
Citation: Montoya, O.D.;

Gil-González, W.; Hernández, J.C.

Efficient Integration of Fixed-Step

Capacitor Banks and D-STATCOMs

in Radial and Meshed Distribution

Networks Considering Daily

Operation Curves. Energies 2023, 16,

3532. https://doi.org/10.3390/

en16083532

Academic Editor: Cristina

González-Morán

Received: 19 March 2023

Revised: 17 April 2023

Accepted: 17 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Efficient Integration of Fixed-Step Capacitor Banks and
D-STATCOMs in Radial and Meshed Distribution Networks
Considering Daily Operation Curves
Oscar Danilo Montoya 1,* , Walter Gil-González 2 and Jesus C. Hernández 3,*

1 Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería,
Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia

2 Department of Electrical Engineering, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
wjgil@utp.edu.co

3 Department of Electrical Engineering, University of Jaén, Campus Lagunillas s/n, Edificio A3,
23071 Jaén, Spain

* Correspondence: odmontoyag@udistrital.edu.co (O.D.M.); jcasa@ujaen.es (J.C.H.)

Abstract: The problem regarding the optimal integration of efficient reactive power compensation
in radial and meshed distribution networks using fixed-step capacitor banks and distribution static
compensators (D-STATCOMs) is addressed in this research paper by proposing a master–slave
optimization methodology. Radial and meshed distribution topologies are considered for the grid
structure while including variable active and reactive demand curves. An economic analysis is per-
formed, considering the net present value of the optimization plan, as well as the costs of energy losses
and the capacitor banks’ acquisition, installation, and operation. In the case of the D-STATCOMs, an
annualized costs analysis is presented. In the master stage, the discrete version of the generalized
normal distribution optimization (GNDO) algorithm selects the nodes and the sizes of the capacitor
banks. In the slave stage, the successive approximations power flow approach is implemented.
Numerical results in the IEEE 33-bus grid (with both radial and meshed topologies) and the IEEE
85-bus grid (with a radial configuration) demonstrated the proposed master–slave optimization’s
effectiveness in minimizing the project’s expected net present value for a planning period of five
years. Moreover, a simulation in the IEEE 69-bus grid under peak operation conditions showed
that the GNDO approach is an excellent optimization technique to solve the studied problem when
compared to combinatorial and exact optimization methods. In addition, numerical validations
considering D-STATCOMs in the IEEE 85-bus grid confirmed the effectiveness and robustness of the
GNDO approach in addressing problems associated with optimal reactive power compensation in
medium-voltage distribution systems.

Keywords: fixed-step capacitor banks; net present value optimization; distribution static compensators;
daily operative curves; master–slave optimization method; generalized normal distribution optimizer

1. Introduction

The issue of improving the performance of distribution networks has attracted a lot of
attention, from researchers to distribution network operators. This improvement implies an
adequate management of the devices involved, such as load tap changing at the substation
transformer and switched shunt compensators to regulate the voltage profiles and support
reactive power. These approaches aim to enhance the operating conditions of distribution
networks, e.g., reducing the energy losses costs [1–3]. Furthermore, this improvement can
also include upgrading the networks by installing new devices, such as fixed-step capacitor
banks and distribution static compensators (D-STATCOMs) [2,4,5]. One of the cheapest
ways to compensate for reactive power in distribution grids is through the installation of
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fixed-step capacitor banks, which allows for reducing costs due to energy losses by around
13% [4,6].

Fixed-step capacitor banks and D-STATCOMs must be appropriately located in distri-
bution networks, preventing an inadequate operation of the network (i.e., an increase in
power losses). An adequate size must also be selected so as to not generate overvoltage
(or a voltage decrease) [7]. Thus, the problem regarding the optimal location and sizing of
fixed-step capacitor banks in distribution grids has been widely analyzed in the scientific
literature. Some of these analyses are presented below.

