are output, and the output model is 
tested for performance through the test set samples. 

 
Figure 4. The fully connected layer. 

4. Case Analysis 

Figure 4. The fully connected layer.



Processes 2023, 11, 990 7 of 12

In summary, the model parameters that require optimization calculation in the train-
ing process of the CNN model mainly include the convolution kernel parameters of the
convolution layer, the weight and bias term of the full connection layer, etc. the basic
procedure of model parameters training is as follows: first, the training set samples are
divided into a number of small batch sample sets in each iteration in order to avoid model
over-fitting, and then the model parameters are adjusted in the negative gradient direction
of the small batch training error by using the gradient descent algorithm. Training will be
terminated while the preset convergence precision or the maximum number of iterations
are reached. finally, the training results of the model are output, and the output model is
tested for performance through the test set samples.

4. Case Analysis
4.1. Data Pre-Processing

In order to study the effectiveness of the CNN in dealing with time series prediction,
the actual operation data of the CFB boiler were collected for training and model testing.
Parts of the data examples are shown in Table 2. The combustion of the boiler is typically
impacted by changes in coal composition, and if the data used for modeling do not change
accordingly, the accuracy of the model will be affected. In the proposed mode, the data
utilized for modeling are l historical samples from the boiler’s historical moment n − l + 1
to the present moment n. These data are constantly being updated, which can complement
new data created by the system after the coal type is changed in a timely manner and
increase the model’s accuracy. The effect of coal quality on model accuracy can be ignored
while the time span of the data collected is short.

Table 2. Sample example.

Variable Unit Sample
1

Sample
2

Sample
12,000 Variable Unit Sample

1
Sample

2
Sample
12,000

Main steam flow
rate t/h 111.38 113.38 128.15 Primary fan outlet

temperature kPa 7.57 7.58 8.00

Main steam
temperature

◦C 464.18 464.18 464.76 Secondary fan
outlet pressure kPa 3.00 2.98 4.50

Main steam
pressure MPa 4.90 4.88 4.89 Feed water

pressure MPa 5.62 5.61 5.81

Boiler load t/h 103.12 103.52 128.13 Feed water
temperature

◦C 151.84 151.94 153.75

Drum pressure MPa 5.22 5.21 5.37 Exhaust outlet
temperature

◦C 124.88 124.91 128.18

Furnace chamber
differential

pressure
kPa 0.75 0.74 1.00 Primary air volume Nm3/h 97,230.77 97,406.60 94,989.02

Lower furnace
temperature

◦C 899.78 899.68 914.63 Secondary air
volume Nm3/h 77,714.29 80,263.73 108,131.9

Furnace outlet gas
temperature

◦C 839.41 839.12 882.20 Feed water flow t/h 98.11 98.29 111.91

Furnace outlet air
pressure Pa −257.02 −255.80 −479.24 Total coal feed flow t/h 15.73 15.78 19.95

Economizer inlet
temperature

◦C 270.70 270.70 282.42 Current of 1#
induced draft fan A 26.43 26.50 28.37

Economizer inlet
pressure kPa −1.589 −1.58 −2.11 Current of 2#

induced draft fan A 21.94 21.96 26.58

Secondary fan
outlet temperature

◦C 12.19 12.11 9.21 Oxygen content in
boiler flue gas % 5.57 5.63 4.79

In order to ensure the prediction accuracy and stability of the model, it was necessary
to conduct abnormal value processing and noise reduction processing for the collected
historical operation data of the boiler. First of all, the abnormal data were detected using the
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3sigam criterion and interpolated by the mean value method, and denoising of each variable
was conducted by use of the wavelet denoising method. Then, the first 10,000 samples were
normalized to [0, 1] by Formula (10), and the last 2000 samples were normalized based
on the statistics of the first 10,000 samples. Finally, the time window l was set to 24 and
sample reforming was performedm according to Formulas (3) and (4), to obtain 11,976 sets
of new samples. Then, the first 9976 sets of samples were set as the training set and the
last 2000 sets of samples were set as the test set. The training set was used to solve the
most appropriate model parameters, and the test set was used to test the generalization
performance of the model.

x′ =
x− xmin

xmax − xmin
(10)

Taking the boiler load of this boiler as an example, Figure 5 shows the results of data
pre-processing.
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4.2. Model Evaluation Indicators

In order to evaluate the prediction accuracy and generalization performance of the
model, the decision coefficient R2 and the root mean square error RMSE were selected as
evaluation indicators, and the evaluation indicators were used for comparing the prediction
performance of different models. R2 and RMSE are defined as follows:

R2 =

{
∑
[
(yi − yi) ·

(
ŷi − ŷi

)]}2

∑(yi − yi)
2 ·∑

(
ŷi − ŷi

)2 (11)

RMSE =

√
1
n ∑(yi − ŷi)

2 (12)

where yi, yi, ŷi, and ŷi, respectively, represent the oxygen content in the flue gas of the
sample boiler, the mean of true values, the predicted value, and the mean of predicted
values.

