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Abstract: Predicting energy demand in adverse scenarios, such as the COVID-19 pandemic, is critical
to ensure the supply of electricity and the operation of essential services in metropolitan regions. In
this paper, we propose a deep learning model to predict the demand for the next day using the “IEEE
DataPort Competition Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm” database.
The best model uses hybrid deep neural network architecture (convolutional network–recurrent
network) to extract spatial-temporal features from the input data. A preliminary analysis of the input
data was performed, excluding anomalous variables. A sliding window was applied for importing
the data into the network input. The input data was normalized, using a higher weight for the
demand variable. The proposed model’s performance was better than the models that stood out in
the competition, with a mean absolute error of 2361.84 kW. The high similarity between the actual
demand curve and the predicted demand curve evidences the efficiency of the application of deep
networks compared with the classical methods applied by other authors. In the pandemic scenario,
the applied technique proved to be the best strategy to predict demand for the next day.

Keywords: load forecasting; convolutional neural network; recurrent neural network; COVID-19

1. Introduction

Applying machine learning techniques to energy systems is one of the tools for re-
source management and strategic planning in all its stages. Actions including tariff adjust-
ment, contract evaluation, schedules, maintenance, and quality of service can be improved
through load forecasting. In addition, adapting the energy system to a more reliable,
economic, and environmentally friendly format has been the focus of current policies,
given the concern of countries to reduce CO2 emissions caused by the use of fossil fuels in
electricity generation [1–4].

Thus, several methods and scenarios have been explored to generalize predictive
models. For example, electric power demand prediction methods have been developed
to determine the value of electric power consumption in kW for the next hours, months,
or years. Such periods are defined as short-term load forecasting (STLF), referring to
predictions up to one day ahead; medium-term load forecasting (MTLF), referring to the
period from one day to one year ahead; and long-term load forecasting (LTLF), referring to
one to ten years ahead [5].

The literature shows that 90% of the proposed methods use artificial intelligence
techniques for demand forecasting. In comparison, 10% use traditional statistical methods,
requiring more studies that evaluate these two paradigms [1]. We also highlight that the
sector’s decarbonization demands additional efforts to obtain an adequate solution to the
demand prediction problem [3]. A key ingredient for the development of robust methods
for energy demand forecasting is the availability of databases, which in most cases are
not accessible to the community for new experiments. In addition to the availability of
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databases, to achieve an unbiased evaluation of the performance of different algorithms,
load demand documents should use a standard benchmark [5].

Evaluating the performance of such models in adverse scenarios also requires further
study. One recent case that requires further attention was the scenario caused by the COVID-
19 pandemic [6–9]. Restrictive operating decisions in the industrial and commercial sectors
directly impact daily demand profiles and the market price of electricity. For example,
the New York Independent Power Operating System (NYISO) recorded a decrease in
consumption from 2019 to 2020 during the lockdown period. [6]. In Poland, there was
a more than 20% reduction in consumption during the first lockdown and a more than
10% reduction during the second. In Brazil, consumption fell by 10% in health centers,
40% in administrative buildings, and 50% in elementary school and daycare centers. [7].
Despite the variability of consumption, a reliable power supply was essential during these
periods [10,11].

Due to the lockdown periods associated with the pandemic, the demand curves
resulting from these periods were different from previous years, remaining below the
historical average. The discontinuity in consumption patterns caused by the COVID-19
pandemic prompted studies on new methods of predicting energy demand, in addition
to the traditional methods already developed [12–14]. In this context, the competition
“IEEE DataPort Competition Day-Ahead Electricity Demand Forecasting: Post-COVID
Paradigm” was created to promote a detailed analysis of the impacts caused by COVID-19-
related actions on electricity demand. The competition sought to develop new strategies to
mitigate the effects of the demand forecast for the following day in anomalous scenarios.
For this purpose, a database was made available, containing energy demand information
and climate variables from an energy utility [15].