In specialized literature, the optimal location and sizing of fixed-step capacitor banks
in distribution systems has been widely addressed using classical mathematical models
and metaheuristic strategies. Combinatorial algorithms such as a discrete version of the
vortex search algorithm [7], fuzzy logic [8], the whale optimization algorithm [2], genetic
algorithms [9,10], artificial neural networks [11], the spring search algorithm [12], simulated
annealing [11], and the particle swarm optimization algorithm [13,14] have been proposed
for solving this problem. In Ref. [15], a genetic algorithm combined with mathematical
optimization was used to optimally locate and size fixed-step capacitor banks in distribution
networks. The objective function involved minimizing the power losses and operating
costs of the network. In Ref. [16], a heuristic methodology for the optimal sizing and
placement of capacitor banks was proposed. This work considered the reduction of the
total harmonic distortion, demonstrating that this methodology could minimize network
costs to a greater extent than classical genetic algorithms. Other works have focused
on improving voltage stability and, simultaneously, reducing the network power losses,
as shown in [17,18]. The authors of [19] included a reconfiguration of distribution networks
for the optimal allocation of capacitor banks via a fuzzy-based strategy. The study by [20]
considered balanced and unbalanced distribution grids, as well as network reconfiguration
and the optimal location of capacitor banks. The authors reduced total active power losses
and bus voltage violation indices by employing a hybrid Big Bang-Big Crunch algorithm.
The research by [21] presented a hybrid mathematical formulation for the optimal selection
and placement of fixed-step capacitor banks in electrical distribution networks, focusing
on minimizing the annual operating costs. The authors of [22] transformed the mixed-
integer non-convex nonlinear model for the problem under study into a mixed-integer
convex one using second-order cone relaxations. Numerical results demonstrated that
the convex model found a better solution than the General Algebraic Modeling System
(GAMS) software and the Chu and Beasley genetic algorithm.

Multi-objective formulations for the optimal location and sizing of fixed-step capacitor
banks have also been proposed, which have usually implemented the Pareto front strategy.
This method solves the problem using a set of trade-off solutions, and is known as the
Pareto optimality of solutions. The main works in this regard are a multi-objective adap-
tive algorithm based on decomposition and differential evolution [23], a multi-objective
formulation busing a two-stage immune algorithm [24], a hybrid configuration using
weight-improved particle swarm optimization and the gravitational search algorithm [25],
a multi-objective salp swarm optimizer [26], and multi-objective particle swarm optimiza-
tion [1], among others. However, these works focus on optimizing technical and economic
objectives for a short period of time and do not include the costs of the fixed-step capaci-
tor banks, i.e., regarding their acquisition, operation, and maintenance, along with their
useful life.

Similarly, the problem of the optimal location and sizing of D-STATCOMs in distri-
bution systems has been widely studied. The authors of [27] used an artificial rabbits’
optimization algorithm for the optimal allocation of PV systems plus D-STATCOM in order
to reduce the voltage regulation profile and the energy losses during the day, considering
a load curve of 24 h. Similarly to previous authors, the researchers in [28] allocated PV
systems plus D-STATCOM in distribution systems to minimize their energy losses and
improve their voltage profile using hunter-prey-based algorithm. The authors of [29] lo-
cated and dimensioned the D-STATCOMs optimally in the electrical distribution grids to
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minimize their operative costs based on a discrete-continuous version of the vortex search
algorithm. The authors of [30] used a discrete-continuous version of the genetic algorithm
in order to locate-size of the D-STATCOM in radial and meshed distribution networks for
minimizing their annual operative costs. These costs involved energy losses and installation
investment costs annually. The study by [5] tackled sizing and locating D-STATCOMs
optimally in electrical distribution networks and implemented a stochastic mixed-integer
convex model. This model was performed in a complex domain and included the stochastic
nature of renewable energy and demand via multiple scenarios, defining different levels of
generation/demand. Although all the previous works can find good solutions, none have
considered the expected return rate of the distribution company, as well as the anticipated
interest of the increase in energy losses costs in their objective functions. Therefore, in light
of the state of the art, this research presents the following contributions:

i. A general formulation of the problem regarding the optimal placement and sizing
of fixed-step capacitor banks and D-STATCOM while considering a planning period
different from one year, which includes the expected return rate of the distribution
company, the anticipated interest of the increase in energy losses costs, and the in-
crease in the operating expenses of the fixed-step capacitor banks. These aspects
are formulated using the net present value as an objective function subjected to a
set of mixed-integer nonlinear constraints, thus generating a general mixed-integer
nonlinear programming (MINLP) model to represent the studied problem.

ii. The application of the generalized normal distribution optimizer (GNDO) approach
and the successive approximations power flow method within master–slave strategy
to solve the proposed MINLP model, with the main advantage that different sets
of candidate nodes are explored to identify the best solution regarding the final net
present value. These simulations found that, as expected, an excessive injection of
reactive power is not always adequate in distribution networks. Numerical results
confirmed that the radial grid configuration of the IEEE 33-bus grid with two packs
of capacitors reached the lowest objective function value. In contrast, for the meshed
configuration, only one set of capacitor banks was enough to find the lowest value.

