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Abstract: Nowadays, energy generation systems that include renewable energies, substations, dis-
tribution, transmission, control, measurement, and storage applications, among others, and are
interrelated are known as Smart Grids. All these techniques and technologies involve extensive
research and development, which allows for the solving of key aspects, such as control, diagnosis, and
fault recovery, as well as communication systems focused directly on the operation of the electrical
networks. Due to the relevance of knowledge concerning developments in these areas of Smart Grids,
this paper presents a review of the research related to the control systems applied to Smart Grids and
Micro Grids, both in supply and demand. Likewise, some control models relate to different processes,
with a special focus on techniques related to Petri nets. The paper shows, among other outcomes, the
advances in the control of smart grids, the types of generation and their influence on the design of
transmission lines, integrated circuits applied based on sensors, communication technologies, and
automation schemes in all levels of the electrical network. Finally, patents from 1950 to 2019 related
to Smart Grid in energy systems are traced and presented.

Keywords: smart grids; renewable energy; control systems; Petri nets

1. Introduction

Today, large urban centers and their population growth trends have resulted in an
increased demand for basic resources such as water and energy for our current and future
societies. This makes the need to supply primary resources in quantity and quality a
priority, strengthening research and innovation into the development of new technologies
that allow the private and public sectors to meet these needs [1]. This need to make
the management of electrical energy more efficient has encouraged countries to develop
research in traditional systems, starting from generation, distribution, and delivery to
end-users. These developments have improved energy generation systems, including
technologies associated with renewable energies, substations, distribution, transmission,
and storage, among others. These developments caused the appearance of subsystems
related to energy that were not essential before, but with the current demand, they will be
necessary for the correct monitoring and control of the same networks, among which are
the systems for measuring large volumes of data, comprehensive management, intelligent
control, and expert systems. All of the above is based on the need to transform electrical
networks into Smart Grids [2].

Worldwide, the trend is toward conducting pilots, implementing regulations, and
designing Smart Grid models, seeking a diffusion of technology and greater research.
Definitions, programs, pilots, and other initiatives are part of these strategies. For example,
the Smart Grids European Technology Platform “EARPA” defines a Smart Grid as an
“electrical network that can intelligently integrate the actions of all users connected to
it; generators, consumers and those who integrate both; to efficiently deliver the supply
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of electricity in a sustainable, economic and safe way, which is integrated with turn by
unconventional energies” [2].

On the other hand, the United States Department of Energy (DOE), in 2008 created the
“Renewable and Distributed System Integration Program” to integrate the new concepts
of smart grids and clean energies at all levels of the electric power chain [3]. In Latin
America in 2010, the Inter-American Development Bank was the promoter of the creation
of the Center for Energy Innovation, which promotes the development of clean and smart
energy technologies [4]. This Innovation Center manages the exchange and dissemination
of knowledge about energy for the region. The term “intelligent” in electrical networks
has begun to appear in all scenarios, denoting multidisciplinary research concerning
instrumentation, measurement and monitoring systems, information management, its
response in real-time, and its monitoring system [5,6].

All these initiatives have forced countries to standardize the implementation of Smart
Grid-based systems. For example, the United States has identified 75 regulations through
the National Institute of Standards and Technology (NIST-ANSI) regarding Smart Grids [7].
Similarly, the European Union, through the European Committee for Standardization (ECS),
identified 110 different standards and architectures that can be implemented in Smart
Grids [8]. Under these principles of norms, standards, and research, it was evidenced that
the control systems applied to the most-used Smart Grid and Micro Grid are the distributed
control architecture managed employing layers (related but independent control systems)
that cover supply and demand [9,10]. These systems not only involve the technical aspects,
but also the management of risk and cost reduction through the optimization of operations,
for example, in the district energy network and others [11].

This article aims to establish relationships between Smart Grids and their control
models, mainly related to Petri nets, from their beginnings to current trends limited to new
devices and developments that have led to registrations and licenses or patents.

2. Methodology

The study of Smart Grids is considered today to be a very important research field in
the subjects of electrical networks, not only for environmental reasons or energy shortages
but also for applying revolutionary non-linear control techniques, proposing ways of
digitizing energy, and perhaps most importantly, improving accessibility and the right of
all people to access it.

Figure 1 presents a flowchart that shows how the development of this document has
been addressed over time. In this review, a follow-up of the patents related to the control
systems applied to electrical energy and their relationships, especially with Petri nets, is
carried out. The paper seeks to describe the relationship of Petri nets with Smart Grids, which
is currently being investigated due to the need for a transition toward renewable energies.