Among the most successful papers in this competition, the authors in [16] first applied
a statistical correction of the meteorological variables, followed by classical statistical and
machine learning models to predict demand. In addition, they established state-space
models to adapt the mentioned statistical and machine learning models. The authors in [17]
developed a combination of forecasts through the smoothed Bernstein’s Online Aggregation
(BOA) method. Employing holiday-fitting techniques, they trained four classical models,
among them a high-dimensional linear regression model, with estimators obtained through
the Lasso method.

Artificial intelligence techniques, which include feature extraction and time depen-
dence, have shown promising results in demand prediction work using other
databases [18,19]. It is important to emphasize that previous analysis for selecting the
most appropriate characteristics for prediction and their adequate treatment is essential to
obtain good predictive models. In this context, the main contributions of this work are:

1. Proposal of predictive models based on deep learning, with spatial-temporal depen-
dence, considering lockdown periods established during the COVID-19 pandemic
for demand prediction, using the same database as the IEEE competition previously
mentioned;

2. To preliminarily investigate the input variables, proposing methods for selecting and
rescaling such variables before the model training stage and applying the same testing
and validation procedures previously determined by the IEEE competition;

3. Comparing the proposed deep learning model with the best performance with the
previously mentioned models developed in the IEEE competition, employing the
same metrics for performance analysis.

This paper is organized as follows: Section 2 presents the techniques applied in
demand prediction studies, both in the COVID-19 pandemic scenario and outside of this
scenario; Section 3 presents the materials and methods used in the study; Section 4 shows
the obtained results; Section 5 discusses the obtained results and compares them with
the results obtained in the most successful studies in the IEEE competition previously
mentioned. Finally, Section 6 presents the conclusions.
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2. Literature Review

In [20], using long-short-term memory networks (LSTM) and clustering algorithms,
the authors presented a method for daily demand forecasting for 10,000 households in
the city of Shanghai. In the preprocessing step, missing values were filled in by linear
interpolation and the average of adjacent values replaced discrepant values. The authors
also presented a spatial-temporal potential flow method, indicating the displacement of
electricity consumption for different regions and times of the day. To evaluate the network
performance, the root means square error (RMSE), the mean absolute error (MAE), the
log means square error (LMSE), and the R-squared (R2) were applied. The best results
achieved for these metrics were 9446.15 kW, 6741.18 kW, 1.4%, and 0.83 kW, respectively.
However, the database applied to train the recurrent network was only for one year with
thirteen meteorological variables. These two aspects impact the low generalization power
of the model and boast a high computational cost.

In [21], the authors developed a method for load prediction during holiday periods
by applying the XGBoost algorithm on a real dataset from 2015 to 2018, obtained in a
province of China. Data normalization, feature selection, and identification of holidays
according to type (New Year’s Day, Qingming Festival, May First, Dragon Boat Festival,
Mid-Autumn Festival, Spring Day, and National Day.) and duration time (3-day holiday
and 7-day holiday) were employed. The network with the best performance obtained a
value for the mean absolute percentage error (MAPE) of 2.98% in the provincial capital.
However, the treatment of discrepant values was not mentioned and the database was not
made available to reproduce new experiments.

In [22], the authors presented a hybrid model to predict monthly electric power
demand in a US Smart Grid using a restricted Boltzmann machine. During preprocessing,
the authors applied normalization, relevance filter, and redundancy filter to the input data,
composed of four years of historical data of demand and climate variables (temperature,
dew point, humidity, and wind speed). The model was evaluated using mean absolute
percentage deviation (MAPD), variance, and correlation coefficient, reaching the results
of 1.10%, 1.03%, and 0.79%, respectively. As an improvement, a graphical analysis of the
variables could have been applied beforehand to assess the integrity of the database.

