
Citation: Kochan, A.; Daszczuk, W.B.;

Grabski, W.; Karolak, J. Formal

Verification of the European Train

Control System (ETCS) for Better

Energy Efficiency Using a Timed and

Asynchronous Model. Energies 2023,

16, 3602. https://doi.org/10.3390/

en16083602

Academic Editor: Giovanni

Lutzemberger

Received: 20 February 2023

Revised: 5 April 2023

Accepted: 19 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Formal Verification of the European Train Control System
(ETCS) for Better Energy Efficiency Using a Timed and
Asynchronous Model
Andrzej Kochan 1,* , Wiktor B. Daszczuk 2 , Waldemar Grabski 2 and Juliusz Karolak 1

1 Faculty of Transport, Warsaw University of Technology, 00-662 Warsaw, Poland
2 Institute of Computer Science, Warsaw University of Technology, 00-665 Warszawa, Poland
* Correspondence: andrzej.kochan@pw.edu.pl; Tel.: +48-22-2347882

Abstract: The ERTMS/ETCS is the newest automatic train protection system. This is a system that
supports the driver in driving the train. It is currently being implemented throughout the European
Union. This system’s latest specifications also provide additional functions to increase the energy
efficiency of train driving in the form of ATO (automatic train operation). These functions of the ETCS
will be valuable, provided they operate without failure. To achieve errorless configuration of the ETCS,
a methodology for automatic system verification using the IMDS (Integrated Model of Distributed
Systems) formalism and the temporal tool Dedan was applied. The main contribution is asynchronous
and timed verification, which appropriately models the distributed nature of the ETCS and allows
the designer not only to analyze time dependencies but also to define the range of train velocities
in which the operational scenario is valid. Additionally, the novelties of the presented verification
methodology are the graphical design of the system components and automated verification freeing
the designer from using textual design. We express the verified properties as observer automata rather
than in temporal logic. Moreover, we check partial properties related to system fragments, which
is crucial in distributed systems. This paper presents the verification of an example ETCS system
application. The verification results are presented as sequence diagrams leading to a correct/incorrect
final state.

Keywords: energy efficiency of train operation; ETCS system verification; timed integrated model of
distributed systems; timed model checking; asynchronous modeling; energy efficiency

1. Introduction

The European Rail Traffic Management System (ERTMS) is a system supported by
the European Union aimed at unifying the rail traffic management and control system
in Europe, aiming at ensuring the interoperability of rail transport [1]. The ERTMS sys-
tem consists of the ERTMS/ETCS European Train Control System (ETCS) [2] and the
ERTMS/GSM-R, a digital railway radio communication system based on the GSM standard
(GSM-R) [2]. The ERTMS system is being implemented in all European Union countries and
outside Europe (e.g., in Middle East countries). In Poland, it is to be installed on railway
lines with a total length of over 7000 km. Equally important, apart from the interoperability
and safety of rail traffic, is the quality of transport services and their energy efficiency. The
latest specifications of the ETCS system, which are currently being consulted on with the
railway industry, extend its functionality towards the functionality of ATO (automatic train
operation). The key function of the ATO system is to control train velocity, which should
be done in a way that minimizes energy consumption and ensures passenger comfort [3].
Unfortunately, the automatic train driving algorithm requires faultless configuration of the
ETCS application on the line. In the event of errors, ETCS can cause undesirable braking of
the train, which significantly reduces the energy efficiency of the train run. This problem

Energies 2023, 16, 3602. https://doi.org/10.3390/en16083602 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16083602
https://doi.org/10.3390/en16083602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8183-8926
https://orcid.org/0000-0001-7532-362X
https://orcid.org/0000-0001-6143-7378
https://doi.org/10.3390/en16083602
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16083602?type=check_update&version=2

Energies 2023, 16, 3602 2 of 22

is described in more detail in the next section, and further sections describe a verification
method to minimize energy losses.

Some ETCS verification attempts are described in the Related Works section. The
thesis of this article and its contribution is that this verification should be performed
in an asynchronous timed model to produce relevant results. Most of the approaches
mentioned in the Related Work section deal with timeless checking, and time-based ones
use synchronous models. Asynchrony is needed in modeling distributed systems so that
actions in one of the components of the system can affect the other components only by
sending signals to them, not by directly enabling/disabling their operation. This supports
the locality of actions in a distributed system. Timing relationships can significantly change
system behavior compared to sequence-based analysis, so real-time analysis must be used
to obtain reliable results. For example, it supports the range of train velocities where
desired properties hold.

The article is organized as follows: Section 2 describes the goal of verification from
the point of view of the ETCS designer. Section 3 covers the ETCS system’s characteristics.
Section 4 covers related work. The criteria for choosing the verification environment are
reported in Section 5. Section 6 describes the elements of this environment. Section 7
covers the example of verification of the behavior of the train driver in operation during
the confirmation of balise telegrams. Section 8 concludes the article.

2. Energy Efficiency as Verification Goal

The authors of [4] introduced a new parameter describing the quality of traffic, bearing
in mind that quality is treated as a collective property, indeterminate and challenging to
measure, but capable of being described and quantified as the resultant intensity of the
most important factors affecting it. The parameter proposed by the authors is the smooth
running of the train, which aligns with the idea of a balanced value. This parameter can be
used to analyze the energy efficiency mentioned above.

As mentioned earlier, a malfunctioning ETCS can cause trains to brake unnecessarily.
The scale of costs incurred by operators due to disturbances occurring on the railway
network, including the need for frequent train braking and acceleration at speed limit loca-
tions, is presented in the articles [5,6]. The authors present calculations for an unplanned
stop and start of a 490 t passenger train led by a EU07 locomotive. This traffic scenario
increased energy consumption by 75.6 kWh, while for a goods train of 1900 t led by an
ET22 locomotive the increase in energy consumption is 191.4 kWh. In a study by the same
authors, based on the results of simulation runs on the E59 line, a fast train between Poznań
Gł. and Wrocław Gł. showed an approximately 40% increase in traction energy due to
disturbances in the movement of the tested train.

In contrast, report [7] pointed out that traffic fluidity is a significant problem for the
energy efficiency of train running, as each additional stop (and subsequent acceleration)
of a train requires additional traction energy. Measurements carried out on IC-2000 trains
running between Lucerne and Zurich showed that crossings in which unexpected stops at
signals occurred resulted in energy consumption 10–15% higher than non-stop crossings.

The impact of unjustified braking of the train on the increase in energy consumption
must also take into account the energy loss resulting from the increase in the running time
of the train (the difference in running time from the expected scheduled train running
time). Suppose we accept the criterion of the punctuality of a train, in terms of the carrier’s
costs for delaying the train. In that case, it must be taken into account that, in the process
of controlling the train, the driver will seek to maximize the traction power to shorten
the journey. However, this method of driving the train will increase energy consumption
due to the use of maximum acceleration and running at maximum resistance (maximum
permissible speed).

The increase in running time is, therefore, an essential element to be taken into account
in the traction energy consumption of the train.

Energies 2023, 16, 3602 3 of 22

In terms of maintaining the train’s scheduled running time, running the train at the
maximum running speed on the line is most advantageous. However, when approaching
speed restriction locations, a decision has to be made regarding when to apply the brakes
and the braking force used. The braking force, on the other hand, is proportional to the
required rate of change in the train’s kinetic energy and, therefore, to the consequences of
its loss on train movement parameters such as travel speed, distance, and time, ultimately
translating into energy consumption.

For example, slowing down an ED250-series ETR610 train weighing 427 tonnes from
200 km/h to 180 km/h results in a distance loss of approximately 636 m and an increase
in journey time of 12 s for movement at a constant speed of 200 km/h. Regaining speed
requires an estimated mechanical energy consumption of 152 kWh (assuming constant
resistance to motion and power supply), while in the case of slowing down to 170 km/h
the loss of distance is already 1687 m and the extension of the driving time is 31 s, which
requires a mechanical energy consumption of 240 kWh.

In addition, response time and delay in the change from braking to the traction system
must also be taken into account. Based on EN 14531-1:2015, the estimated response time
of the braking system (‘removal’ of the braking force), depending on the braking force
applied, is approximately 3–6 s. In comparison, the time for control actions by the driver is
assumed to be within 5 s [8]. Therefore, it can be assumed that the restoration of traction
power will take place after about 10 s, causing the train’s speed to decrease by a further
3 km/h as a result of the resistance to motion, with a consequent increase in the running
time of 3 s and a final increase in mechanical power consumption of about 30 kWh.

Those problems require implementing new technologies for designing and verifying
ETCS applications. Developing solutions that will comprehensively prove the system’s
correctness for defined criteria is necessary.

The contribution described in this article consists of:

• Timed verification concerning real-time dependencies in a checked system. These
dependencies can significantly modify the operation of a system compared to event-
sequence-only checking. However, this is seldom used in the literature.

• The application of asynchronous modeling. To our best knowledge, no cited article
describes asynchronous modeling of the ETCS control system. The synchronous model
is inadequate for distributed systems.

• Modeling of the verified system based on the graphical specification in distributed
automata, in which the semantics is identical to the formal model IMDS used in
the proposed methodology. The graphical design is close to the intuitive mode of
operation of designers who do not know temporal logics.

• The cited articles use the global state for both modeling and checking properties. We
argue that such a state does not exist, and that only local features should be applied.
Our observer concept meets this requirement.

• Automated verification, without specification of properties as temporal formulas. The
features automatically checked are deadlocks and termination. Using observers, these
two features are enough to express a wide range of behaviors.

• Checking partial features, in which only a subset of system processes participate: for
example, it is usual that in a distributed system, some processes fall into a deadlock
while others work correctly.

• Verification concerns not only meeting correctness conditions, but, additionally, we
check the scope of train velocities within which those conditions are valid.

3. ETCS Characteristics

The key functions of the ETCS system have already been outlined in the introduction.
For further consideration, it is necessary to give at least a basic overview of the system’s
design and working principles [2].

The ETCS system consists of a trackside part and an on-board part. The on-board
part has a fixed structure for all application levels (with the precision of the EDOR (ETCS

Energies 2023, 16, 3602 4 of 22

data-only radio) broadband modules). The trackside part structure strongly depends on the
track layout, the parameters of the railway route, organizational and operational rules, and
the technical solutions used in the control system base layer. These structures are formed
by the different layouts and configurations of the interoperability constituents defined in
the Technical Specifications for Interoperability.

A railway traction vehicle with ETCS installed (ETCS vehicle) is equipped with the
following on-board components:

• European vital computer, EVC,
• Maintenance computer, MC,
• Driver–machine interface, DMI,
• Juridical recording unit,
• Odometry,
• Balise transmission module, BTM,
• Antennae for the reception of eurobalise telegrams,
• Communication module and antenna for GSM-R communication,
• Specific transmission module, STM.

These devices form the equipment of the so-called ETCS Eurocab. A detailed analysis
of all the devices on the list is irrelevant to the present discussion. Selected aspects of
individual devices will be noted at appropriate points.

The structure of the trackside part may consist of elements such as:

• Eurobalise (henceforth: balise),
• Euroloop,
• Radio infill unit, RIU,
• Line-side electronic unit, LEU,
• Radio block centre, RBC.

A balise is a trackside transponder responsible for the transmission to/from an ETCS
train passing over it (i.e., at a specific point) of telegrams containing ETCS language packets.
Balises provide point-to-point interaction with a train passing over them. The system
specification distinguishes between switchable and non-switchable balises. Typically,
balises are installed as a group to increase the number of telegrams sent to the train from a
single location. The term balise will be used instead of balise group for simplicity in the
following text.