This paper reviews the origins of the Smart Grid definition with some examples
applied to the initial infrastructure. Section 3 presents concepts and theories based on the
technologies implemented in Smart Grid projects and presents patents that were tracked to
the company with projects applied to the energy sector. In Section 4, the most-used Smart
Grid and electrical power-related control system techniques are established and sampled.
Then, in Section 5, the observation that technologies and control systems are related to Petri
nets (PNs) defines it as a control system with PNs. Likewise, patents obtained based on
PNs for Smart Grid solutions with some applications and control systems are presented.
Finally, Section 6 presents the conclusions of the work.
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3. Smart Grids’ Origins: Concepts and Theory

Studies have not been able to establish the origins of the first use of a Smart Grid, since
it depends on the context used. For example, the term Smart Grid is part of different areas
of engineering, including communications systems, programming systems, energy systems,
advanced instrumentation, and the interaction of the different disciplines of electrical
engineering where the concept of automated electrical networks is present.

Going back to the projects that include Smart Grids, there was the Telegestore project,
implemented in Italy in 2000, which established for the first time the foundations of a Smart
Grid as a project in automated energy and, although the concept as such does not appear
in their research, it was one of the first projects that worked on this technology. This project
consisted of installing and putting into operation smart meters on a large scale, connecting
them through power-line communication (PLC), and sharing information with a central
system [12].

On the other hand, the term Smart Grid in a scientific article that was focused on
energy was used for the first time in 2005 in a paper called “Toward a Smart Grid”, which
was published in the IEEE Power and Energy Magazine and consisted of applying the flight
technologies of an F-15 to its interconnected power systems. The main idea was to make
the components of the power systems act as plug-and-play interconnections, and because
of this, every component, substation, and power plant should have an intelligent processor.
This article was the first to officially present the concept of smart energy grids [13].

The term of control in smart grids is believed to have been established when opti-
mization techniques applied to power systems appeared in 1960; this was to optimize the
cost in the design of the facilities, minimize losses in the operation, and reduce costs in
the operation of generation plants and the design of transmission lines [14]. However, its
application in projects first occurred in the 1980s, when electromechanical electricity meters
appeared and its usefulness was demonstrated with the incorporation of integrated circuits
and communication technologies, subsequently evolving into electronic energy meters [15].

This technology can be observed in patent US4240030A, in which the electric meter is
equipped with special circuits and components that work in conjunction with an inserted
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magnetic card to regulate the supply of electricity to the system [16]. Likewise, in the United
States, the first fully automated system for managing the load of electrical networks and its
remote reading was developed using automatic meter reading (AMR) technology in 1985.
This AMR technology evolved into advanced metering infrastructure (AMI), considered
the intelligent sensor technology for smart grids [17].

Due to the importance of research and prototyping, the Smart Grid concept made
its way into the production of innovative electrical devices that began to be licensed
and patented around the world. For example, the first record of a device focused on
automatically controlled energy was patent US2677789A, which presented a rectifier circuit
controlled in an intelligent network in 1950 by the company English Electric Co [18].
Figure 2 shows the companies that have generated the most patents from 1950 to 2020, the
percentage of patents for each company is related to the total number of patents published
in that same year that were directly related to Smart Grid systems.

Energies 2023, 16, x FOR PEER REVIEW 4 of 21 
 

 

This technology can be observed in patent US4240030A, in which the electric meter 
is equipped with special circuits and components that work in conjunction with an in-
serted magnetic card to regulate the supply of electricity to the system [16]. Likewise, in 
the United States, the first fully automated system for managing the load of electrical net-
works and its remote reading was developed using automatic meter reading (AMR) tech-
nology in 1985. This AMR technology evolved into advanced metering infrastructure 
(AMI), considered the intelligent sensor technology for smart grids [17]. 

Due to the importance of research and prototyping, the Smart Grid concept made its 
way into the production of innovative electrical devices that began to be licensed and pa-
tented around the world. For example, the first record of a device focused on automati-
cally controlled energy was patent US2677789A, which presented a rectifier circuit con-
trolled in an intelligent network in 1950 by the company English Electric Co [18]. Figure 2 
shows the companies that have generated the most patents from 1950 to 2020, the percent-
age of patents for each company is related to the total number of patents published in that 
same year that were directly related to Smart Grid systems. 