In [23], for electricity demand prediction of the regional events in Rongali Bihu, Durga
Puja, and Diwali in India, the authors applied a hybrid support vector machine (SVM)-
based method with parameter optimization using the grey wolf optimizer (GWO) algorithm.
Demand and temperature variables were used over the period from 2012 to 2017. The
metric used to analyze the model performance was MAPE, which obtained values of 1.79%,
1.72%, and 1.68%, respectively, for each of the holidays mentioned above. It is observed
that the application of only two predictor variables and the absence of normalization in the
input data prevented the model from obtaining better results.

In [24], the authors proposed a sparse code method for training a neural network to
predict the energy demand of 5000 households in Chattanooga, using demand data, actual
temperature, and weather-predicted temperature. Data from a previous week was used to
predict the next day’s total demand. The model performance was evaluated using either
the actual or predicted temperature in the training and test sets. The best model obtained
used actual temperature values in the training and test data, achieving values for MAE,
RMSE, and MAPE of 36.85 kWh, 46.76 kWh, and 19.79%, respectively. The availability of
only one year of training data limited the model’s learning ability.

In [25], for demand prediction, using the database made available by the ISONE website,
the authors proposed a framework composed of an SVM, a gated recurrent units (GRU)
network, and a convolutional neural network (CNN). During preprocessing, the authors
employed a hybrid of random forest (RF) and extreme gradient boosting (XGB) methods to
calculate the importance of features. Fourteen features were used, among which we highlight
real-time demand, dew point temperature, and real-time energy. The authors also applied the
recursive feature elimination (RFE) method to remove variables that had little relevance to the
model. They used eight years of information present in the database. With this approach, the
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authors obtained the following results: MAPE—6.00%, RMSE—7.00 kW, MAE—10.00 kW,
and MSE—13.00 kW2. It is observed that the authors could have assigned a higher importance
level to the demand variable, saving computational efforts through a multiplier factor.

In [26], the authors applied an empirical decomposition (EMD), followed by an LSTM
network, to estimate the demand for the next day, using data from the city of Chandigarh.
First, the input data was cleaned and transformed by averaging the neighboring values and
subtracting the average by the current value of each time series, respectively. The demand,
day of the week, and seasons variables available over five years were used. The obtained
MAPE was 7.56%. It is observed that including climatic data, such as temperature or wind
speed, could have improved model performance.

In [27], the authors proposed a shallow neural network architecture to predict the
demand for the next hour. Data from four years of temperature and demand from a utility
in Japan were used. To predict the demand for the next hour, data from 30 days prior was
used. The best result achieved for the MAPE metric was 1.18%. It is observed that better
results could have been obtained with the establishment of discrepant value analysis and
application of deep learning techniques, besides employing other climatic variables. We
also note the need for the inclusion of other performance evaluation metrics.

In [28], the authors used a stacked neural network and a similarity-of-days method
for demand prediction. The model’s performance was evaluated using five databases
from different regions of the United States. After normalizing the input data, a deep belief
network (DBN) architecture was employed. The lowest RMSE and MAPE values achieved
were for the spring season, 18.48 MW and 1.44%, respectively. It is noted that adding
meteorological data would be essential to improve model performance.

Few works related to demand forecasting involving the COVID-19 scenario have been
produced in the literature. In [29], the authors evaluated the lockdown case in China,
predicting the monthly electricity demand through the Rolling IMSGM method, a grey
model variation in which the Maclaurin series controls the model training coefficients.
As input data, demand values from 2012 to 2018 were employed. The predicted variable
was demand for the first three months of 2019. The MAPE and RMSE values obtained in
this interval were 0.34% and 19.61 TWh, respectively. It is noted that the model could be
improved with the inclusion of meteorological variables.

In [30], to predict the monthly, daily, and every thirty minutes demand during the
COVID-19 period in Jordan, the authors applied the ARIMAX autoregressive model. Data
corresponding with five years was used. Three regions were selected for prediction (city
center, Ashrafiah, and Rashadieh). Demand and temperature variables were applied for
model training. The best performance for the MAPE metric in daily prediction was 4.1%.
It is observed that an improvement of the model could be through the application of
data normalization.