The Euroloop and the radio infill unit (RIU) provide a continuous update of balise
data on a particular section of the track.

The LEU encoder is an intermediary circuit that converts base-layer signals into
telegrams, which are then sent to the switching balises via the C interface, adapting the
information sent to the train to the existing traffic situation.

The RBC, or radio control center, is a characteristic component of application levels 2
and 3 of the ETCS system. It enables area-based train safety supervision in close cooperation
with the GSM-R subsystem for area-based track-to-vehicle data transmission.

The interaction between the track-side and onboard can take place according to differ-
ent principles. These rules are determined by the ETCS system application level and the
mode of operation of the on-board equipment at a given track-side location.

The ETCS system can operate in one of five application levels, of which two main ones
are currently used in practice:

• ETCS level 1 (ETCS L1),
• ETCS level 2 (ETCS L2),

ETCS L1 is a variant where transmission of the movement authority (MA) from the
track-side to the train is point-to-point using balises. Similarly, all other information is also
transmitted in the same way. There is no RBC in this ETCS application configuration.

ETCS L2 uses continuous two-way data transmission between the train and the RBC
implemented via GSM-R, which is used to transmit the movement authority (MA) and

Energies 2023, 16, 3602 5 of 22

report the position and speed of the train. Balises serve as location points and send
additional information, including text telegrams.

Only the principles of train–balise interaction, the data flow in the on-board equipment,
and the driver’s interaction with the train will be relevant for further consideration. A
simplified diagram of ETCS train–balise principles is shown in Figure 1.

Energies 2023, 16, x FOR PEER REVIEW 5 of 24

• ETCS level 2 (ETCS L2),
ETCS L1 is a variant where transmission of the movement authority (MA) from the

track-side to the train is point-to-point using balises. Similarly, all other information is
also transmitted in the same way. There is no RBC in this ETCS application configuration.

ETCS L2 uses continuous two-way data transmission between the train and the RBC
implemented via GSM-R, which is used to transmit the movement authority (MA) and
report the position and speed of the train. Balises serve as location points and send addi-
tional information, including text telegrams.

Only the principles of train–balise interaction, the data flow in the on-board equip-
ment, and the driver’s interaction with the train will be relevant for further consideration.
A simplified diagram of ETCS train–balise principles is shown in Figure 1.

Figure 1. Simplified diagram of ETCS system operation.

4. Related Work
The use of various formalisms to verify the ETCS is a topic covered in several articles.

For instance, the B-Method and the Atelier-B toolbox are utilized in [9,10]. The use of CSP-
B and Pro-B is explained in [11]. Conversion of the UML specification to B is used in [12].
Two compositional methods utilizing RT-Tester and NuSMV are suggested in [13].
NuSMV is used for invariant checking in [14] in the railway control tables. The process of
using the SMT solver to determine whether safety rules defined as invariants have been
violated is detailed in [15]. Study [16] discusses invariant verification using a Key-ABS
verifier and ABS (Abstract Behavioral Specification). Many verifiers may be used to vali-
date Petri nets, including [17,18]. The S3 tool, which offers bounded model testing and
theorem proving, is used by the authors of [19]. A special language for railway control
specifications, TLA+, and the verifier TLC are described in [20]. The model-checking tech-
nique is used to exhaustively analyze the behavior of the system in terms of changes in
the operating mode of the ETCS system [21]. Formal methods were used to prove the lack
of collisions of trains running supervised by ETCS level 3 in a limited network area [22].

Figure 1. Simplified diagram of ETCS system operation.

4. Related Work

The use of various formalisms to verify the ETCS is a topic covered in several articles.
For instance, the B-Method and the Atelier-B toolbox are utilized in [9,10]. The use of CSP-B
and Pro-B is explained in [11]. Conversion of the UML specification to B is used in [12].
Two compositional methods utilizing RT-Tester and NuSMV are suggested in [13]. NuSMV
is used for invariant checking in [14] in the railway control tables. The process of using
the SMT solver to determine whether safety rules defined as invariants have been violated
is detailed in [15]. Study [16] discusses invariant verification using a Key-ABS verifier
and ABS (Abstract Behavioral Specification). Many verifiers may be used to validate Petri
nets, including [17,18]. The S3 tool, which offers bounded model testing and theorem
proving, is used by the authors of [19]. A special language for railway control specifications,
TLA+, and the verifier TLC are described in [20]. The model-checking technique is used to
exhaustively analyze the behavior of the system in terms of changes in the operating mode
of the ETCS system [21]. Formal methods were used to prove the lack of collisions of trains
running supervised by ETCS level 3 in a limited network area [22].

Using NuSMV and OCRA (a tool for examining the refinement of temporal con-
tracts), the operation of the rail traffic control system under incorrect signal sequences is
explored [23]. An alternative verification technique to model checking—theorem proving
using PERF—is used in [24]. The deductive verification tool KeYmaera, for parametric
analysis of train control in ETCS, is covered in [25].

The abovementioned works concern timeless verification. However, real time plays a
significant role in ETCS behavior. Thus, timed verification is the subject of some articles.

Energies 2023, 16, 3602 6 of 22

Paper [26] presents failure analysis based on system log analysis with Uppaal [27], a verifier
with real-time constraints based on timed automata. The designer must typically express
the attributes as temporal formulae in order to use the higher-level verification methods that
have been presented. Uppaal-SMC is used for statistical ETCS verification of automotive
systems [28]. In [29], real-time verification of component-based systems using TRD-Finder
for overestimated models and counterexample analysis is described.

The mentioned verification methods lack the features that are present in our method:

• Specification in languages specific to the verifier rather than a graphical form conve-
nient for the designer;

• The concept of observer automata is seldom used; we found such an approach only
in [28]; observers are used at a lower level of abstraction for verification of relay-based
control equipment [30,31]; temporal formulas are still required but are applied to the
observers and not to the system itself;

• Automatic checking only of total deadlocks; other properties must be specified as
temporal formulas (except [28,30,31]),

• The models used are generally of a synchronous nature, like CSP-B [11] or timed
automata [27], which breaks the locality of actions in a distributed environment. For
example, the execution of an action in a device can disable an action in another device
that was previously enabled.

• The mentioned works prove numerous desired properties, primarily of an event-
sequence-based nature. The timed ones additionally check some real-time-related
features. However, none of them analyzes the conditional properties that hold only in
specific time circumstances, like the range of train velocities in which they hold, which
is subject of our research.

5. Tool Selection Criteria

Model checking allows for evidence of the correctness of system behavior over time.
In testing, we cannot execute all possible system runs, especially when concurrent pro-
cesses are involved. Unlike in testing, model checking does not follow specific system
executions, but analyzes them “all together”, giving formal evidence of whether or not
specific properties are met.

It is crucial to choose such a verification methodology to reflect the features of the
system being verified as well as possible, and, on the other hand, to facilitate multiple
verifications of many versions of the project under preparation.

• A railway line is a distributed system, consisting of many autonomously operating
components: trains, track equipment, control centers, and, finally, people serving the
line. Many modeling formalisms come from concurrent systems transferred into a
distributed environment, ignoring some of its characteristics. For example, modeling
based on knowing the global state of the system is entirely unrealistic in a distributed
environment. It is best when the system can be modeled as a set of independent
components that cooperate using mechanisms like messages.

• Line elements communicate asynchronously, with “asynchrony” being understood as
the fact that nothing happens synchronically between components, that is, at the same
time (unless by chance). Synchronous communication between system components,
assuming that both components must reach given states in a coordinated way to
exchange a message, cannot be achieved. Communication with a component cannot
occur on the condition that it is in a particular state, because how would this state be
known? Therefore, mechanisms such as the simultaneous execution of actions by two
components, like in Büchi automata [32] or timed automata [33], cannot come into
play. The components cannot execute the actions synchronously; instead, they send
asynchronous messages that wait for acceptance at other components’ inputs.

• Numerous verification tools automatically locate deadlocks in checked systems, but
they are global deadlocks in which all processes participate, for example in [34]. In
distributed systems, it is not uncommon for some components to deadlock, while

Energies 2023, 16, 3602 7 of 22

others still perform their functions. Some verifiers can find local deadlocks on the con-
dition that the checked system has a strictly limited structure [35,36]. Otherwise, the
designer can specify temporal formulas for partial deadlocks or other local properties.
Therefore, automatic detection of partial deadlocks, rare among verifiers, is desirable.

• The inference of global state correctness may be an issue during the verification of
global behavior, and the verifier knows the global state that is inaccessible to system
components. The components cannot take any actions based on the global state,
like in solitaire or 8-puzzle benchmarks, used in numerous articles [37]. However, if
the inference is not made from the global state, it can also be made dynamically at
runtime, not only statically. For this purpose, “observers” are helpful, as they record
actions or changes in the state of individual components and, based on them, make
decisions about the correctness of the entire behavior [38]. The possibility of adding
such observers to a model of the verified system, and to the system itself at the time of
execution, is an important issue.

• Multiple verifications of many versions of the same line require verification process
automation. The questioning itself should also be facilitated: practice shows that de-
signers are reluctant to learn the temporal logic in which properties are expressed [39].
Here, it is possible to help observers that check the achievement of specific goals by
the components. Deadlocks should be found in a “push-the-button” style, while the
designer supplies only the model and the observers.

• The assumption that communication and internal components’ actions take zero time
does not stand up to scrutiny. Some properties depend on relations between the time
durations of the actions undertaken in the system. Time dependencies change the
behavior of the system. Technically, some new deadlocks can arise when events do
not occur in the expected time. On the other hand, proper time relations can prevent
the system from falling into a deadlock. Therefore, timed verification is needed to
judge the correctness of the system. Two general approaches are continuous time [33]
and discrete time verification [40]. The latter can be applied to systems based on a
clock or other timed lock-step mechanisms, such as centralized computers operated
by a central clock. For distributed systems, real-time verification better reflects the
asynchrony of components’ operation.

6. Timed IMDS
6.1. IMDS-Overview

The Integrated Model of Distributed Systems (IMDS [41,42]) is explicitly tailored to
the verification of such systems. Formalism is based on the collaboration of autonomous
communicating servers. Communication is asynchronous. That is, messages are sent to
the destination server without knowing its history and current state. The server also does
not have access to the global system state (which does not actually exist in a distributed
system). The system defines sequences of actions on servers threaded by a sequence of
messages, which we call distributed agents. Agents are as independent of each other as
servers; they communicate with each other only through the states of servers that are set as
a result of performing a server action.

Inference about the system’s characteristics is carried out based on “external” knowl-
edge of the global state, i.e., the states of all servers and the messages on the way. Inference
can also be carried out by introducing additional agents called observers [43]. An observer
performs its calculations based on polling nodes about their state changes, and a specific
behavior of the observer is tantamount to fulfilling a particular feature. Specifically, the
inevitability of the system reaching a particular state can be modeled as agent termination
after verification that the required actions in the system have been performed. On the other
hand, the possibility of the system falling into some undesirable state should be modeled
as an “artificial” observer deadlock. In this case, we are asking about the possibility of
a deadlock as opposed to the inevitability of a positive result. Of course, deadlocks in
components other than observers can also arise, which should be analyzed after verification.

Energies 2023, 16, 3602 8 of 22

Because a deadlock can occur locally, in which only distinguished components participate,
identification of partial deadlocks is crucial in verification. Especially in a distributed
system, it is not unusual that some of its components fall into a deadlock while others,
perhaps not cooperating at this moment, remain operable.