 
Figure 2. Percentage of patents related to Smart Grid in energy use. 

For some years now, energy research and innovation centers have had as their goal 
the implementation of a Smart Grid focused on guaranteeing reliability, flexibility, effi-
cient use, availability, the integration of renewable energies, and reductions in the cost of 
energy, both for operators and users [19]. These investigations have defined the main 
characteristics that a Smart Grid should have as follows: 
• Integration of sensors, actuators, measurement technologies, and automation 

schemes at all levels of the network (multipurpose communication platform) [20,21]. 

Figure 2. Percentage of patents related to Smart Grid in energy use.

For some years now, energy research and innovation centers have had as their goal the
implementation of a Smart Grid focused on guaranteeing reliability, flexibility, efficient use,
availability, the integration of renewable energies, and reductions in the cost of energy, both
for operators and users [19]. These investigations have defined the main characteristics
that a Smart Grid should have as follows:

• Integration of sensors, actuators, measurement technologies, and automation schemes
at all levels of the network (multipurpose communication platform) [20,21].

• Information systems, cyber security, and distributed intelligence (intelligent control
techniques) [22].

• Integration of renewable energies and efficient transmission capacity of the network [23].
• Distributed generation and use of energy resources [24].
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• Incorporation of efficient control equipment against failures and self-correction.
• Integration of users and smart electrical equipment, energy efficiency schemes, price

signals, and monitoring of operations. Advanced home automation [25].
• Electric vehicles, load structures, storage capacity, and on-site generation [26,27].
• Research development of advanced technologies, such as high-temperature supercon-

ductors, mass storage systems, ultracapacitors, transformers, high-efficiency motors,
equipment, and flexible alternating current transmission systems (FACTS).

Research related to Smart Grids in different countries has been related to achieving en-
ergy security and low carbon emissions. Australia, for example, is innovating commercial
distribution management systems, integrating grid fault detection, power quality moni-
toring, and process automation [28]. In Canada, research is focused on the transmission
transfer capacity of control systems, which thus provides voltage stability to the grid. In
Ontario, for example, a reduction in peaks between 5% and 8% was achieved in the load
profile of users [29]. In the United States, the Pacific project (Montana, Washington, Idaho,
Oregon, and Wyoming) implemented a system of continuous Smart Grid coordination for
public services [30]. Likewise, Houston implemented a measurement system with Smart
Texas, which notifies if there is an interruption automatically through the internet and
provides reports from the smart meters [31].

On the other hand, photovoltaic systems, charging stations, smart meters, heat pumps
in the distribution network, and electric vehicles, among others, were integrated under the
“London Low Carbon” program, which improved the efficiency of the energy and demand
response [32]. In Asia, the “Jeju SG” project in South Korea shows photovoltaic solar
energy technologies, wind energy, storage systems, distributed automation, electric vehicles,
network monitoring, and telemetry in a dashboard-type system where the consumer can
observe electricity rates in real-time, the type of generation source, the interaction with
their loads (smart appliances), and the management of storage systems [31].

As an investment in telemetry systems, it is important to know the case of the Energy
Regulatory Commission (ERC) in Ireland, which implemented approximately 9000 smart
meters in homes and public and private sector companies in record time (Ecar Ireland
project). Among other benefits, these systems allowed electric vehicle drivers to pay
the electricity supplier in a fully automated way [33]. Likewise, the European IGREEN-
Grid project used AMI (advanced metering infrastructures) on a large scale, consisting of
installing renewable energy sources in the distribution networks with around 200,000 smart
meters in the Madrid area without compromising the reliability and quality of supply [34].

Also, in the city of Santander, Spain, with the support of the European Energy Com-
mission (Energy EU), the Smart Santander project was established in 2014, which comprises
many Internet of Things devices implemented in various urban settings for the creation of a
laboratory. Starting in 2017, tests have been carried out on the integration of new intelligent
and efficient platforms, where devices based on the IoT transfer information initially in the
home between the power plant and the end users, allowing the development of learning
methods in the distribution [22].