In [31], for predicting daily electricity consumption in Turkey, the authors applied two
predictive methods, an LSTM network and an exogenous nonlinear autoregressive network
(NARX). Normalized data regarding the variables of demand and temperature were used.
Both normal period data and pandemic period data were used for model training. The best
results were obtained with the LSTM network. For the RMSE, MAE, and MAPE metrics,
the values of 8717.878 kW, 8004.736 kW, and 1.1%, respectively, were obtained. It is noted
that for the training and validation of the learning network, only data from January to April
2019 were applied, possibly limiting the model’s generalization ability.

In [32], the authors applied a multilayer perceptron neural network to predict the
demand for the next day in Northern Italy. The database contains data for demand,
temperature, precipitation, time, and seven other characteristics obtained from 2015 to 2020,
with sample intervals of 15 min. Applying z-score normalization, the best result, MAE and
MSE of 0.53% and 1.02%, respectively, was obtained through a network with four hidden
layers. It is observed that a detailed analysis of the input variables was not presented, being
an essential tool for removing discrepant values and filling in missing values.
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To explore demand forecasting in the context of COVID-19, the “IEEE DataPort Com-
petition Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm” competition
was proposed. In this competition, participants used different data preprocessing tech-
niques and methods for electric power demand prediction relative to the pandemic scenario.
In [16], for demand forecasting and to correct residual values of weather forecasts made
48 h in advance, the authors applied an autoregressive statistical correction to weather
forecast variables. In addition, they established independent models for different times
of the day. The following models were used: autoregressive model, linear regression,
additive Gaussian model, random forest, and multilayer perceptron network. Finally, linear
Gaussian state-space models were developed to synchronize the predictive models in time,
followed by applying the Kalman filter as a Bayesian estimator of the state-space model.
As a result, the work obtained for the MAE metric, a value of 10.844 MW, reached first
place in the competition.

In [17], also using the competition data for demand forecasting, the authors applied
data cleaning by linear interpolation, followed by transformation of the wind direction
data, in degrees, to north-south (NS) and east-west (EW) cardinal points, using trigono-
metric wind direction value analysis. Daily averages of the meteorological variables were
calculated and added as new variables in the database. Additionally, during preprocessing,
six processes were applied and defined, such as backward log loading, ReLU transform of
the weather variables, second-order Taylor approximation of the 14 input variables, daily
and weekly deterministic effects, annual deterministic effects, and holiday adjustment pro-
cedure. For the prediction of energy demand, several models were tested. The model with
the best performance was based on high-dimensional linear regression, with parameters
estimated using the Lasso method and Bernstein’s smoothed online aggregation (BOA)
prediction algorithm. With a result of a MAE metric of 11.890 MW, the paper achieved
third place in the competition.

Table 1, adapted by [15], summarizes the methods applied by the challenge teams that
performed well. This table shows the preprocessing steps applied to the input data and the
demand forecast prediction methods used. The mean absolute error (MAE) of each team is
also presented [15].

Table 1. Methods and Results from the Works Participating in the “IEEE Dataport Competition
Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm”.

Refs. Rank Preprocessing Method
Result
MAE
(KW)

[16] 1

Application of a linear forecasting model
on weather forecast errors and
temperature smoothing with a factor of
0.95 and 0.99.

Ensemble of models: Auto-regression,
linear regression, generalized additive
models, random forest, random forest for
GAM residuals, multi-layer perceptron,
and Kalman filter adaptation.

10,844

[15] 2 Demand normalization per daily peak

Matching of similar days by day type and
peak temperature. Adjustment based on
recent peak load forecast patterns of days
of the same type.

11,849

[17] 3

Training adjusted for holiday days.
Definition of cardinal wind components,
daily weather features, multiple ReLU
transformations. Visual detection of
outliers, filled in with interpolation.