Within the scope of this research, it is worth mentioning that the expected active and
reactive power consumptions correspond to the information provided by the distribution
company for the terminals of the grid substation, which was obtained after multiple mea-
suring and filtering processes. In addition, the selected objective function is the summation
of the purchasing, installing, and operating costs of fixed-step capacitor banks and the
annual costs of energy losses, using a net present value analysis for a planning horizon
of five years, given that all of the required investments regarding capacitor banks are not
recovered with a traditional one-year planning scenario [31].

Note that, in order to validate the effectiveness and robustness of the proposed GNDO
approach in locating shunt reactive power compensators, additional simulation scenarios
included the peak operating conditions of the IEEE 69-bus grid, the optimal placement and
sizing of static distribution compensators in the IEEE 33- and 69-bus grids, and the optimal
selection and location of fixed-step capacitor banks in the IEEE 85-bus grid with a radial
configuration. These simulations include comparisons with combinatorial optimization
methods available in the current literature and the exact MINLP tools of the GAMS software.

This study is organized as follows. Section 2 presents the exact formulation of the
optimal location and sizing of fixed-step capacitor banks in electrical distribution networks.
Section 3 presents the proposed master–slave optimization model. Section 4 describes
the radial and meshed test systems implemented, along with their daily operation curves.
Section 5 shows the proposed optimizer model’s primary results and analysis. Finally,
the main conclusions of this research, as well as some future works, are presented in
Section 6.
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2. Exact Mathematical Modeling

The efficient integration of fixed-step capacitor banks can be expressed as a mixed-
integer nonlinear programming (MINLP) model belonging to the family of mixed-integer
non-convex optimization methods. The decision variables regarding the nodal location and
size of the fixed-step capacitors are binary. The power flow variables (i.e., power generation,
voltages, and currents, among others) are in the real-variable domain. The MINLP model
for the efficient reactive power compensation in radial and meshed distribution networks
is detailed below.

2.1. Objective Function

The main idea behind integrating fixed-step capacitor banks in distribution grids
is to obtain a positive net profit within an expected planning period, i.e., to recover the
initial purchasing, installing, and maintenance costs of the capacitor banks, along with an
annual reduction in total grid energy losses costs. The objective function for this research
corresponds to the net present value (NPV) associated with the energy losses costs for five
years, added to the purchasing, installing, and operating costs of the fixed-step capacitor
banks. Each one of the objective function’s components is presented below.

f1 = CkWhT

(
∑

y∈Y

(
1 + ie

1 + ir

)y
)(

∑
i∈N

∑
j∈N

∑
h∈H

(
vihYijvjh cos

(
δih − δjh − θij

)
∆h

))
, (1)

f2 = ∑
i∈H

∑
c∈C

(
Cpurc

c Qic + Cins
c + Cope

c Tc

(
∑

y∈Y

1 + io

1 + ir

)y)
xic, (2)

min fNPV = f1 + f2, (3)

where f1 represents the component of the objective function regarding the net present value
of the energy losses costs, and f2 is the objective function that defines the net present value
of the purchasing, installing, and maintenance costs of the reactive power compensators.
The sum of both components represents the objective function fNPV. In addition, CkWh is
the average cost of the energy losses; T means the number of days in a year; vih and vjh
correspond to the voltage variables at nodes i and j in the period h, which have angles
δih, and δjh, respectively; Yij is the magnitude of the component of the nodal admittance
matrix that relates to nodes i and j, which has an angle θij; ∆h is the duration of each load
value (daily load variable curve, i.e., typically 1 h); ie is the interest rate associated with
the increase in the energy losses costs; io defines the interest rate related to the increase
in the operating (maintenance) costs of the fixed-step capacitor banks; ir corresponds to
the expected return rate of the distribution company for each investment; Cpurc

c defines
the purchasing costs of a type-c fixed-step capacitor bank per unit of reactive power
injection; Cins

c is a fixed cost associated with the installation of a type-c capacitor bank unit
in a particular node of the network; and Cope

c defines the operating/maintenance costs
associated with the type-c capacitor bank. The decision variable that establishes whether
a type-c fixed-step capacitor bank should be installed at node i is xic, and Tc is an integer
parameter for the type of fixed-step capacitor bank to be used. Note that N defines the
set that contains all the nodes of the network, Y is the set with the number of years of the
planning period, C is the set containing all of the available fixed-step capacitor bank types,
andH contains all the periods in day of operation.