Moving from the continent to Chongqing, China, the energy company’s photovoltaic
micro-grid presented problems of unknown line resistance, large load fluctuation, large
control voltage error, and poor stability. To resolve this problem, Chongquig Jiaotong
University designed a control algorithm with big data technology that helped achieve
coordinated control of the micro-grid in the photovoltaic cell, the energy storage unit,
and the DC–DC converter independently [35]. At Amity University, Jaipur, Rajasthan,
India, on the city’s smart grid, blockchain techniques were developed for strengthening
the security, credibility, and integrity of decentralized transitive energy data. In addition,
they support cybersecurity against attacks on the infrastructure of network equipment
and sensors [36]. One of the main advantages of this technology is the reduction in energy
exchange costs through the elimination of redundant mediators, among other areas of the
commercialization of the energy sector [37].
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As a summary, the following Figure 3 shows the percentage of research associated
with different Smart Grid developments and technologies between 2009 and 2019. Table 1
shows a summary of the projects related to Smart Grids showing their merits and demerits
for a better understanding.
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Project Method Merit Demerit

Tele-manager. Italy, 2000.

This project consisted of installing
and operating large-scale smart

meters, connected through
power-line communication (PLC)
and sharing information with a

central system.

One of the first projects to
automate information and
communication systems.

It was not determined if it
really was an intelligent

network: there was no record
of whether it had any

control model.

Implementation of Smart
Grid Technologies in an

F-15 aircraft in its
interconnected power

systems. 2005.

F-15 aircraft power systems that
act as smart grids with

plug-and-play interconnected
with an independent smart

processor per process.

First project to introduce the
concept of smart grids and,

although it is a single
machine, it is analyzed as

independent processes
interacting with each other.

It remained simply the first
project that used the concept

of Smart Grids.

Management of the load
of electrical networks and
its automatic reading of

meters. United
States, 1985.

Implementation of AMI
(advanced metering

infrastructure) technology,
considered as smart sensor
technology for smart grids.

One of the first projects to use
instrumentation with

automated remote readings in
electrical networks.

It focused only on
instrumentation and its

benefits but is not associated
with remote response

methods for control systems.
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Table 1. Cont.

Project Method Merit Demerit

Commercial distribution
management systems.

Australia, 2010.

Innovation in commercial
distribution management systems,

integrating network failure
detection, power quality

monitoring, and
process automation.

Integration of intelligent
networks based on

information management, to
have a comprehensive control

model in fault detection.

There is no mention of the
integration of networks of
renewable energy sources.

Transmission transfer
control systems.
Canada, 2010.

Focuses on the transmission
transfer capability of control
systems to provide voltage

stability to the grid. Achieved
maximum reduction between 5%
and 8% with network load issues.

Results of the control and
stability systems in the

network are found.

The integration of renewable
energies in the processes

is missing.

Smart Santander Project.
Spain, 2014

Installation of Internet of Things
devices in various urban

environments for the creation of a
laboratory. Integration testing.

The transfer of information
between the central point and

the end users.
Marketing automation.

It is not known if there is
integration in the charge for

renewable energy generation.

Integration of smart grids
for public services.

USA, 2015.

Implementation of a continuous
coordination system for smart

grids for public services.
Installation of a measurement

system with Smart Texas, which
automatically notifies if there is

an interruption through the
internet and provides reports

from smart meters.

Integration of information
systems and communications

with AI control systems.
Report in real-time

on the web.

It is unknown if there is
integration of renewable
energies in the project.

London Low Carbon.
London, 2016.

Integration with photovoltaic
systems, charging stations, smart

meters, heat pumps in the
distribution network, and electric

vehicles, among others.
Integration with information and

control management systems,
which reported improvements in

energy efficiency and
demand response.

The integration of renewable
energy generation systems in

an electrical network is
known. Completely
autonomous system.

None.

“Jeju SG” project. South
Korea, 2016

Integration of photovoltaic solar
energy technologies, wind energy,

storage systems, distributed
automation, electric vehicles,

network monitoring, and
telemetry, in a board-type system.

Smart Grid automatic control
system in real time. None.

Energy Regulatory
Commission (ERC) of

Ireland, 2018.

Implementation of 9000 smart
meters in homes and public and

private sector companies.

The provider can pay for
electricity in a fully automated

way for electric vehicles.
Integration of

renewable energies.

None.

4. Smart Grid Control Systems

The development of control techniques in smart grids has its origins mainly in the
need to mitigate network failures and changes in power quality. The foregoing is due to
economic concerns and the environmental impacts of energy issues in terms of sustainable
development [39–41]. Smart Grids have also contributed to the development and integra-
tion of renewable energies into the distributed system since this type of generation source
presents intermittent output [42]. These intermittency characteristics of renewable sources
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and the stochastic behavior of demand make these networks complex systems with types of
non-linear control that must be robustly modeled, analyzed, tested, and implemented when
considering their operation, safety, reliability, and maintenance [43]. The above shows that
the best ally of renewable energy sources is Smart Grids.