Ensemble of models: STL-decomposed
exponential smoothing, AR(p),
generalized additive models, and
lasso-estimated high-dimensional linear
models. Defining models for each
runtime. Combination by Bernstein’s
smoothed online aggregation.

11,890
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Table 1. Cont.

Refs. Rank Preprocessing Method
Result
MAE
(KW)

[15] 4 Data normalization between 0–1

Ensemble of models: random forest,
gradient boosted machine, and XGBoost.
Weighted average combination based on
recent performance.

12,280

[15] 5 None Residual deep networks 12,317

[15] 6 Information not available Information not available 13,947

[15] 7 Information not available Information not available 14,203

[15] 8
Sin/Cos of hour of day and day of year,
averages of recent demand, averages of
recent weather forecast error

Regression tree with gradient increase
and quantile loss. Different models for
periods 0–8 h and 9–24 h. Fitting using
grid search.

14,263

[15] 9 None The same-day demand for the last three
weeks is averaged and multiplied by 1.02. 14,579

[15] 22 None

Ensemble models based on the Facebook
prophet to forecast temperature, cloud
cover, and demand. XGBoost to predict
temperature and load using prophet
predictions as input. Models and
forecasts are combined using simple
linear regression.

17,432

Concerning the studies presented in Table 1, we highlight the following aspects: the
high complexity of the developed models; the absence of a previous detailed analysis of
the variables; the high value obtained for the MAE metric; the lack of a preprocessing that
characterizes the variables with greater importance and the scarce use of methods based on
deep neural networks.

3. Methodology
3.1. Materials

The database used in this work was made available by the “IEEE DataPort Competi-
tion Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm”. This database
contains hourly demand values and weather variables from 18 March 2017 to 16 February
2021. Next-day weather forecasts were also available from 16 h to 40 h in advance. Table 2
identifies the variables of the database.

Table 2. Database Variables of the “IEEE Dataport Competition Day-Ahead Electricity Demand
Forecasting: Post-COVID Paradigm”.

Variable Unit Type

Demand kW Actual value
Air pressure kPa Actual value and forecast value
Cloud cover % Actual value and forecast value

Humidity % Actual value
Temperature ◦C Actual value and forecast value

Wind direction grade Actual value and forecast value
Wind velocity km/h Actual value and forecast value

Time Year-Month-Day/HH-MM-SS Actual value
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3.2. Preprocessing

The features were analyzed separately by observing their behavior over time. This
procedure was performed to identify outlier’s values, missing values, or noise in the data.
Figure 1 shows the electricity demand curve over the time. In it, is possible to identify
that, in the section hatched in light red, there was a drop in energy consumption due to the
lockdown period. This period is from approximately February to June 2020 with a more
significant impact in the month of March 2020.
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Some weather forecast variables, such as air pressure, have atypical measured values,
as shown by the hatched regions in light red in Figure 2a. The hatched area further to
the left shows discrepant air pressure values while the hatched region further to the right
shows that the measured pressure remained constant over three months.
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Figure 2. Air pressure curves of “IEEE DataPort Competition Day-Ahead Electricity Demand Fore-
casting: Post-COVID Paradigm”. (a) measured air pressure values, highlighting the regions with
discrepant values, shown by the hatched areas in light red; (b) air pressure values obtained from the
weather forecast.

Thus, to eliminate outlier values and improve model learning, the weather forecast
variables and the actual pressure variable were not used for training the proposed mod-
els in this study. Only the following variables were used: demand (kW), cloud cover
(%), humidity (%), temperature (◦C), wind direction (degrees), and wind speed (km/h)
were used.

For training the deep network architectures proposed in this study, the need to identify
the lockdown period was also observed. Thus, a variable was added to the database, called
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“lockdown”, which assumes the value 0 in normal periods and the value 1 in lockdown
periods, considering the event’s date and time of occurrence.