The system features being verified are written as temporal formulas over the system
state space, which usually deters designers from formal verification of their systems.
Therefore, universal formulas are defined in IMDS, which the designer does not need to
know. The price for this is a limited set of features that can be researched. As we will
see, this is not a hard limitation with the use of observers. The features checked in IMDS
automatically are the partial (or total) deadlock of a set of servers, partial (or total) deadlock
of a set of agents, partial (or total) inevitable termination of a set of agents, and partial
(or total) possible termination of a set of agents. In numerous verifications, we showed
that such a set of features, together with the introduction of observers, allows for the
successful verification of quite complicated systems, like the Karlsruhe production cell [44]
or a fragment of the Rome metro [45].

Informally, a server is in a deadlock if messages are pending in it but no action
can be taken on that server now or in the future. An agent is deadlocked if its message
would never be handled (regardless of whether the message is waiting on the deadlocked
server or the working server). The termination of an agent consists in the execution of
a special, terminating action by it. Inevitability of termination is that the possible agent
run may branch, but the branches only lead to paths terminating in a non-deadlock or to
loops from which there is an exit. Termination possibility means at least one agent path
leading to termination. Those features (in total or partial form) are examined by temporal
formulas hidden in our verification tool Dedan, so the designer can only select the verified
feature and run the verification. The verifier confirms the desired behavior by showing the
witness or the violation by means of a counterexample. Additionally, the simulation of a
witness/counterexample on graphical component behavior is possible [46].

6.2. IMDS-Formal Description

Formally, IMDS is a relation between server states P and agent messages M,
Λ ⊂ (M × P) × (M × P). This is a set of system actions, λ = ((m,p), (m’,p’)), λ ∈ Λ. The pair
(m,p) is the input of the action, which means that the message m is pending on the server
with the state p, which invokes the joint action of the server and the agent containing this
message. As a result, the server gets the new state p’ and issues the next message of the
agent m’. The system starts from the initial states of all servers and the starting messages of
all agents, which is the initial configuration T0 of the system. The configuration T ∈ 2M∪P

is the set of all server states (one state for every server) and messages of all non-terminated
agents (one message for every non-terminated agent). Every action λ = ((m,p), (m’,p’)) trans-
forms a configuration Tinp containing m and p to a next configuration Tout in which m is
replaced by m’ and p is replaced by p’. There are also agent-terminating actions that do not
produce output messages. They are defined in another domain: Λterm ⊂ (M × P) × (P). An
agent-terminating action replaces p with p’ and simply consumes an agent: its message is
not present in the output configuration. In such a way, a labeled transition system (LTS [47])
is constructed with vertices being the configurations, transitions being the actions, and the
root being T0.

For modeling purposes, we denote states as pairs (s,v), where s is a server and v is
a value. Likewise, we denote messages as triples (a,s,r), where a is an agent, s is a server,
and r is a service, distinguishing different services that can be called by the agent on the
server; for example, services can be on and off of a device. It is natural that in a pair (m,p)
firing an action, m = (a,s1,r), p = (s2,v), s1 = s2. For the input message and output message
of an action, m = (a1,s1,r1), m’ = (a2,s2,r2), a1 = a2. For an input state and an output state,
p = (s1,v2), p’ = (s2,v2), s1 = s2.

Energies 2023, 16, 3602 9 of 22

The input language of the Dedan verifier is an IMDS formalism, supported by server
and agent types (with formal parameters) and variables (with actual parameters). This is
beyond the scope of the article and can be found in [48].

6.3. Timed IMDS

Untimed verification can only concern the sequences of configurations. However, the
behavior of a really asynchronous system can depend on real-time dependencies between
events occurring in a system. Timed automata is one of the most used formalisms (TA [33]).
TA are similar to Büchi automata, as distinct automata make transitions on a common
symbol synchronously, as in Figure 2. Additionally, a set of real-time clocks is defined,
all starting from 0. There are two types of transitions in a system: progress transitions
are made spontaneously by individual automata on their own symbols, or synchronously
by pairs of automata on shared symbols, as in Figure 2. The timed transitions consist
in advancing all clocks by equal real values. The timed transition must not exceed time
invariants defined for locations (counterparts of automata states) in which clocks can be
compared with constants. A subset of clocks can be reset to 0 on a progress transition.
Timed transitions and clock resets are the basis of constructing time regions having constant
values for the integer parts of all clocks and given relations between the fractional parts
of all clocks. The graph is bounded by the maximum integer values to which the clocks
are compared. The example of a graph of two clocks x and y, with the maximum values
x = 3 and y = 2, is presented in Figure 3a. Figure 3b shows the types of clock regions: in
vertices, integer values for all clocks; in horizontal and vertical segments, one of the clocks
has an integer value; in diagonals, the clocks are not integers, with an equal fractional part.
Inside triangles, the clocks are not integers, with a constant inequality relation between
the fractional parts of the clocks. Time progress is always diagonal on timed transitions.
Some clocks can be reset on progress transitions, while the rest of the clocks preserve their
values. Figure 3c shows all the possible regions between two integer values of every clock.
Figure 3d presents the regions near the upper restrictions.

Timed automata are very efficient in verification, as shown in many articles, includ-
ing [31]. These articles mostly use the Uppaal verifier [27], in which additional variables
are incorporated, which can be checked and assigned on progress transitions. However, in
our opinion, modeling distributed systems using automata that follow synchronous tran-
sitions is unrealistic. Therefore, we developed a real-time version of IMDS (T-IMDS [46]).
First, we recalled that IMDS is really asynchronous, which we illustrate in Figure 4 with
automata that send messages to their input structures represented by putting messages
into individual input message sets of the automata. An automaton takes a message from
its input set when it is ready for it and in a locally defined order (determined by the actions
that are currently enabled in the server). Therefore, the automata (a graphical counter-
part of IMDS servers) are in some aspects similar to pushdown automata, PDA [49], and
message passing automata, MPA [50], which store messages on their inputs, organized
in LIFO stacks or FIFO queues, respectively. Our automata do not impose any order
on incoming messages.

In T-IMDS, two time-dependent elements are added: time of message delivery (channel
delay) and action duration. Both delay and duration can be specified as time ranges with
open or closed integer bounds. Instead of square brackets, we use triangle brackets to
distinguish them from indexing: <2,3>, (2,3), <2,3). The duration can also be deterministic:
<2,2> for short <2>. The instant action has a duration of <0> (the same can apply to delays).
The duration of an action is given between its input and output: ((m,p),<2,3) (m’,p’)). The
state p’ in the action is available as the input state for the next action after a time drawn
between 2 and 3 expires. The action m’ is ready to invoke an action in the target server
after the same time plus the channel delay drawn in the same manner. Timed IMDS is
precisely defined in [46], together with its translation to timed automata. The translation
converts every server to a timed automaton with its own clock and appropriate time
invariants. The rule of translation is given in Figure 5, where the maximum action duration

Energies 2023, 16, 3602 10 of 22

is applied as a time-invariant limit and the bounds of the duration restrict the clock values
at which the progress transition can be executed. Every inter-server channel is modeled
as an additional timed automaton that gets a message from the sending automaton, holds
it for a drawn delay time, and then deposits the message with the target automaton. The
precise translation rules are given in [46]. In this study, we only use the action durations;
the message delivery is instant and does not require additional automata.

Energies 2023, 16, x FOR PEER REVIEW 10 of 24

Figure 2. Automata in synchronous models: (a) two automata G and H with independent internal
actions a and c and one common synchronous action, b; (b) the product of automata G and H.

Figure 2. Automata in synchronous models: (a) two automata G and H with independent internal
actions a and c and one common synchronous action, b; (b) the product of automata G and H.

Energies 2023, 16, 3602 11 of 22

Energies 2023, 16, x FOR PEER REVIEW 11 of 24

Figure 3. (a) Example region net for two clocks x and y and maximum integers of 2 for x and 3 for
y; (b) example regions where x stands for an integer part of x and frac (x) = x − x is a fractional
part; (c) all regions between two integers on both axes; (d) regions near the upper restrictions of both
clocks.

Timed automata are very efficient in verification, as shown in many articles, includ-
ing [31]. These articles mostly use the Uppaal verifier [27], in which additional variables
are incorporated, which can be checked and assigned on progress transitions. However,
in our opinion, modeling distributed systems using automata that follow synchronous
transitions is unrealistic. Therefore, we developed a real-time version of IMDS (T-IMDS
[46]). First, we recalled that IMDS is really asynchronous, which we illustrate in Figure 4
with automata that send messages to their input structures represented by putting mes-
sages into individual input message sets of the automata. An automaton takes a message
from its input set when it is ready for it and in a locally defined order (determined by the
actions that are currently enabled in the server). Therefore, the automata (a graphical
counterpart of IMDS servers) are in some aspects similar to pushdown automata, PDA
[49], and message passing automata, MPA [50], which store messages on their inputs, or-
ganized in LIFO stacks or FIFO queues, respectively. Our automata do not impose any
order on incoming messages.

Figure 3. Figure 3. (a) Example region net for two clocks x and y and maximum integers of 2 for
x and 3 for y; (b) example regions where bxc stands for an integer part of x and frac (x) = x − bxc
is a fractional part; (c) all regions between two integers on both axes; (d) regions near the upper
restrictions of both clocks.

Let us describe how timed regions work. Consider the region R1: bxc = 1, byc = 2,
x > 1, y > 2, x > y in Figure 3a. For any point inside this region, a timed transition to the
same region can be executed, or a transition to the next region R2: bxc = x = 2, y > 2, y < 3.
Additionally, a progress transition can occur, resetting clock x (R3: 2 > y > 3, x = 0), clock
y (R4: 1 > x > 2, y = 0), or both (R5: x = 0, y = 0). Therefore, the regions are abstraction
classes of clock values, and we can build transition abstraction classes of transitions. The
abstract transitions represent all individual transitions leading from one region to the next
region. In the example, the successors of region R1 are all R1–R5. As the clock resets can
occur anytime, the difference between clock values can be a real number. The equivalence
of semantics between T-IMDS and its translation to timed automata, shown schematically
in Figure 5, is proved in [46]. Model asynchrony is achieved by inserting additional TA
separating the servers.

Energies 2023, 16, 3602 12 of 22
Energies 2023, 16, x FOR PEER REVIEW 12 of 24

Figure 4. Asynchronous automata model.

In T-IMDS, two time-dependent elements are added: time of message delivery (chan-
nel delay) and action duration. Both delay and duration can be specified as time ranges
with open or closed integer bounds. Instead of square brackets, we use triangle brackets
to distinguish them from indexing: <2,3>, (2,3), <2,3). The duration can also be determin-
istic: <2,2> for short <2>. The instant action has a duration of <0> (the same can apply to
delays). The duration of an action is given between its input and output: ((m,p),<2,3)
(m’,p’)). The state p’ in the action is available as the input state for the next action after a
time drawn between 2 and 3 expires. The action m’ is ready to invoke an action in the
target server after the same time plus the channel delay drawn in the same manner. Timed
IMDS is precisely defined in [46], together with its translation to timed automata. The
translation converts every server to a timed automaton with its own clock and appropriate
time invariants. The rule of translation is given in Figure 5, where the maximum action
duration is applied as a time-invariant limit and the bounds of the duration restrict the
clock values at which the progress transition can be executed. Every inter-server channel
is modeled as an additional timed automaton that gets a message from the sending au-
tomaton, holds it for a drawn delay time, and then deposits the message with the target
automaton. The precise translation rules are given in [46]. In this study, we only use the
action durations; the message delivery is instant and does not require additional autom-
ata.