According to the Department of Mechanical and Aerospace Engineering of the Univer-
sity of Syracuse in the United States [44], the control theories implemented in most Smart
Grids can be grouped into four categories, which are discussed in the following sections.

4.1. Rule-Based Control (RBC)

Also known as autonomous control, based on static command control strategies RBCs
are not capable of making any adaptive decisions, and, in most uses, algorithms are based
on fuzzy logic. Their implementation is simple and flexible compared to other control
strategies [45]. To improve decision-making in an adaptive way and in a stable state, a
metaheuristic or homeostatic algorithm is implemented [46,47]. Figure 4 shows an example
of the programmable temperature control systems (PTC) in North America, where their
automatic adjustment is based on rules associated with high demand, intervening in the
adjustments of these meters based on times when users do not make changes [48].
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4.2. Optimal Control (RBC)

The objective of this type of control is to solve an optimization problem and implement
its result. Optimization problems are generally solved in the context of a complex systems
control scheme, such as model-based predictive control (MPC) [49]. The principle of
control is to optimize (minimize or maximize) one or more target variables, varying their
decision values while satisfying a set of constraints. In the case of the Smart Grid in
Figure 5, the conventional approach is to minimize the cost of the operation, which includes
different components (fuel, storage, maintenance, policies, cycles, demand, and supply,
among others) [50]. An application of this control has been developed at the Tamil Nadu
Institute of Technology and Sciences, India, where a predictive control model called the
trust was implemented in the wireless sensor nodes to observe them as energy supply and
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demand nodes and thus obtain more adequate metrics. The proposed trust model validates
compensation failures and data loss failures in smart meters [51].
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4.3. Agent-Based Modeling (ABM) Control

Agent-based modeling control systems are intelligent systems consisting of a collec-
tion of agents that interact with each other in such a way that the entire system learns
and evolves. The term “agent” refers to a computer system capable of performing au-
tonomous actions, which can be divided into different agents, including: controller, central
coordination, load, network entry and exit, planner, management, market, regulation, and
others [52,53]. These agents communicate with each other to perform coordinated actions,
perform complex calculations, and make decisions. These models are more focused on
energy management.

They can be used in situations where a fully formulated optimization problem would
be impractically complex or where a model of the complete system cannot be known. They
are tolerant of errors due to their decentralized control scheme [54,55].

Research carried out at Beihang University in Beijing, China, presents agent-based
control as a solution to failures when they are associated with the dynamic load balancing
of the smart grid. The agent-based algorithm optimizes groups of nodes called herds
based on load compensation using communication architectures [56]. A similar system
for distribution network restoration in future smart grids can be seen in [57], where the
self-repair capacity of future networks will be a must.

4.4. Model-Based Predictive Control (MPC)

Model-based predictive control is a control strategy based entirely on the dynamic
model of the system. In general, it is a linear model that takes as input the current state
of the system and external disturbances and generates a future state [58]. The resulting
state is optimized in a prediction horizon of N + 1, and the now-current state (N + 1)
with the current and predicted disturbances is introduced into the model, as in Figure 6.
The MPC has the advantage of having an account of the future state of the system and
future disturbances when making control decisions for the current next step; thus, one can
anticipate future events and act on that prior knowledge in the present. An advantage of
the predictive control of the model is that it is only as good as the model that is placed
in it [59,60].

This type of model is being applied in commercial buildings in Hong Kong for the
management of the demand for air conditioners and its relationship with the supply of en-
ergy through the Smart Grid. The main objective is to maximize the power reduction based
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on a predictive profile of the electrical networks as well as maintain the air temperature
inside the building. The MPC controller determines the demand control outputs based on
the building’s thermal response model [61].
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4.5. Control Based on Discrete Event Models (CMEDS)

This type of control is based on asynchronous dynamic systems, which evolve accord-
ing to the occurrence of events [63]. Its behavior can be described as sequences of events
forming a language and thus establishing a process that can be coupled to a supervisor,
and this can force the processes to be recurrent. It is present where the Petri nets are
perfectly coupled by the supervised control manager, as seen in Figure 7. This type of
control was applied in Detroit in the United States by the Department of Electrical and
Computer Engineering at Wayne University. Its objective was to avoid overload tripping of
circuit breakers through the distribution or output of the overload in the network with the
maximum possible power transfer [64].
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Supervised systems are managed via Petri nets since they establish programmable
logic rules and define events restricted by actions. These Petri nets have penetrated control
systems for failure analysis, financial systems, energy, storage systems, automation systems,
and telecommunications through their different forms, such as timed, hybrid, and stochastic
Petri nets, combined with other control methods or colored [66,67].