By observing the values of the variables, the occurrence of different dynamic ranges
was noted. For example, the demand varies between 845.47 MW and 1605.19 MW. The
temperature varies between −6.42 ◦C and 39.07 ◦C. Faster convergence of deep grid
optimization algorithms is achieved by normalizing the variables used in their inputs [33].

Thus, a normalization procedure was applied to all variables. The best results were
obtained with the normalization process described in Equation (1). After the normalization
procedure, the demand values were multiplied by 10. Therefore, the dynamic range of the
demand was [0, 10], while the dynamic range of the other variables was [0, 1]. As a result,
electricity demand was made the most significant feature of the network input.

xnew =

(
xold − xmin
xmax − xmin

)
(1)

A sliding window method was employed to establish the advance period in hours,
used to predict the next hour’s demand. Thus, the window size ∆t of 24 h was defined.
Figure 3 illustrates the applied method, showing that between one window and the next
window, an overlapping of the forecast data of ∆t − 1 h occurs. Considering the initial hour
of a window as ti, the forecast for that window was made in the hour tp = ti + ∆t.
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Figure 3. Illustration of sliding window method applied to the input data. The green blocks
correspond to the time window (∆t hours) containing the data for prediction. The orange block
corresponds to the hour at which the energy demand is predicted, tp = ti + ∆t, where ti is the initial
hour of the window.
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3.3. Deep Neural Network Architectures

Three deep neural network architectures are proposed in this study for demand
prediction in the pandemic context. These architectures combine convolutional neural
networks and recurrent neural networks. Figure 4 shows these architectures. In their
training, the stopping criterion was the number of training epochs, which was 300 epochs.
The learning rate value was 10−3. The Adam optimizer was adopted by default. The size
of the mini batch was made equal to 256.
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Figure 4. Architectures of the deep neural networks proposed in this study for demand forecasting:
(a) convolutional network with four convolutional layers using the ReLU activation function, in-
terleaved by a pooling layer, followed by an output neuron with a linear activation function;
(b) recurrent network with two LSTM layers for extracting temporal features, followed by a reshaping
layer and an output neuron with a linear activation function; (c) mixed convolutional-recurrent
network with four convolutional layers and two LSTM layers for extracting spatial-temporal features.
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In the first architecture, a convolutional neural network and four convolutional layers
were used for feature extraction, with ReLU activation function, interleaved by a max
pooling layer. The max pooling layer has a kernel size of 2 × 2 and step size of two. The
last layer consists of one neuron, as shown in Figure 4a.

The second architecture, a recurrent neural network, comprises two feature extraction
LSTM layers with 64 and 32 cells, followed by a linearization (reshape) layer. The last layer
also consists of one neuron, as shown in Figure 4b.

The third architecture is a hybrid convolutional-recurrent architecture, a combination
of architectures 1 and 2, with the convolutional layers followed by the recurrent layers. A
linearization (reshape) layer and an output layer with one neuron were also used. Since the
output of the proposed networks predicts a demand value, which is a real number, a linear
activation function was used in all output neurons.

3.4. Evaluation Metrics

To enable benchmarking with the competition models, the MAE metric was applied
for the performance evaluation of the previously proposed architectures. This metric is
defined using Equation (2), where xactual is the expected value, xpredicted is the predicted
value, and n is the amount of observed data.

MAE =
∑
∣∣∣xactual − xpredicted

∣∣∣
n

(2)

3.5. Simulation Environment

The experiments were performed in the collaborative environment Google Colab™ in
Python language with the packages Tensorflow v2.9.1, Keras v2.9.0, Pandas v1.3.5, Numpy
v1.21.6, and Matplotlib v3.2.2. The computational resource used for the simulations was
composed of an Intel Core i5 2.7 GHz processor, 16 GB RAM, 4 GB GPU, and 500 GB SSD.

4. Results

To train the deep net architectures, the input data was divided into two sets, a training
set and a validation set, in a proportion of 70% and 30%, respectively. The test set was the
same one made available by the competition, consisting of two months of data. Figure 5
represents the learning curve for architectures 1, 2, and 3, where the value of the MAE
metric is plotted for each epoch for a total of 300 epochs.