Remark 1. The component of the objective function regarding the expected costs of the energy
losses, i.e., the component f1 defined in (1), is a nonlinear non-convex function due to the presence
of the product between voltages and trigonometric functions [32]. In contrast, the component f2
defined in (2) is part of the mixed-integer convex functions due to its linear structure.
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2.2. Set of Constraints

The problem regarding the optimal integration of shunt devices in single-phase dis-
tribution networks requires that some technical operative constraints be satisfied. These
include active and reactive power balance, voltage regulation limits, and the number of
shunt devices. The complete set of constraints is listed below.

pg
ih − pd

ih = vih ∑
j∈N

Yijvjh cos
(

δih − δjh − θij

)
, {∀h ∈ H, ∀i ∈ N} (4)

qg
ih − pd

ih + ∑
c∈C

Qicxic = vih ∑
j∈N

Yijvjh sin
(

δih − δjh − θij

)
, {∀h ∈ H, ∀i ∈ N} (5)

pg,min
i ≤ pg

ih ≤ pg,max
i , {∀h ∈ H, ∀i ∈ N} (6)

qg,min
i ≤ qg

ih ≤ qg,max
i , {∀h ∈ H, ∀i ∈ N} (7)

vmin ≤ vih ≤ vmax, {∀h ∈ H, ∀i ∈ N} (8)

∑
c∈C

∑
i∈N

xic ≤ Nava
cap , (9)

∑
c∈C

xic ≤ 1, {∀i ∈ N} (10)

xic ∈ {0, 1}, {∀c ∈ C, ∀i ∈ N} (11)

where pg
ih and qg

ih are the active and reactive power generation outputs of a power source
connected at node i in each period; pd

ih and qd
ih represent the active and reactive power

consumption (constant power loads) at each node and in each period; pg,min
i and pg,max

i
correspond to the lower and upper active power generation bounds assigned to the power
source connected at node i; qg,min

i and qg,max
i correspond the lower and upper reactive

power generation bounds assigned to the power source connected at node i; vmin and vmax
are the minimum and maximum values assigned for the voltage variable at each node; and
Nava

cap is the number of capacitor banks available for installation.
Note that the set of constraints (4)–(11) can be understood as follows. Equations (4) and (5)

are the active and reactive power balance equilibrium per node and period [33]. Inequality
constraints (6) and (7) define the lower and upper bounds of the generation variables asso-
ciated with the power sources connected at node i in any period. Box-type constraint (8)
defines the well-known voltage regulation constraint applicable to medium-voltage dis-
tribution grids by regulatory commissions in each country [34]. Inequality constraint (9)
defines the number of fixed-step capacitor banks available for installation in the entire
distribution network. In contrast, inequality constraint (10) allows having a maximum of
one type of fixed-step capacitor bank per node. Finally, (11) confirms the binary nature of
the decision variable regarding the location or not of a set of fixed-step capacitor banks in a
particular node of the network.

Remark 2. The set of constraints (4)–(11) defines a mixed-integer non-convex solution space due to
nonlinear constraints regarding the active and reactive power balance per node and period described
in (4) and (5) [35].

To solve the proposed optimization models (1)–(11), the current literature recommends
the application of master–slave optimization methods based on hybrid formulations [20].
These use combinatorial optimizers for the integer (binary) part of the optimization model,
and power flow methods for solving the continuous part [21]. The following section details
the application of the proposed GNDO approach.

3. Proposed Master–Slave Optimizer

A master–slave optimization methodology is proposed to deal with the problem
regarding the efficient integration of fixed-step capacitor banks in distribution grids with
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radial and meshed configurations. The master stage defines the set of binary variables
(i.e., the values of xic) per node and capacitor type. The slave stage solves the power flow
problem while considering the insertion of the capacitor banks provided by the master
stage. It is worth mentioning that, in the proposed strategy, the master stage corresponds
to the GNDO approach using a discrete codification, and the slave stage involves the
successive approximations method. In addition, note that,

i. with the master stage using a discrete codification, it is possible to obtain the value of
the f2 component of the objective function, i.e., the purchasing, installation, and main-
tenance costs of the fixed-step capacitor banks;

ii the slave stage determines the expected energy losses costs of the network for the
planning period, as these depend on the expected demand behavior and the values
regarding the active and reactive power consumption per node.