These models can be combined by different techniques, which can be from the same
PN family but from different sources, such as Bayesian Petri nets and stochastic Petri nets.
In this case, one of them can act as the supervisory PN, which controls the events, and the



Energies 2023, 16, 3541 11 of 21

other PN can generate the model through an algorithm for process control. In addition,
a combination of hybrid models can be presented. These can be PNs with a discrete or
continuous control model. An applied example of the combination of PN techniques is the
modeling of urban traffic systems in the city of Turin, Italy, which uses real-time control
strategies. The hybrid model uses timed colored Petri nets (TCPNs; Figure 7, section (b) of
reference [68]) as a system control of entrances and exits in the intersections; these TCPNs
establish the possible stopping times, numbers of vehicles, and flow directions, while the
vehicular flow on the road has been modeled through a stochastic discrete-time model
(Figure 7). Hybrid model validation has shown that relevant traffic dynamics have been
considered, but the real-time computational cost is of low latency and time-saving, making
it suitable for real-case applications. The above, due to the simulation, can be performed in
parallel for the hybrid model [68].

5. Smart Technological Developments with Petri Nets in Control Systems

Petri nets were created in 1962 by Carl Adam Petri in his doctoral work “Kommu-
nikation mit Automaten” as a graphical and mathematical modeling tool that can be
applied in many systems, based on bipartite graphs [69]. Petri nets are used for systems
with concurrent, asynchronous, distributed, parallel, non-deterministic, and/or stochastic
characteristics that process information. Numerous research has been developed that
has strengthened the theory, and today they are the fundamental tool for modeling and
simulating dynamic systems of discrete events [70]. The applications that use Petri nets
and their types are diverse, present in areas such as automation processes, fault diagnosis,
telecommunications, and logistics systems, as shown in the previous section. For example,
in [71], a colored Petri net is implemented for the diagnosis of intermittent failures in
semiconductor devices, while in [72], the same type of CPN is used in the sustainable
logistics of a company for the green purchasing process. Some of these applications have
evolved into important developments in software and hardware that have culminated
in innovation and development processes, and therefore in registrations, patents, and
utility models.

One example is the case of the software developed by Aarhus University initially for
CPNTools research and that today is used for modeling, mainly in telecommunication
systems [73]. The research and development of the PNs have also allowed the main
automation technology companies in the world a whole range of programmable logic
controllers for industrial use with efficient platforms for the modeling of processes, such
as the Grafcet and the Gemma [74,75]. Both emerging technologies and Industry 4.0 have
taken an important step toward the development of PNs, directing their futures toward the
current needs of computer systems with artificial intelligence [76].

The history of Petri nets in the development of software and hardware for prototypes is
very important because it has spurred progress and great changes in the telecommunication,
automation, and electrical networks industries. Below, Figure 8 shows a Sankey diagram,
where the patents related to R+D+i processes are grouped into technology sectors associated
with Petri nets according to the period. For example, in the energy line, there is talk of
patents in fault control but focused on energy, or the development of modeling software
but focused on energy systems. Finally, there are patents on models to streamline public
transport; likewise, other areas can be seen where the Petri net research has culminated in
important developments for the industry. It is important to highlight from Figure 9, that all
those that did not have a classification were grouped into the generalized Petri nets group.
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Some of the investigations into technological developments show the PNs as support
for control theories [77] as seen in Table 2. Reviewing the research that evolved into these
technological developments, it is observed that in most of the research in the places of the
PNs, other control theories are managed, which are then led to predefined events through
transitions. Likewise, in other developments, great algorithmic and control development
is observed in the transitions of the PNs. One of the most interesting developments is the
use of applications based on distributed control [78]. Next, some of the most important
technological developments are related to PNs in the integration or execution of control
models in a Smart Grid and Micro Grid.
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Table 2. Patents related to Petri nets.

Number of Patent Date Description

EP0704778A1 30 September 1994 Method for the distribution of electrical energy using diffuse Petri
nets in electrical power generation systems from steam [79].