It can be observed that architecture #1 presented a stable learning curve, with the
MAE metric values being very close, in the validation and training sets. In this training, the
final value of the MAE was still above one. Architecture #2 presented a slight instability
in the first epochs, but the absolute value of the MAE was close to zero. However, a MAE
increase was observed in the validation set after 75 epochs, characterizing an overfitting
model. Architecture #3 presented stability throughout training, with the final value of the
MAE close to zero and without overfitting.

Table 3 presents values for the MAE (not normalized values) obtained in the test
set for the three proposed architectures after converting the values to kW units. We note
the superiority of the result obtained in architecture #3, over the others, with an MAE of
2361.84 kW.

Figure 6 presents the daily demand prediction curve of the third architecture and the
actual demand from the database in the same period. We can notice the high similarity of
the curves, indicating a load prediction close to the expected value. Thus, architecture #3
was the one that obtained the best performance.
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Figure 5. Convergence curves obtained for training the three neural network architectures. The
dashed green line indicates the MAE normalized values at training data and the blue line represents
the MAE normalized at validation data. (a) Architecture #1; (b) Architecture #2; (c) Architecture #3.

Table 3. MAE obtained from the competition’s test (not normalized values).

Architecture Method MAE (kW)

#1 CNN 93,968.08
#2 LSTM 2530.15
#3 CNN + LSTM 2361.84
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Concerning the time complexity, architecture #3 took about 14 min for training. Once
trained, the time it takes to make a prediction is 1.3 min.

5. Discussion

The learning curve of architecture #3, shown in Figure 5c, presented a well-behaved
training over the 300 epochs, with no overfitting error. The excellent performance of the
MAE metric on the validation set during training was reflected in the values obtained for
it on the testing set, as shown in Table 3 and in the graph shown in Figure 6. The results
obtained in the validation and testing sets prove that the choice of a hybrid architecture
of deep network (convolutional + recurrent network) and its hyperparameters, for the
prediction of daily demand, was right.

The normalization of the input data, adding more significant weight to the demand
data, was fundamental for the model’s performance. The preliminary analysis of the data,
which resulted in the exclusion of characteristics that presented anomalies, also contributed
to the excellent performance of the proposed architectures. These two strategies provided
the highlighting, at the input of the networks, of the most important feature and the
mitigation of problems arising from spurious data in the database. These strategies were
not used in other works published in the literature that stood out in the competition.

We also highlight the beneficial result for demand prediction in the COVID-19 pan-
demic context by extracting spatial and temporal features from the input data.

Table 4 compares the values obtained for the MAE metric by the three first places in
the competition, with those obtained by the architecture proposed in this work. Rank 1 in
Table 4 refers to the study of the competition that obtained the smallest value of MAE The
superiority of using deep networks compared with the classical methods applied by the
other authors is evident.

Table 4. Performance of the competition models and of the proposed method.

Rank Method MAE (kW)

1 [16] Multi-model machine learning ensemble (72 models) 10,844
2 [15] Matching similar days by day types and peak temperature 11,849
3 [17] Multi-model machine learning ensemble (674 models) 11,890

Proposed method Hybrid model (CNN+LSTM) 2361

6. Conclusions

In this paper, a next-day demand prediction method applying convolutional networks
and recurrent networks was proposed in the scenario of the COVID-19 pandemic. The
efficiency of the spatio-temporal feature extraction method, associated with preliminary
analysis and input data normalization, was shown. After normalization, assigning a
higher weight to the demand variable highlighted its importance in the predictor input. In
this paper, the performances of three deep architectures were evaluated. The best model
obtained was compared with the models that stood out in “IEEE DataPort Competition
Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm”, showing that the
proposed hybrid model, convolutional + recurrent, is the best one to solve the prediction
problem in this scenario.
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