4.3. Modeling and Result Analysis

The framework of the prediction model for oxygen content in flue gas based on the
CNN is shown in Figure 6, and the hyper-parameter values are shown in Table 3. The hyper-
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parameters of the TS-CNN model include the maximum number of iterations, the sample
size of the minimum training batch, the initial learning rate, the learning rate decline factor,
the learning rate decline frequency interval, the discard rate, the optimization algorithm, etc.
The optimal values of the hyper-parameters are determined through several experiments
as well as empirical values. Cross-validation was performed throughout the test. A total of
80% of the data in the training set were used to create a new training set and the remaining
20% of the data were utilized as a validation set, and each iteration was accompanied by
one validation of the model parameters.
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Table 3. Parameters for CNN-based model.

Hyper-Parameter Name Value

Maximum number of iterations MaxEpochs 50
Sample size of the minimum training batch miniBatchSize 25

Initial learning rate InitialLearnRate 0.003
Learning rate decline factor LearnRateDropFactor 0.2

Learning rate decline frequency interval LearnRateDropPeriod 8
Discard rate dropout 0.2

Optimization algorithm Gradient descent with momentum (SGDM)

The feature extraction module includes four convolution layers, an activation layer,
and a pooling layer, respectively. The eight extracted features were flattened and then input
into the full connection layer, and there are two full connection layers in total, with 20 and
10 neurons on each layer, respectively, and the last layer is regression layer.

In order to verify the effectiveness of the CNN in the prediction of oxygen content
in the flue gas, the following four groups of experiments were designed with different
modeling algorithms:

(1) Time series prediction model (TS-CNN), yn+1 = f (Xn);
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(2) Conventional prediction model (CNN), yn = f (Xn);
(3) BP neural network model (BPNN) with a single hidden layer and 10 neurons;
(4) Least squares support vector machine model with model parameter γ = 100, σ2 = 3

(LSSVM).

According to Pearson’s correlation coefficient between variables and oxygen content
in the flue gas, boiler load with a correlation coefficient greater than 0.6, lower furnace
temperature, furnace outlet temperature, feed water flow, and total feed coal flow were
taken as input variables of tests (3) and (4).

The training results of the TS-CNN model and the test results of each model are
shown in Figure 7a,b, respectively. It can be seen in Table 4 that the TS-CNN model
has the best fitting effect, followed by the CNN model, which indicates that the use of
convolution operation for feature extraction of the input matrix can effectively improve
the generalization performance of the model. The BPNN model and LSSVM model both
have a poor fitting effect, and their prediction curves deviate from the real curves seriously
after the 100th test point. The main reasons for the above results are as follows. (1) The
boiler has the state accumulation feature, (2) the oxygen content in the boiler flue gas is not
only related to other variables but also affected by its own historical change trends, and
(3) the feature extraction module in the CNN can extract time sequence features from the
input matrix.
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Table 4. R2 and RMSE for each model.

TS-CNN CNN BPNN LSSVM

Training set R2 0.9838 0.9798 0.9636 0.9660
RMSE 0.0903 0.0986 0.1283 0.1240

Test set
R2 0.8929 0.8443 0.7963 0.8251

RMSE 0.1684 0.2070 0.3707 0.2448

5. Conclusions

The boiler system is a complicated nonlinear system with a time lag, where the current
value of each operational variable does not accurately describe the current operating state
of the boiler, which may be the accumulation of states over a period of time in the past. In
order to improve the prediction accuracy of oxygen content in the flue gas, a prediction
model for oxygen content in the boiler flue gas based on the CNN was proposed. First of
all, the original data were pre-processed using the 3sigam criterion and wavelet denoising.
Then, the data were analyzed, and the time series samples in a fixed time window were
taken as the input of the model. Additionally, the effect of historical trends of oxygen
content in the flue gas on the performance of the model was studied. Considering the
boiler flue gas oxygen content may also be affected by its own historical trend, the historical
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values of the boiler flue gas oxygen content were added to the input of the model for
the prediction of the boiler flue gas oxygen content in the next moment. To solve the low
efficiency problem of model training caused by too large of a scale of features, a convolution
kernel was used to extract the effective features from the input matrix, and a pooling layer
was used for dimension reduction in the features. Finally, the TS-CNN model was tested
by the actual operating data. The R2 and RMSE of the TS-CNN model were 0.8929 and
0.1684, respectively, and its prediction accuracy was improved by 18.6%, 31.2%, and 54.6%
compared with that of the CNN model, LSSVM model, and BPNN model, respectively. The
test results show that the proposed model can effectively predict the oxygen content in the
boiler flue gas.

Since all boilers are characterized by complex nonlinearities and time lags, the method
proposed in this paper may also be potentially applicable to predict the flue gas oxygen
content of a wide range of boilers. In our future research, we will also make an effort to
confirm the performance of the proposed method for predicting the flue gas oxygen content
of different types of boilers.

Author Contributions: Conceptualization and project administration, B.S.; methodology, Z.L. and
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