Figure 4. Asynchronous automata model.

Energies 2023, 16, x FOR PEER REVIEW 13 of 24

Figure 5. Rule of translation of IMDS-timed action to a sequence of transitions in a timed automaton:
(a) IMDS timed action with duration <2,3); (b) timed automaton s transitions, implementing action
duration.

Let us describe how timed regions work. Consider the region R1: x = 1, y = 2, x >
1, y > 2, x > y in Figure 3a. For any point inside this region, a timed transition to the same
region can be executed, or a transition to the next region R2: x = x=2, y > 2, y < 3. Addi-
tionally, a progress transition can occur, resetting clock x (R3: 2 > y > 3, x = 0), clock y (R4:
1 > x > 2, y = 0), or both (R5: x = 0, y = 0). Therefore, the regions are abstraction classes of
clock values, and we can build transition abstraction classes of transitions. The abstract
transitions represent all individual transitions leading from one region to the next region.
In the example, the successors of region R1 are all R1-R5. As the clock resets can occur
anytime, the difference between clock values can be a real number. The equivalence of
semantics between T-IMDS and its translation to timed automata, shown schematically in
Figure 5, is proved in [46]. Model asynchrony is achieved by inserting additional TA sep-
arating the servers.

6.4. Graphical Notation
The T-IMDS model is presented in the DA3 formalism (Distributed Autonomous and

Asynchronous Automata [51]), which is the graphic counterpart of IMDS, with identical
semantics. We used the transitions of those automata above informally. The basic element
of modeling is an automaton that represents a server. It follows the transitions that are
equivalent to IMDS actions. The action is a transition in the server graph, starting from its
state, triggered by an agent’s message. The transition leads to a new server state and sends
a new message, usually to a different server but not necessarily. This is illustrated by the
example in Figure 6a. It is a fragment of the Node server automaton. The action leads from
the s1 state to the next s2 state. The states are pairs (server, value): in our case, Node.s1 and
Node.s2. The action (A.Node.service, Node.s1/ A.Othernode.some_service, Node.s2) is triggered
by agent A’s message of the form of a triple (agent, server, service). The server is the ad-
dressee of the agent’s message. The third message element—service—distinguishes be-
tween different messages an agent can direct to the same server. In the example, the mes-
sage A.Node.service triggers the action shown, and, within the same agent, the next

Figure 5. Rule of translation of IMDS-timed action to a sequence of transitions in a timed automaton:
(a) IMDS timed action with duration <2,3); (b) timed automaton s transitions, implementing action
duration.

Energies 2023, 16, 3602 13 of 22

6.4. Graphical Notation

The T-IMDS model is presented in the DA3 formalism (Distributed Autonomous and
Asynchronous Automata [51]), which is the graphic counterpart of IMDS, with identical
semantics. We used the transitions of those automata above informally. The basic element of
modeling is an automaton that represents a server. It follows the transitions that are equivalent
to IMDS actions. The action is a transition in the server graph, starting from its state, triggered
by an agent’s message. The transition leads to a new server state and sends a new message,
usually to a different server but not necessarily. This is illustrated by the example in Figure 6a.
It is a fragment of the Node server automaton. The action leads from the s1 state to the next
s2 state. The states are pairs (server, value): in our case, Node.s1 and Node.s2. The action
(A.Node.service, Node.s1/ A.Othernode.some_service, Node.s2) is triggered by agent A’s message of
the form of a triple (agent, server, service). The server is the addressee of the agent’s message.
The third message element—service—distinguishes between different messages an agent
can direct to the same server. In the example, the message A.Node.service triggers the action
shown, and, within the same agent, the next message A.Othernode.some_service is sent to the
Othernode server automaton, calling its service some_service. Figure 6b shows a simplified
notation of an action (A.Node.service, Node.s1/A.Othernode.some_service, Node.s2), where input
and output states are suppressed as they are the origin and the target of the transition. The
agent name is also omitted in the output message as it is the same agent as in the input
message. The server name is suppressed in the input message because it is the name of the
automaton: (A.service/Othernode.some_service). Special actions are used to terminate agents if
they have already done their job. Such an action has no output message, as shown in Figure 6c:
(A.service/-).

Energies 2023, 16, x FOR PEER REVIEW 14 of 24

message A.Othernode.some_service is sent to the Othernode server automaton, calling its ser-
vice some_service. Figure 6b shows a simplified notation of an action (A.Node.service,
Node.s1/A.Othernode.some_service, Node.s2), where input and output states are suppressed
as they are the origin and the target of the transition. The agent name is also omitted in
the output message as it is the same agent as in the input message. The server name is
suppressed in the input message because it is the name of the automaton: (A.service/Oth-
ernode.some_service). Special actions are used to terminate agents if they have already done
their job. Such an action has no output message, as shown in Figure 6c: (A.service/-).

Figure 6. Rule of translation of IMDS-timed action to a sequence of transitions in a timed automaton:
(a) IMDS-timed action with duration <2,3); (b) timed automaton s transitions, implementing action
duration, (c) an agent-terminating action.

7. Verification of a Model
7.1. Operational Scenario

As an example of verification, we present an operational scenario where the infra-
structure model consists of the straight track of a railway line. There are three balises on
the line, separated in pairs by a distance of 650 m. The traffic situation that will be exem-
plified further is as follows (Figure 7). A train is standing at station P2 (right) by sema-
phore B. After the departure time has passed, it gets permission to proceed and starts on
the track. Continuing on the track, it passes three balises (BG07_F01, BG06_F01,
BG05_F01) which send a telegram with packet 72 to the driver. These are text telegrams
that require confirmation. On reaching station P1, the train stops in front of semaphore J.
Driving under ETCS supervision, the train can theoretically reach speeds of up to 500
km/h (in practice, these speeds are little more than 300 km/h).

Figure 6. Rule of translation of IMDS-timed action to a sequence of transitions in a timed automaton:
(a) IMDS-timed action with duration <2,3); (b) timed automaton s transitions, implementing action
duration, (c) an agent-terminating action.

Energies 2023, 16, 3602 14 of 22

7. Verification of a Model
7.1. Operational Scenario

As an example of verification, we present an operational scenario where the infras-
tructure model consists of the straight track of a railway line. There are three balises on the
line, separated in pairs by a distance of 650 m. The traffic situation that will be exemplified
further is as follows (Figure 7). A train is standing at station P2 (right) by semaphore
B. After the departure time has passed, it gets permission to proceed and starts on the
track. Continuing on the track, it passes three balises (BG07_F01, BG06_F01, BG05_F01)
which send a telegram with packet 72 to the driver. These are text telegrams that require
confirmation. On reaching station P1, the train stops in front of semaphore J. Driving under
ETCS supervision, the train can theoretically reach speeds of up to 500 km/h (in practice,
these speeds are little more than 300 km/h).

Energies 2023, 16, x FOR PEER REVIEW 15 of 24

Figure 7. Configuration of the track layout and the functional infrastructure necessary for the im-
plementation of the exemplary operational scenario.

The balise, powered by the moving train, sends it a telegram after one second. Each
balise sends the telegram to the train with the text for the driver. The telegram is received
by the train’s on-board equipment and displayed to the driver. As every telegram must be
acknowledged, the equipment is modeled as a buffer in which unacknowledged tele-
grams are waiting. Every telegram received by the equipment increments the content of
the buffer. The confirmation by the driver decrements the content of the buffer. The driver
is obliged to confirm the receipt of the telegram within 10–15 s by pressing a key, and the
times of the mental and physical reaction of the driver are known. The driver is displayed
one telegram even if there are more of them for confirmation. The confirmation of all three
telegrams is considered a success, while the “loss” of any of them results in an emergency
braking of the train. Therefore, to achieve smooth movement, the appropriate environ-
ment should be defined (balise placement) and ride events should be adequately sched-
uled (moments in time when formally independent telegrams are issued to the driver).
Velocity should be planned to allow the driver to confirm the telegrams in time in every
circumstance. The verification can define this velocity correctly.

7.2. The Model
The basic model node is the train, shown in Figure 8 (OBU; onboard unit). The oper-

ation of the train and driver passing a single balise is as follows:
• The train approaches the balise,
• The train powers the balise remotely,
• The powered balise sends a telegram to the driver using OBU,
• OBU displays the telegram to the driver,
• the driver confirms the telegram.

Figure 7. Configuration of the track layout and the functional infrastructure necessary for the
implementation of the exemplary operational scenario.

The balise, powered by the moving train, sends it a telegram after one second. Each
balise sends the telegram to the train with the text for the driver. The telegram is received
by the train’s on-board equipment and displayed to the driver. As every telegram must be
acknowledged, the equipment is modeled as a buffer in which unacknowledged telegrams
are waiting. Every telegram received by the equipment increments the content of the buffer.
The confirmation by the driver decrements the content of the buffer. The driver is obliged
to confirm the receipt of the telegram within 10–15 s by pressing a key, and the times of the
mental and physical reaction of the driver are known. The driver is displayed one telegram
even if there are more of them for confirmation. The confirmation of all three telegrams is
considered a success, while the “loss” of any of them results in an emergency braking of
the train. Therefore, to achieve smooth movement, the appropriate environment should be
defined (balise placement) and ride events should be adequately scheduled (moments in
time when formally independent telegrams are issued to the driver). Velocity should be
planned to allow the driver to confirm the telegrams in time in every circumstance. The
verification can define this velocity correctly.

7.2. The Model

The basic model node is the train, shown in Figure 8 (OBU; onboard unit). The
operation of the train and driver passing a single balise is as follows:

• The train approaches the balise,
• The train powers the balise remotely,
• The powered balise sends a telegram to the driver using OBU,
• OBU displays the telegram to the driver,
• the driver confirms the telegram.

Energies 2023, 16, 3602 15 of 22
Energies 2023, 16, x FOR PEER REVIEW 16 of 24

Figure 8. The automaton modeling the train onboard unit (OBU).

The balises are energized strictly in series because their reaction time is very short,
and a balise must have time to send a telegram before the next one is energized. The coun-
ters must use separate agents because multiple telegram confirmations can overlap in time
so that the response times can be counted down simultaneously. Therefore, telegrams are
put into the buffer one after another, regardless of whether the previous one has been
confirmed. Therefore, the times needed to confirm individual telegrams can overlap, and,
if there are too many telegrams in a given period, some telegrams can remain uncon-
firmed, causing a train to brake. This breaks the ride’s smoothness and energy effective-
ness through additional braking and then acceleration.

In the model, when the OBU receives a telegram, it puts it into the buffer and starts
the driver reaction time counter (real-time clock). For this purpose, it uses a set of agents:
• ABG—the balise agent; this agent energizes balises and returns to the train holding a

telegram (Figures 8 and 9),
• ABuf—the buffer agent; this stores the incoming telegram in the buffer and returns

to the OBU; it can be a single agent because storing in the buffer occurs instantly;
therefore, it manages to return to the OBU before the next telegram comes (Figures 8
and 11),

• The three-element agent vector AClk [3] for starting the counters; as the driver reac-
tion clocks run independently in parallel, every clock is started by a separate agent
(Figures 8 and 10); this agent performs time counting and causes a ring message after
the timeout (Figures 10 and 13).