CN102680817B 28 April 2012 Fault diagnosis method in a power transformer based on fuzzy
Petri nets [80].

CN103001328B 19 November 2012 Method for diagnosing faults in smart substations using Petri
nets [81].

CN103020713A 19 November 2012 Intelligent substation fault diagnosis method combining topology
and logic with relay protection [82].

CN103278328B 16 May 2013 Method for diagnosing faults in a wind turbine generator based
on a fuzzy Petri net [83].

CN103308824A 31 May 2013 Fault diagnosis method in a power system based on a
probabilistic Petri net [84].

CN104182613B 25 July 2014 Construction method of the fault diagnosis model in a ship’s
electric power plant, based on Petri nets [85].

CN104268375B 10 September 2014 Petri net-based ship electrical power station fault diagnosis
method [86].

CN105990834B 15 February 2015 Fault diagnosis and evaluation procedure of the battery energy
storage station [87].

CN105470932A 28 August 2015 Protection simulation method in a power transmission line with
object-oriented Petri nets [88].

CN105548815A 14 January 2016 Method for detecting faults in the electrical network based on
Petri nets with maximum probability decoding [89].

AU2016100316A4 23 March 2016 Model of a system to control energy transmission [90].

US10103569B2 23 March 2016 Model for controlling a power transmission system [91].

CN105894213B 27 April 2016 Method for a multi-agent-based power grid fault diagnosis
system supported on Petri nets [92].

CN106443341B 29 September 2016 Method for a smart grid system to diagnose faults [93].

CN106908132A 20 January 2017 Improved Petri net-based strain gauge load cell failure detection
method [94].

CN107729620A 20 September 2017 Integrated software for a methodology for forecasting energy
consumption based on colored Petri nets [95].

CN107656176B 9 November 2017 Electrical network fault diagnosis method based on a
Petri–Bayesian network [96].

CN107769202A 28 November 2017 Reliability evaluation method of the distribution network based
on fuzzy Petri net [97].

CN110018390A 15 March 2019
Hierarchical method of fault diagnosis in an electrical network

based on fuzzy Petri nets using the integral variable weight
method [98].

CN109884473A 29 March 2019 Electrical energy review system and method based on Petri nets
[99].

CN110348114A 9 July 2019
Non-precise fault recognition method for the reconstruction of

the information on the state of integrity of the electrical network
based on Petri nets [100].

CN110470951A 18 August 2019 Active power distribution network method to diagnose faults
based on information from PMU and Petri net [101].

5.1. Automatic Control Model in Substations Interconnected with a Smart Grid

The application of PNs in the design, monitoring, and automatic control of distributed
generation (DG) models on the substations for their transmission has focused on solving
problems of bidirectional power flows that change the operating conditions of the sys-
tem [102]. In this case, the solution presented is that the PNs for DG models associate the
switching sequences of reconnection, disconnection of low voltage loads and restoration,
energy transport, and faults, among others. These operations are usually carried out using
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autonomous devices; however, in these cases, Petri nets are used only to specify the control
of the information flow between the devices. The control itself oversees expert systems,
such as evolutionary algorithms, neural networks, and fuzzy logic, among others, which
involve concurrent multitasking architectures through the administration of PNs. The IEC
61850 standard established unified criteria for automatic control functions with Petri nets,
seeking that current research establishes a convergence between these powerful tools [103].
As an example, patent US10103569B2 shows a group of circuits that detect the presence
of demand changes, disconnection faults, substations, and out-of-range processes. This
patent facilitates information and data processing [91].

5.2. Automatic Control Model in Substations Interconnected with a Smart Grid

This model is focused on the supply of unconventional energy that interacts with the
Smart Grid, for example, from non-renewable sources. In this case, energy generation is
calculated using mathematical models based on daily availability. This allows the gap
between energy production capacity and energy demands over 24 h to be calculated. The
problems of these interconnection models are related to the control and supervision of the
distribution of electrical energy, which can give rise to stability and quality problems in
the networks.