• ADrv—the driver agent, which takes the telegrams from the buffer and informs the
observer after the reaction (Figures 12 and 13).

Figure 9. The automaton modeling an ith balise (BG [i]).

Figure 8. The automaton modeling the train onboard unit (OBU).

The balises are energized strictly in series because their reaction time is very short, and
a balise must have time to send a telegram before the next one is energized. The counters
must use separate agents because multiple telegram confirmations can overlap in time
so that the response times can be counted down simultaneously. Therefore, telegrams
are put into the buffer one after another, regardless of whether the previous one has been
confirmed. Therefore, the times needed to confirm individual telegrams can overlap, and,
if there are too many telegrams in a given period, some telegrams can remain unconfirmed,
causing a train to brake. This breaks the ride’s smoothness and energy effectiveness through
additional braking and then acceleration.

In the model, when the OBU receives a telegram, it puts it into the buffer and starts
the driver reaction time counter (real-time clock). For this purpose, it uses a set of agents:

• ABG—the balise agent; this agent energizes balises and returns to the train holding a
telegram (Figures 8 and 9),

• ABuf —the buffer agent; this stores the incoming telegram in the buffer and returns
to the OBU; it can be a single agent because storing in the buffer occurs instantly;
therefore, it manages to return to the OBU before the next telegram comes (Figure 8
and Figure 11),

• The three-element agent vector AClk[3] for starting the counters; as the driver reac-
tion clocks run independently in parallel, every clock is started by a separate agent
(Figures 8 and 10); this agent performs time counting and causes a ring message after
the timeout (Figure 10 and Figure 13).

• ADrv—the driver agent, which takes the telegrams from the buffer and informs the
observer after the reaction (Figures 12 and 13).

Energies 2023, 16, x FOR PEER REVIEW 16 of 24

Figure 8. The automaton modeling the train onboard unit (OBU).

The balises are energized strictly in series because their reaction time is very short,
and a balise must have time to send a telegram before the next one is energized. The coun-
ters must use separate agents because multiple telegram confirmations can overlap in time
so that the response times can be counted down simultaneously. Therefore, telegrams are
put into the buffer one after another, regardless of whether the previous one has been
confirmed. Therefore, the times needed to confirm individual telegrams can overlap, and,
if there are too many telegrams in a given period, some telegrams can remain uncon-
firmed, causing a train to brake. This breaks the ride’s smoothness and energy effective-
ness through additional braking and then acceleration.

In the model, when the OBU receives a telegram, it puts it into the buffer and starts
the driver reaction time counter (real-time clock). For this purpose, it uses a set of agents:
• ABG—the balise agent; this agent energizes balises and returns to the train holding a

telegram (Figures 8 and 9),
• ABuf—the buffer agent; this stores the incoming telegram in the buffer and returns

to the OBU; it can be a single agent because storing in the buffer occurs instantly;
therefore, it manages to return to the OBU before the next telegram comes (Figures 8
and 11),

• The three-element agent vector AClk [3] for starting the counters; as the driver reac-
tion clocks run independently in parallel, every clock is started by a separate agent
(Figures 8 and 10); this agent performs time counting and causes a ring message after
the timeout (Figures 10 and 13).

• ADrv—the driver agent, which takes the telegrams from the buffer and informs the
observer after the reaction (Figures 12 and 13).

Figure 9. The automaton modeling an ith balise (BG [i]).

Figure 9. The automaton modeling an ith balise (BG [i]).

Energies 2023, 16, 3602 16 of 22
Energies 2023, 16, x FOR PEER REVIEW 17 of 24

Figure 10. The automaton modeling an ith clock, CLK [i].

The time between energizing the balises is calculated based on the velocity range
from 5 m/s to 44 m/s (from 14 to 130 s). One second is subtracted from this time for the
one-second reaction of a balise.

The balise model simply replies one second after energizing (Figure 9). The balise
number is distinguished by the index of energizing message power and (the same) index
of the message sent P, which models a telegram. The server name comes from balise,
which is irrelevant to this article.

The clock model CLK (Figure 10) has two states: it waits for a start message from
OBU, measures 10–15 s using the time duration of the clock agent action, and then informs
the observer automaton about the timeout with the ring message. There are three such
automata, each of them with its own AClk [i] agent, as the counted time periods can over-
lap.

The buffer model (Figure 11) just stores telegrams. The ABuf agent from OBU inserts
a telegram into the buffer when time counting has just started, and the driver acknowl-
edgment removes the telegram from the buffer. Thus, the buffer state reflects the number
of unconfirmed telegrams, i.e., the number of telegrams received from balises minus the
number of telegrams confirmed by the driver. The telegram messages constitute the vector
mes [3], but they can come into the buffer in arbitrary order (this property will be im-
portant in the second verification).

Figure 11. The automaton modeling the buffer, BUF.

The driver (Figure 12) “takes” the telegram from the buffer by the message get. He or
she has 3–5 s for the mental reaction and 2–3 s for the physical reaction pressing a key.
Finally, this informs the observer about the successful reaction and loops, asking the
buffer about the next telegram. All those actions are invoked by the ADrv agent.

The observer is a server with no equivalent in the physical system (although it can be
placed in the system as a diagnostic process using the digital twin concept—Figure 13). If
the observer notices a ring counting the driver’s reaction time after the telegram arrives
from the balise, it initiates the alarm. This is modeled by the ERR observer state. If the
driver acknowledges the telegram, the ring of this clock is just ignored—it does not invoke
any action. The messages of the driver agent ADrv are acknowledged to let him or her
continue their work, but the messages of the clock agents AClk [i] terminate in the observer
as they are no longer needed. The third telegram confirmation finishes the observer’s op-
eration in the SUCCESS state.

Figure 10. The automaton modeling an ith clock, CLK [i].

The time between energizing the balises is calculated based on the velocity range
from 5 m/s to 44 m/s (from 14 to 130 s). One second is subtracted from this time for the
one-second reaction of a balise.

The balise model simply replies one second after energizing (Figure 9). The balise
number is distinguished by the index of energizing message power and (the same) index of
the message sent P, which models a telegram. The server name comes from balise, which is
irrelevant to this article.

The clock model CLK (Figure 10) has two states: it waits for a start message from
OBU, measures 10–15 s using the time duration of the clock agent action, and then informs
the observer automaton about the timeout with the ring message. There are three such
automata, each of them with its own AClk [i] agent, as the counted time periods can overlap.

The buffer model (Figure 11) just stores telegrams. The ABuf agent from OBU inserts
a telegram into the buffer when time counting has just started, and the driver acknowl-
edgment removes the telegram from the buffer. Thus, the buffer state reflects the number
of unconfirmed telegrams, i.e., the number of telegrams received from balises minus the
number of telegrams confirmed by the driver. The telegram messages constitute the vector
mes[3], but they can come into the buffer in arbitrary order (this property will be important
in the second verification).

Energies 2023, 16, x FOR PEER REVIEW 17 of 24

Figure 10. The automaton modeling an ith clock, CLK [i].

The time between energizing the balises is calculated based on the velocity range
from 5 m/s to 44 m/s (from 14 to 130 s). One second is subtracted from this time for the
one-second reaction of a balise.

The balise model simply replies one second after energizing (Figure 9). The balise
number is distinguished by the index of energizing message power and (the same) index
of the message sent P, which models a telegram. The server name comes from balise,
which is irrelevant to this article.

The clock model CLK (Figure 10) has two states: it waits for a start message from
OBU, measures 10–15 s using the time duration of the clock agent action, and then informs
the observer automaton about the timeout with the ring message. There are three such
automata, each of them with its own AClk [i] agent, as the counted time periods can over-
lap.

The buffer model (Figure 11) just stores telegrams. The ABuf agent from OBU inserts
a telegram into the buffer when time counting has just started, and the driver acknowl-
edgment removes the telegram from the buffer. Thus, the buffer state reflects the number
of unconfirmed telegrams, i.e., the number of telegrams received from balises minus the
number of telegrams confirmed by the driver. The telegram messages constitute the vector
mes [3], but they can come into the buffer in arbitrary order (this property will be im-
portant in the second verification).

Figure 11. The automaton modeling the buffer, BUF.

The driver (Figure 12) “takes” the telegram from the buffer by the message get. He or
she has 3–5 s for the mental reaction and 2–3 s for the physical reaction pressing a key.
Finally, this informs the observer about the successful reaction and loops, asking the
buffer about the next telegram. All those actions are invoked by the ADrv agent.

The observer is a server with no equivalent in the physical system (although it can be
placed in the system as a diagnostic process using the digital twin concept—Figure 13). If
the observer notices a ring counting the driver’s reaction time after the telegram arrives
from the balise, it initiates the alarm. This is modeled by the ERR observer state. If the
driver acknowledges the telegram, the ring of this clock is just ignored—it does not invoke
any action. The messages of the driver agent ADrv are acknowledged to let him or her
continue their work, but the messages of the clock agents AClk [i] terminate in the observer
as they are no longer needed. The third telegram confirmation finishes the observer’s op-
eration in the SUCCESS state.

Figure 11. The automaton modeling the buffer, BUF.

The driver (Figure 12) “takes” the telegram from the buffer by the message get. He
or she has 3–5 s for the mental reaction and 2–3 s for the physical reaction pressing a key.
Finally, this informs the observer about the successful reaction and loops, asking the buffer
about the next telegram. All those actions are invoked by the ADrv agent.

Energies 2023, 16, x FOR PEER REVIEW 18 of 24

Figure 12. The automaton modeling the driver behavior, DRV.

Figure 13. The observer automaton OBS.

7.3. Verification Process
Verification consists in checking whether the observer can reach the ERR state or if

the observer inevitably reaches the SUCCESS state. The Dedan verifier automatically finds
deadlocks and distributed terminations in distributed systems specified in the IMDS for-
malism in a timeless verification. For timed verification, the model is exported to the Up-
paal [27] verifier. The temporal property that must be met for eventually reaching the ob-
server termination is A<> (OBS.SUCCESS). This formula, which denotes reaching the
given state (<>) on every path (A) is hidden in Dedan for automated verification, but, after
exporting to Uppaal, it must be supplied manually. In the future, we plan to send both the
model and the formulas to Uppaal. Verification confirmed the safety of the model, which
means that the SUCCESS state is inevitably reached.

Subsequent checking was done by increasing the train’s velocity to a level at which
the driver may not be able to confirm the telegram. This means that, at this velocity, the
telegrams start to overlap in the queue, so, within the assumed maximum reaction time,
the driver confirms the previous telegram. Checking was carried out for the velocity
ranges of 44–60 m/s, 60–80 m/s, and 80–100 m/s. Failure occurs only in the range of 80–100
m/s (above 250 km/h), so the line can be considered safe for ordinary trains, but attention
should be paid to the case of high-speed rail. Nowadays, trains run in Poland at 200 km/h,
but there are plans to increase the velocity to 250 km/h. For this reason, such a line should
be reconstructed.

7.4. Modified Example
We also checked whether the driver could confirm an additional telegram coming

from other line elements than the balises. This required the following modifications:
• Adding one state to the buffer (maximum four telegrams instead of three),
• Adding one clock to count the confirmation time (the vector of four CLK instances

instead of three),
• Appropriate observer change, presented in Figure 14.

Figure 12. The automaton modeling the driver behavior, DRV.

The observer is a server with no equivalent in the physical system (although it can be
placed in the system as a diagnostic process using the digital twin concept—Figure 13). If

Energies 2023, 16, 3602 17 of 22

the observer notices a ring counting the driver’s reaction time after the telegram arrives
from the balise, it initiates the alarm. This is modeled by the ERR observer state. If the
driver acknowledges the telegram, the ring of this clock is just ignored—it does not invoke
any action. The messages of the driver agent ADrv are acknowledged to let him or her
continue their work, but the messages of the clock agents AClk [i] terminate in the observer
as they are no longer needed. The third telegram confirmation finishes the observer’s
operation in the SUCCESS state.

Energies 2023, 16, x FOR PEER REVIEW 18 of 24

Figure 12. The automaton modeling the driver behavior, DRV.

Figure 13. The observer automaton OBS.

7.3. Verification Process
Verification consists in checking whether the observer can reach the ERR state or if

the observer inevitably reaches the SUCCESS state. The Dedan verifier automatically finds
deadlocks and distributed terminations in distributed systems specified in the IMDS for-
malism in a timeless verification. For timed verification, the model is exported to the Up-
paal [27] verifier. The temporal property that must be met for eventually reaching the ob-
server termination is A<> (OBS.SUCCESS). This formula, which denotes reaching the
given state (<>) on every path (A) is hidden in Dedan for automated verification, but, after
exporting to Uppaal, it must be supplied manually. In the future, we plan to send both the
model and the formulas to Uppaal. Verification confirmed the safety of the model, which
means that the SUCCESS state is inevitably reached.

Subsequent checking was done by increasing the train’s velocity to a level at which
the driver may not be able to confirm the telegram. This means that, at this velocity, the
telegrams start to overlap in the queue, so, within the assumed maximum reaction time,
the driver confirms the previous telegram. Checking was carried out for the velocity
ranges of 44–60 m/s, 60–80 m/s, and 80–100 m/s. Failure occurs only in the range of 80–100
m/s (above 250 km/h), so the line can be considered safe for ordinary trains, but attention
should be paid to the case of high-speed rail. Nowadays, trains run in Poland at 200 km/h,
but there are plans to increase the velocity to 250 km/h. For this reason, such a line should
be reconstructed.

7.4. Modified Example
We also checked whether the driver could confirm an additional telegram coming

from other line elements than the balises. This required the following modifications:
• Adding one state to the buffer (maximum four telegrams instead of three),
• Adding one clock to count the confirmation time (the vector of four CLK instances

instead of three),
• Appropriate observer change, presented in Figure 14.

Figure 13. The observer automaton OBS.

7.3. Verification Process

Verification consists in checking whether the observer can reach the ERR state or
if the observer inevitably reaches the SUCCESS state. The Dedan verifier automatically
finds deadlocks and distributed terminations in distributed systems specified in the IMDS
formalism in a timeless verification. For timed verification, the model is exported to the
Uppaal [27] verifier. The temporal property that must be met for eventually reaching the
observer termination is A<> (OBS.SUCCESS). This formula, which denotes reaching the
given state (<>) on every path (A) is hidden in Dedan for automated verification, but, after
exporting to Uppaal, it must be supplied manually. In the future, we plan to send both the
model and the formulas to Uppaal. Verification confirmed the safety of the model, which
means that the SUCCESS state is inevitably reached.

Subsequent checking was done by increasing the train’s velocity to a level at which
the driver may not be able to confirm the telegram. This means that, at this velocity, the
telegrams start to overlap in the queue, so, within the assumed maximum reaction time,
the driver confirms the previous telegram. Checking was carried out for the velocity ranges
of 44–60 m/s, 60–80 m/s, and 80–100 m/s. Failure occurs only in the range of 80–100 m/s
(above 250 km/h), so the line can be considered safe for ordinary trains, but attention
should be paid to the case of high-speed rail. Nowadays, trains run in Poland at 200 km/h,
but there are plans to increase the velocity to 250 km/h. For this reason, such a line should
be reconstructed.

7.4. Modified Example

We also checked whether the driver could confirm an additional telegram coming
from other line elements than the balises. This required the following modifications:

• Adding one state to the buffer (maximum four telegrams instead of three),
• Adding one clock to count the confirmation time (the vector of four CLK instances

instead of three),
• Appropriate observer change, presented in Figure 14.

Energies 2023, 16, 3602 18 of 22
Energies 2023, 16, x FOR PEER REVIEW 19 of 24

Figure 14. The modified observer automaton OBS.

The verification shows the possibility of delaying the driver’s reaction, even at the
basic speed range of 5–44 m/s. This is very dangerous, because it is usual that the track
equipment sends telegrams to the train. Therefore, we can judge that the balises are put
on the line too close to each other. The beginning and end of the counterexample leading
to the failure are shown in Figures 15 and 16. They are parts of the counterexample pro-
duced by the Uppaal verifier. The counterexample is a sequence diagram in which lifelines
represent the individual automata. In the picture, we can see from left to right: BG, OBU,
CLK [1]…CLK [4], BUF, EXT (similar to BG, but issuing a telegram spontaneously instead
of after balise power by the train), and OBS. The sources and destinations of every mes-
sage are shown near the arrows representing the message flow, but they have too small
lettering to be observed in this figure. For this reason, one of them is enlarged—a message
sent by the ADrv agent to the input channel (ic) of the OBS server, shown in ellipsis. Un-
fortunately, the message ID is not shown here—it can be observed in another Uppaal win-
dow. In this counterexample, it is the OK message. In the future, we plan to pull the coun-
terexample into Dedan and display it in a more convenient form, showing message IDs
(formally: service names in a target server).

Figure 15. The beginning part of the counterexample, as shown by the Uppaal verifier. The balloons
point to specific elements of the counterexample.

Figure 14. The modified observer automaton OBS.

The verification shows the possibility of delaying the driver’s reaction, even at the
basic speed range of 5–44 m/s. This is very dangerous, because it is usual that the track
equipment sends telegrams to the train. Therefore, we can judge that the balises are put on
the line too close to each other. The beginning and end of the counterexample leading to the
failure are shown in Figures 15 and 16. They are parts of the counterexample produced by
the Uppaal verifier. The counterexample is a sequence diagram in which lifelines represent
the individual automata. In the picture, we can see from left to right: BG, OBU, CLK[1]
. . . CLK[4], BUF, EXT (similar to BG, but issuing a telegram spontaneously instead of after
balise power by the train), and OBS. The sources and destinations of every message are
shown near the arrows representing the message flow, but they have too small lettering to
be observed in this figure. For this reason, one of them is enlarged—a message sent by the
ADrv agent to the input channel (ic) of the OBS server, shown in ellipsis. Unfortunately,
the message ID is not shown here—it can be observed in another Uppaal window. In this
counterexample, it is the OK message. In the future, we plan to pull the counterexample
into Dedan and display it in a more convenient form, showing message IDs (formally:
service names in a target server).

Energies 2023, 16, x FOR PEER REVIEW 19 of 24

Figure 14. The modified observer automaton OBS.

The verification shows the possibility of delaying the driver’s reaction, even at the
basic speed range of 5–44 m/s. This is very dangerous, because it is usual that the track
equipment sends telegrams to the train. Therefore, we can judge that the balises are put
on the line too close to each other. The beginning and end of the counterexample leading
to the failure are shown in Figures 15 and 16. They are parts of the counterexample pro-
duced by the Uppaal verifier. The counterexample is a sequence diagram in which lifelines
represent the individual automata. In the picture, we can see from left to right: BG, OBU,
CLK [1]…CLK [4], BUF, EXT (similar to BG, but issuing a telegram spontaneously instead
of after balise power by the train), and OBS. The sources and destinations of every mes-
sage are shown near the arrows representing the message flow, but they have too small
lettering to be observed in this figure. For this reason, one of them is enlarged—a message
sent by the ADrv agent to the input channel (ic) of the OBS server, shown in ellipsis. Un-
fortunately, the message ID is not shown here—it can be observed in another Uppaal win-
dow. In this counterexample, it is the OK message. In the future, we plan to pull the coun-
terexample into Dedan and display it in a more convenient form, showing message IDs
(formally: service names in a target server).

Figure 15. The beginning part of the counterexample, as shown by the Uppaal verifier. The balloons
point to specific elements of the counterexample.

Figure 15. The beginning part of the counterexample, as shown by the Uppaal verifier. The balloons
point to specific elements of the counterexample.

Energies 2023, 16, 3602 19 of 22Energies 2023, 16, x FOR PEER REVIEW 20 of 24

Figure 16. The end part of the counterexample, as shown by the Uppaal verifier. The balloons point
to specific elements of the counterexample. The message identifier is enlarged for readability.

8. Conclusions and Further Work
The ETCS system is being implemented on many thousands of kilometers of railway

lines throughout Europe. The applications developed are characterized by geographical
dispersion and system complexity. Due to the necessity of a smooth run without un-
wanted braking, it is required that the system operates correctly under any combination
of operating conditions. The current application of verification techniques using dynamic
tests with actual rolling stock cannot verify all cases. This paper presents a methodology
and environment for time-based verification of ETCS systems. Its capabilities allow for
verification of the defined conditions by checking all system runs simultaneously. The
properties of the formal model and the tools used are specially tailored to distributed sys-
tems and automated verification of real-time-dependent systems. These properties are
asynchronous and timed verification, graphical modeling based on the local features of
distributed components without knowledge of the global state, and automated verifica-
tion of total and partial deadlocks and termination.

Asynchronous modeling reflects the very nature of distributed systems, where the
operation of a device is dependent only on its current state and the external signals ac-
quired, rather than on the states of other devices and their synchronous actions with the
device under consideration. This property, connected with real-time analysis, allows for
checking of the actual behavior of interconnected devices. For example, we identified the
unsafe operation of the ETCS under conditions of accumulated text telegrams, which the
driver must acknowledge. In addition to verifying the correctness of the system, thanks to
timed verification, we determined the range of train velocities allowing the safe operation
of the ETCS. Such an identification of time circumstances can be applied for every safety
property. This confirms the thesis set out in the introduction to this article.

In the future, we plan to build a library of typical components of ETCS systems,
which would allow for the verification of large cases. We plan to incorporate timed verifi-
cation into the Dedan tool, for a better presentation of counterexamples, and for the inter-
pretation of results directly on the graphical scheme of a railway line during counterex-
ample simulation.

Figure 16. The end part of the counterexample, as shown by the Uppaal verifier. The balloons point
to specific elements of the counterexample. The message identifier is enlarged for readability.

8. Conclusions and Further Work

The ETCS system is being implemented on many thousands of kilometers of railway
lines throughout Europe. The applications developed are characterized by geographical
dispersion and system complexity. Due to the necessity of a smooth run without un-
wanted braking, it is required that the system operates correctly under any combination
of operating conditions. The current application of verification techniques using dynamic
tests with actual rolling stock cannot verify all cases. This paper presents a methodology
and environment for time-based verification of ETCS systems. Its capabilities allow for
verification of the defined conditions by checking all system runs simultaneously. The
properties of the formal model and the tools used are specially tailored to distributed
systems and automated verification of real-time-dependent systems. These properties are
asynchronous and timed verification, graphical modeling based on the local features of
distributed components without knowledge of the global state, and automated verification
of total and partial deadlocks and termination.

Asynchronous modeling reflects the very nature of distributed systems, where the
operation of a device is dependent only on its current state and the external signals acquired,
rather than on the states of other devices and their synchronous actions with the device
under consideration. This property, connected with real-time analysis, allows for checking
of the actual behavior of interconnected devices. For example, we identified the unsafe
operation of the ETCS under conditions of accumulated text telegrams, which the driver
must acknowledge. In addition to verifying the correctness of the system, thanks to timed
verification, we determined the range of train velocities allowing the safe operation of the
ETCS. Such an identification of time circumstances can be applied for every safety property.
This confirms the thesis set out in the introduction to this article.