This is due to a greater extent to: energy storage, intermittent generation, unexpected
demand, network overload, voltage quality, or non-compliant energy returns to the network.
To ensure a continuous supply, energy must be managed according to the model proposed
in Figure 10. This is achieved by designing the interconnection system based on demand,
generation, and the needs of the renewable energy system [104]. For this, operating rules
are established for the use of unconventional electrical energy, among them the priority
of generation over the grid as well as the sale of surplus energy to the national grid. This
operating strategy is based on an iterative evolutionary algorithm to control and manage
power flows using Petri nets as a management system for control in its nodes and its
execution in its transitions [105]. The viability of this model is determined through an
economic analysis of the cost of energy [106].
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5.3. Adaptive Control Model Using AAHPNES Expert

The Hierarchical Autonomous Adaptive Expert System with Petri Nets (AAHPNES)
is based on models of expert judgments on if–then rules supported in fuzzy logic. This
system uses a Petri network for logical-mathematical operations based on the maximum
and minimum allowed. This models as follows [108].

• Each antecedent proposal is seen as a place of entry.
• Each consequent proposal is modeled as a starting point.
• The logical operator under these conditions is represented in the transition.

This AAHPNES model is implemented in the SCADA-type power distribution system,
which executes the reconfiguration function of the automatic power supply management of
public services (UMA-FRF). This UMA-FRF system, after a failure, automatically restores
electrical power to affected customers at load points, reconfiguring the network topology
for distribution. The result of the simulation shows a performance in decision-making of
94% assertive in critical situations, which would have been proposed by experts [108].

6. Conclusions

The Smart Grids future is still incipient, and its research is still in the early stages due to
the complexity of the generation, transmission, and distribution chains (GTD) and to several
current technologies and developments, especially in the fields of control, communication
systems, and fault diagnosis. In this paper, it was observed that the technologies that
are available require a great investment in money, time in R+D+i, and continuous testing;
evidence of this is the registration of patents in recent years by technology companies in
Smart Grids, which are primarily focused on energy sustainability and environmental
conservation and preservation. A defined research future of Smart Grids is very difficult to
predict, but research suggests a focus on the development of technologies and innovations
in line with the dynamics of cities and urban centers that have more and more households,
industries, and companies, which demand, in some cases, up to 70% of the energy demand
of the countries and show a tendency to rise.

This paper also shows the applications of the different technologies found and the most
relevant currently, as well as the importance of these in the energy processes of generation
and demand, information management, and the application of renewable energies and
decentralized systems, among others, showing the advantages and disadvantages of these
systems and their possible applications in the new energy models applied to the energy
demands of today’s urban and industrial centers.

Finally, the paper presents a follow-up of Smart Grid-related technologies, their re-
lationship with Petri net models, and their management for control systems. It was con-
sidered in the paper to carry out a study of technological surveillance that shows a base
of developments related to smart grids and a technological correlation with models based
on Petri nets. From this relationship, thirty-two patented developments were found that
use embedded models of PNs in their hardware, of which twenty-three are detailed in
this review.

7. Future Research

Some other recent developments have occurred in the field of Smart Grid approaches.
For example, developments in the protection of communications in Smart Grids based on
cybersecurity techniques for false data detection [109]. Another very interesting example is
the application of smart grids in the search for energy efficiency in smart cities [110]. On the
other hand, the demand for electric vehicles in cities is beginning to be an inconvenience
for the electrical networks; this issue should correspond to research on energy management
and the demand response of these scenarios in the search to strengthen the sustainable
transportation systems of the cities [111]. Finally, immersed in the fourth industrial rev-
olution, technologies such as sensor networks are fundamental tools for collecting data
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in cities and in electrical networks to predict failures, carry out remote surveillance, and
control energy in homes to be closer to the end user in Smart Grid management [112].

In addition, the future of Petri nets within smart grids presents various ways of work-
ing, including control systems and their modeling. Several of these feature combinations
of robust controls, such as neural networks and fuzzy logic, among others. It is currently
being investigated how the Petri nets manage the feedback of the controls or generate
the model through the logical Petri net (LPN) tool [113–116]. Another investigation is
the fault systems, which are the most studied via the Petri nets, and in this document, it
is established that the logical control Petri net (CLPN) in fault detection has been under
constant study, mainly when a fault occurs for which solution data have not been obtained
since the control does not respond adequately [117–119]. One more way through which
Petri nets are investigated is through monitoring, demand, efficiency, and quality systems;
there are few studies where they focus mainly on the efficiency of the process or satisfy the
demand, looking for a multitask combination where Petri nets are under investigation and
the topic is recent [114,120]. Many universities and institutes are focusing their research on
developing technologies on how to build strong, reliable, secure, and highly efficient Smart
Grids. However, the big challenge is related to the energy demand of obtaining a superior
Smart Grid [121].
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