In the future, we plan to build a library of typical components of ETCS systems, which
would allow for the verification of large cases. We plan to incorporate timed verification into
the Dedan tool, for a better presentation of counterexamples, and for the interpretation of
results directly on the graphical scheme of a railway line during counterexample simulation.

Energies 2023, 16, 3602 20 of 22

Discussions are currently underway with ETCS application designers and contractors
on the requirements for implementing the proposed solution. The proposed solution is
very promising. The information gained from the research carried out shows that, for the
structures that ETCS creates, mapping models can be built to form the aforementioned
library. Using a library of ready-made models, it will be relatively simple to build a model
of an entire application. Another strand of the authors’ work supports this approach,
focusing on a formal approach to railway infrastructure design. When describing a design
using this specification, the temporal model described in this article can be generated
algorithmically through transformations. This theme will be the subject of further research
and publications.

Another area where the potential value of the proposed solution is evident is in the
verification of techniques for optimal control of the running of several consecutive trains in
order to improve the energy efficiency of the entire transportation process. Partial results
of this work were described in [52]. Model verification will also be investigated from this
point of view.

Author Contributions: Conceptualization, J.K., W.B.D. and A.K.; methodology, J.K., W.B.D. and W.G.;
software, W.B.D. and W.G.; validation, J.K., W.B.D., W.G. and A.K.; formal analysis, J.K., W.B.D. and
W.G.; investigation, J.K. and W.B.D.; resources, J.K. and W.G.; data curation, J.K.; writing—original
draft preparation, J.K. and W.B.D.; writing—review and editing, J.K., W.B.D. and W.G.; visualization,
W.B.D.; supervision, W.B.D. and A.K.; project administration, A.K.; funding acquisition, A.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This paper was co-financed under the research grant of the Warsaw University of Technol-
ogy supporting the scientific activity in the discipline of Civil Engineering, Geodesy and Transport.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. 32016R0919-Commission Regulation (EU) 2016/919 of 27 May 2016 on the Technical Specification for Interoperability Relating to the

‘Control-Command and Signalling’ Subsystems of the Rail System in the European Union (Text with EEA Relevance); European Comission:
Brussels, Belgium, 2016; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2016.158.01
.0001.01.ENG&%3Btoc=OJ%3AL%3A2016%3A158%3ATOC (accessed on 19 February 2023).

2. Unisig SUBSET-026 System Requirements Specification; Issue 3.6.0; European Railway Agency: Valenciennes, France, 2016; Available
online: http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%20ETCS%20baseline%203%20and%20GSM-
R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-2%20v360.pdf (accessed on 19 February 2023).

3. Munawir, T.I.T.; Samah, A.A.A.; Rosle, M.A.A.; Azlis-Sani, J.; Hasnan, K.; Sabri, S.M.; Ismail, S.M.; Mohd Yunos, M.N.A.; Bin, T.Y.
A Comparison Study on the Assessment of Ride Comfort for LRT Passengers. In Proceedings of the IOP Conference Series: Materials
Science and Engineering, Melaka, Malaysia, 6–7 May 2017; IOP Publishing: Bristol, UK, 2017; Volume 226, pp. 12–39. [CrossRef]

4. Koper, E.; Kochan, A. Testing the Smooth Driving of a Train Using a Neural Network. Sustainability 2020, 12, 4622. [CrossRef]
5. Kwaśnikowski, J.; Gramza, G. Analiza wybranych zakłóceń w ruchu kolejowym (in Polish). Probl. Eksploat. 2007, 2, 89–96.

Available online: https://bibliotekanauki.pl/articles/257256 (accessed on 19 February 2023).
6. Kwaśnikowski, J.; Gramza, G. Wpływ zakłóceń ruchu i profilu trasy na zużycie energii przez lokomotywę elektryczną EU07

prowadzącą pociąg pasażerski (in Polish). In Proceedings of the 9th TransComp Conference, Zakopane, Poland, 5–8 December
2005; Prace Naukowe Politechniki Radomskiej–Elektryka: Radom, Poland, 2005; pp. 131–136.

7. Nolte, R.; Würtenberger, F. EVENT-Evaluation of Energy Efficiency Technologies for Rolling Stock and Train Operation of Rail-
ways; Institute for Futures Studies and Technology Assessment: Berlin, Germany, 2003; Available online: https://www.
forschungsinformationssystem.de/servlet/is/117125 (accessed on 19 February 2023).

8. Dąbrowa-Bajon, M. Podstawy sterowania ruchem kolejowym. In Funkcje, Wymagania, Zarys Technik; Oficyna Wydawnicza
Politechniki Warszawskiej: Warsaw, Poland, 2015; ISBN 978-83-7814-320-8.

9. Sabatier, D. Using Formal Proof and B Method at System Level for Industrial Projects. In Reliability, Safety, and Security of Railway
Systems. Modelling, Analysis, Verification, and Certification, Proceedings of the RSSRail 2016, Paris, France, 28–30 June 2016; Lecomte, T.,
Pinger, R., Romanovsky, A., Eds.; Springer: Cham, Switzerland, 2016; LNPSE Volume 9707, pp. 20–31. [CrossRef]

10. Comptier, M.; Deharbe, D.; Perez, J.M.; Mussat, L.; Pierre, T.; Sabatier, D. Safety Analysis of a CBTC System: A Rigorous Approach
with Event-B. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, Proceedings of the
RSSRail 2017, Pistoia, Italy, 14–16 November 2017; Fantechi, A., Lecomte, T., Romanovsky, A., Eds.; Springer: Cham, Switzerland,
2017; LNCS Volume 10598, pp. 148–159. [CrossRef]

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2016.158.01.0001.01.ENG&%3Btoc=OJ%3AL%3A2016%3A158%3ATOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2016.158.01.0001.01.ENG&%3Btoc=OJ%3AL%3A2016%3A158%3ATOC
http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%20ETCS%20baseline%203%20and%20GSM-R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-2%20v360.pdf
http://webpages.iust.ac.ir/sandidzadeh/Courses/Signalling%202/spec3%20ETCS%20baseline%203%20and%20GSM-R%20baseline%201/Index04%20SUBSET-026%20v360/SUBSET-026-2%20v360.pdf
https://doi.org/10.1088/1757-899X/226/1/012039
https://doi.org/10.3390/su12114622
https://bibliotekanauki.pl/articles/257256
https://www.forschungsinformationssystem.de/servlet/is/117125
https://www.forschungsinformationssystem.de/servlet/is/117125
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-68499-4_10

Energies 2023, 16, 3602 21 of 22

11. James, P.; Moller, F.; Nguyen, H.N.; Roggenbach, M.; Schneider, S.; Treharne, H. Techniques for Modelling and Verifying Railway
Interlockings. Int. J. Softw. Tools Technol. Transf. 2014, 16, 685–711. [CrossRef]

12. Idani, A.; Ledru, Y.; Ait Wakrime, A.; Ben Ayed, R.; Bon, P. Towards a Tool-Based Domain Specific Approach for Railway Systems
Modeling and Validation. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification,
Proceedings of the RSSRail 2019, Lille, France, 4–6 June 2019; Collart-Dutilleul, S., Lecomte, T., Romanovsky, A., Eds.; Springer:
Cham, Switzerland, 2019; LNPSE Volume 11495, pp. 23–40. [CrossRef]

13. Fantechi, A.; Gori, G.; Haxthausen, A.E.; Limbrée, C. Compositional Verification of Railway Interlockings: Comparison of Two
Methods. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, RSSRail 2022,
Proceedings of the RSSRail 2022, Paris, France, 1–2 June 2022; Collart-Dutilleul, S., Haxthausen, A.E., Lecomte, T., Eds.; Springer:
Cham, Switzerland, 2022; LNCS Volume 13294, pp. 3–19. [CrossRef]

14. Ghosh, S.; Das, A.; Basak, N.; Dasgupta, P.; Katiyar, A. Formal Methods for Validation and Test Point Prioritization in Railway
Signaling Logic. IEEE Trans. Intell. Transp. Syst. 2017, 18, 678–689. [CrossRef]

15. Iliasov, A.; Laibinis, L.; Taylor, D.; Lopatkin, I.; Romanovsky, A. Safety Invariant Verification That Meets Engineers’ Expectations.
In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, Proceedings of the RSSRail 2022,
Paris, France, 1–2 June 2022; Collart-Dutilleul, S., Haxthausen, A.E., Lecomte, T., Eds.; Springer: Cham, Switzerland, 2022; LNCS
Volume 13294, pp. 20–31. [CrossRef]

16. Kamburjan, E.; Hähnle, R. Deductive Verification of Railway Operations. In Reliability, Safety, and Security of Railway Systems.
Modelling, Analysis, Verification, and Certification, Proceedings of the RSSRail 2017, Pistoia, Italy, 14–16 November 2017; Fantechi, A.,
Lecomte, T., Romanovsky, A., Eds.; Springer: Cham, Switzerland, 2017; LNCS Volume 10598, pp. 131–147. [CrossRef]

17. Carrasquel, J.C.; Morales, A.; Villapol, M.E. Prosega/CPN: An Extension of CPN Tools for Automata-Based Analysis and System
Verification. Proc. Inst. Syst. Program. RAS 2018, 30, 107–128. [CrossRef] [PubMed]

18. Sun, P.; Collart-dutilleul, S.; Bon, P. A Model Pattern of Railway Interlocking System by Petri Nets. In Proceedings of the 2015
International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, Hungary, 3–5
June 2015; pp. 442–449. [CrossRef]

19. Parillaud, C.; Fonteneau, Y.; Belmonte, F. Interlocking Formal Verification at Alstom Signalling. In Reliability, Safety, and Security
of Railway Systems. Modelling, Analysis, Verification, and Certification, Proceedings of the RSSRail 2019, Lille, France, 4–6 June 2019;
Collart-Dutilleul, S., Lecomte, T., Romanovsky, A., Eds.; Springer: Cham, Switzerland, 2019; LNCS Volume 11495, pp. 215–225.
[CrossRef]

20. Salierno, G.; Morvillo, S.; Leonardi, L.; Cabri, G. Specification and Verification of Railway Safety-Critical Systems Using TLA +:
A Case Study. In Proceedings of the 29th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Virtual Conference, 4–6 November 2020; pp. 207–212. [CrossRef]

21. Ghazel, M. Formalizing a Subset of ERTMS/ETCS Specifications for Verification Purposes. Transp. Res. Part C Emerg. Technol.
2014, 42, 60–75. [CrossRef]

22. Mammar, A.; Frappier, M.; Tueno Fotso, S.J.; Laleau, R. A Formal Refinement-Based Analysis of the Hybrid ERTMS/ETCS Level
3 Standard. Int. J. Softw. Tools Technol. Transf. 2020, 22, 333–347. [CrossRef]

23. Limbrée, C.; Cappart, Q.; Pecheur, C.; Tonetta, S. Verification of Railway Interlocking-Compositional Approach with OCRA.
In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, Proceedings of the RSS-
Rail 2016, Paris, France, 28–30 June 2016; Lecomte, T., Pinger, R., Romanovsky, A., Eds.; Springer: Cham, Switzerland, 2016;
LNPSE Volume 9707, pp. 134–149. [CrossRef]

24. Halchin, A.; Feliachi, A.; Singh, N.K.; Ait-Ameur, Y.; Ordioni, J. B-PERFect. Applying the PERF Approach to B Based System
Developments. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, Proceedings of
the RSSRail 2017, Pistoia, Italy, 14–16 November 2017; Fantechi, A., Lecomte, T., Romanovsky, A., Eds.; Springer: Cham, Switzerland,
2017; LNCS Volume 10598, pp. 160–172. [CrossRef]

25. Platzer, A.; Quesel, J.-D. Logical Verification and Systematic Parametric Analysis in Train Control. In Hybrid Systems: Computation
and Control, Proceedings of the HSC2008, St. Louis, MO, USA, 22–24 April 2008; Egerstedt, M., Mishra, B., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; LNCS Volume 4981, pp. 646–649. [CrossRef]

26. Han, X.; Tang, T.; Lv, J.; Wang, H. Failure Analysis of Chinese Train Control System Level 3 Based on Model Checking. In
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, Proceedings of the RSSRail 2016,
Paris, France, 28–30 June 2016; Lecomte, T., Pinge, R., Romanovsky, A., Eds.; Springer: Cham, Switzerland, 2016; LNPSE Volume
9707, pp. 95–105. [CrossRef]

27. Larsen, K.G.; Lorber, F.; Nielsen, B. 20 Years of UPPAAL Enabled Industrial Model-Based Validation and Beyond. In Leveraging
Applications of Formal Methods, Verification and Validation. Industrial Practice, Proceedings of the ISoLA 2018, Limassol, Cyprus, 5–9
November 2018; Margaria, T., Steffen, B., Eds.; Springer: Cham, Switzerland, 2018; LNCS Volume 11247, pp. 212–229. [CrossRef]

28. Kim, J.H.; Larsen, K.G.; Nielsen, B.; Mikučionis, M.; Olsen, P. Formal Analysis and Testing of Real-Time Automotive Systems
Using UPPAAL Tools. In Formal Methods for Industrial Critical Systems, Proceedings of the FMICS 2015, Oslo, Norway, 22–23 June
2015; Núñez, M., Güdemann, M., Eds.; Springer: Cham, Switzerland, 2015; LNPSE Volume 9128, pp. 47–61. [CrossRef]

29. Ben-Rayana, S.; Bozga, M.; Bensalem, S.; Combaz, J. RTD-Finder: A Tool for Compositional Verification of Real-Time
Component-Based Systems. In Tools and Algorithms for the Construction and Analysis of Systems, Proceedings of the TACAS 2016,

https://doi.org/10.1007/s10009-014-0304-7
https://doi.org/10.1007/978-3-030-18744-6_2
https://doi.org/10.1007/978-3-031-05814-1_1
https://doi.org/10.1109/TITS.2016.2586512
https://doi.org/10.1007/978-3-031-05814-1_2
https://doi.org/10.1007/978-3-319-68499-4_9
https://doi.org/10.15514/ISPRAS-2018-30(4)-7
https://www.ncbi.nlm.nih.gov/pubmed/28725339
https://doi.org/10.1109/MTITS.2015.7223292
https://doi.org/10.1007/978-3-030-18744-6_14
https://doi.org/10.1109/WETICE49692.2020.00048
https://doi.org/10.1016/j.trc.2014.02.002
https://doi.org/10.1007/s10009-019-00543-1
https://doi.org/10.1007/978-3-319-33951-1_10
https://doi.org/10.1007/978-3-319-68499-4_11
https://doi.org/10.1007/978-3-540-78929-1_55
https://doi.org/10.1007/978-3-319-33951-1_7
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-319-19458-5_4

Energies 2023, 16, 3602 22 of 22

Eindhoven, The Netherlands, 2–8 April 2016; Chechik, M., Raskin, J.-F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016;
LNCS Volume 9636, pp. 394–406. [CrossRef]

30. Daskaya, I.; Huhn, M.; Milius, S. Formal Safety Analysis in Industrial Practice. In Formal Methods for Industrial Critical Systems,
Proceedings of the FMICS 2011, Trento, Italy, 29–30 August 2011; Salaün, G., Schätz, B., Eds.; Springer: Berlin/Heidelberg, Germany,
2011; pp. 68–84. [CrossRef]

31. Lahtine, J. Model Checking Timed Safety Instrumented Systems; Helsinki University of Technology, Department of Information and
Computer Science: Helsinki, Finland, 2008; 68p, Available online: https://aaltodoc.aalto.fi/handle/123456789/874 (accessed on
19 February 2023).

32. Holzmann, G.J. The Model Checker SPIN. IEEE Trans. Softw. Eng. 1997, 23, 279–295. [CrossRef]
33. Alur, R.; Dill, D.L. A Theory of Timed Automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
34. Mazuelo, C.L. Automatic Model Checking of UML Models. Master’s Thesis, Bern University, Informatics and Applied Math-

ematics Institute, Bern, Switzerland, 2008. Available online: http://www.iam.unibe.ch/tilpub/2008/lar08.pdf (accessed on
19 February 2023).

35. Fahland, D.; Favre, C.; Koehler, J.; Lohmann, N.; Völzer, H.; Wolf, K. Analysis on Demand: Instantaneous Soundness Checking of
Industrial Business Process Models. Data Knowl. Eng. 2011, 70, 448–466. [CrossRef]

36. Joosten, S.J.C.; Julien, F.V.; Schmaltz, J. WickedXmas: Designing and Verifying on-Chip Communication Fabrics. In Proceedings of
the 3rd International Workshop on Design and Implementation of Formal Tools and Systems, DIFTS’14, Lausanne, Switzerland,
20 October 2014; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2014; pp. 1–8. Available online: https:
//pure.tue.nl/ws/files/3916267/889737443709527.pdf (accessed on 19 February 2023).

37. Yousefian, R.; Rafe, V.; Rahmani, M. A Heuristic Solution for Model Checking Graph Transformation Systems. Appl. Soft Comput.
2014, 24, 169–180. [CrossRef]

38. Daszczuk, W.B. Static and Dynamic Verification of Space Systems Using Asynchronous Observer Agents. Sensors 2021, 21, 4541.
[CrossRef] [PubMed]

39. Lutz, M.J. Modeling Software the Alloy Way. In Proceedings of the 2013 IEEE Frontiers in Education Conference (FIE), Oklahoma
City, OK, USA, 23–26 October 2013; p. 3. [CrossRef]

40. Krystosik, A. Embedded Systems Modeling Language. In Proceedings of the 2006 International Conference on Dependability of
Computer Systems, DepCos-RELCOMEX ’06, Szklarska Poręba, Poland, 25–27 May 2006; Springer: Berlin/Heidelberg, Germany,
2006; pp. 27–34. [CrossRef]

41. Daszczuk, W.B. Specification and Verification in Integrated Model of Distributed Systems (IMDS). Computers 2018, 7, 65. [CrossRef]
42. Daszczuk, W.B. Communication and Resource Deadlock Analysis Using IMDS Formalism and Model Checking. Comput. J. 2017,

60, 729–750. [CrossRef]
43. Karolak, J.; Daszczuk, W.B.; Grabski, W.; Kochan, A. Temporal Verification of Relay-Based Railway Traffic Control Systems Using

the Integrated Model of Distributed Systems. Energie 2022, 15, 9041. [CrossRef]
44. Daszczuk, W.B. Asynchronous Specification of Production Cell Benchmark in Integrated Model of Distributed Systems. In

Proceedings of the 23rd International Symposium on Methodologies for Intelligent Systems, ISMIS 2017, Warsaw, Poland, 26–29
June 2017; Studies in Big Data, Volume 40. Bembenik, R., Skonieczny, L., Protaziuk, G., Kryszkiewicz, M., Rybinski, H., Eds.;
Springer International Publishing: Cham, Switzerland, 2019; pp. 115–129. [CrossRef]

45. Mazzanti, F.; Ferrari, A.; Spagnolo, G.O. Towards Formal Methods Diversity in Railways: An Experience Report with Seven
Frameworks. Int. J. Softw. Tools Technol. Transf. 2018, 20, 263–288. [CrossRef]

46. Daszczuk, W.B. Modeling and Verification of Asynchronous Systems Using Timed Integrated Model of Distributed Systems.
Sensors 2022, 22, 1157. [CrossRef] [PubMed]

47. Reniers, M.A.; Willemse, T.A.C. Folk Theorems on the Correspondence between State-Based and Event-Based Systems. In
Proceedings of the 37th Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,
22–28 January 2011; Springer: Berlin/Heidelberg, Germany, 2011; LNCS Volume 6543, pp. 494–505. [CrossRef]

48. Daszczuk, W.B. Using the Dedan Program. In Integrated Model of Distributed Systems; Springer Nature: Cham, Switzerland,
2020; pp. 87–97. [CrossRef]

49. Balan, M.S. Serializing the Parallelism in Parallel Communicating Pushdown Automata Systems. Electron. Proc. Theor. Comput.
Sci. 2009, 3, 59–68. [CrossRef]

50. Bollig, B.; Leucker, M. Message-Passing Automata Are Expressively Equivalent to EMSO Logic. In Proceedings of the 15th Interna-
tional Conference CONCUR 2004-Concurrency Theory, London, UK, 31 August–3 September 2004; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 146–160. [CrossRef]

51. Daszczuk, W.B. Graphic Modeling in Distributed Autonomous and Asynchronous Automata (DA3). Softw. Syst. Model. 2021,
20, 363–398. [CrossRef]

52. Szkopiński, J.; Kochan, A. Energy Efficiency and Smooth Running of a Train on the Route While Approaching Another Train.
Energies 2021, 14, 7593. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-662-49674-9_23
https://doi.org/10.1007/978-3-642-24431-5_7
https://aaltodoc.aalto.fi/handle/123456789/874
https://doi.org/10.1109/32.588521
https://doi.org/10.1016/0304-3975(94)90010-8
http://www.iam.unibe.ch/tilpub/2008/lar08.pdf
https://doi.org/10.1016/j.datak.2011.01.004
https://pure.tue.nl/ws/files/3916267/889737443709527.pdf
https://pure.tue.nl/ws/files/3916267/889737443709527.pdf
https://doi.org/10.1016/j.asoc.2014.06.055
https://doi.org/10.3390/s21134541
https://www.ncbi.nlm.nih.gov/pubmed/34283066
https://doi.org/10.1109/FIE.2013.6684771
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.21
https://doi.org/10.3390/computers7040065
https://doi.org/10.1093/comjnl/bxw099
https://doi.org/10.3390/en15239041
https://doi.org/10.1007/978-3-319-77604-0_9
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.3390/s22031157
https://www.ncbi.nlm.nih.gov/pubmed/35161901
https://doi.org/10.1007/978-3-642-18381-2_41
https://doi.org/10.1007/978-3-030-12835-7_6
https://doi.org/10.4204/EPTCS.3.5
https://doi.org/10.1007/978-3-540-28644-8_10
https://doi.org/10.1007/s10270-021-00917-7
https://doi.org/10.3390/en14227593

	Introduction
	Energy Efficiency as Verification Goal
	ETCS Characteristics
	Related Work
	Tool Selection Criteria
	Timed IMDS
	IMDS-Overview
	IMDS-Formal Description
	Timed IMDS
	Graphical Notation

	Verification of a Model
	Operational Scenario
	The Model
	Verification Process
	Modified Example

	Conclusions and Further Work
	References