The main characteristics of the master and slave components of the proposed solution
methodology are detailed below.

3.1. Slave Stage: Successive Approximations Power Flow Approach

In the current literature, multiple specialized power flow algorithms have been re-
ported for addressing the nonlinearities in Equations (4) and (6) via numerical methods [36].
An efficient power flow method for radial and meshed distribution networks has been
proposed in the literature [37]. This approach is a generalization of the classical back-
ward/forward power flow method using nodal admittance matrices, which was named the
successive approximations method due to its similarities with the classical Gauss–Seidel power
flow approach. The successive approximations power flow method belongs to the family
of derivative-free power flow methods, implying that its convergence is linear. On the
other hand, derivative-based power flow methods converge quadratically, as is the case of
the Newton–Raphson approach [38]. The successive approximations method is efficient
regarding processing times, as only one inverse matrix is used during all solution processes.
This is not true for derivative-based approaches [39].

The iterative power flow formula for solving Equations (4) and (6) is defined in the
complex domain as shown in (12).

Vm+1
dh = −Y−1

dd

(
diag−1(Vm,?

dh
)
(S?dh − S?ch) + YdgVgh

)
, {∀h ∈ H} (12)

where m is the iterative counter, Vdh is a complex vector containing the voltage variables in
all of the demand nodes per period; Vgh corresponds to a vector that contains the voltage
values in the slack source; Ydd is a square matrix associated with the admittance relations
between demand nodes; Ydg is a rectangular matrix that contains the complex relations
between the demand and slack nodes; Sdh is a vector containing the set of constant demand
power loads per node and period; and Sch corresponds to the vector of complex power
injections in the selected nodes where capacitors must be placed. Note that X? denotes the
application of the conjugate operator to the complex vector X.

Remark 3. Note that the vector Sch contains the variables that relate the master stage to the slave
stage, as the master stage defines the set of nodes and capacitor sizes. This is fixed in the slave stage
to solve the power flow problem with the recursive formula (12).

The convergence criterion applied to the power flow formula in (12), as recommended
by the authors of [37], is the error between two consecutive voltage iterations, i.e.,

max
h∈H

{∥∥∥ |Vm+1
dh | − |Vm

dh|
∥∥∥} ≤ $, (13)
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where V0
dh corresponds to the vector with the initial voltage values, which are set as equal

to the voltage at the substation bus (i.e., Vgh). In addition, $ is the maximum tolerance error,
set as 1× 10−10 [39].

Once the power flow formula (12) has reached the desired convergence in (13), the ex-
pected grid power losses can be calculated as follows:

f1 = CkWhT

(
∑

y∈Y

(
1 + ie

1 + ir

)y
)

∑
h∈H

V>h (Y
?Vh), (14)

where Vh is the vector containing the voltage profiles of the distribution network, including

the slack source per period (i.e., Vh =
[
Vgh Vdh

]>
), and Y is the nodal admittance matrix

of the distribution network under analysis.

3.2. Master Stage: The Generalized Normal Distribution Optimizer (GNDO)

The GNDO approach is a recently developed combinatorial optimization method in-
spired by the statistical properties of a Gaussian distribution. It was originally proposed by
the authors of [40] to solve the problem regarding the parametric estimation of photovoltaic
modules. The main advantage of the GNDO approach is that its exploration and exploita-
tion rules do not require any special adjustment parameter. It begins the exploration of the
solution space with a random population that evolves with simple rules [41]. The general
structure of a Gaussian distribution is defined in (15).

f (x) =
1√
2πδ

exp

(
(x− µ)2

2δ2

)
, (15)

where x is a set of variables associated with the distribution probability, which is randomly
generated. These variables are defined by the location parameter µ and the scaling param-
eter δ [41]. From Equation (15), it can be noted that the parameters δ and µ are the key
factors in the generation of the Gaussian distribution, the former being associated with the
standard deviation and the latter with the mean value, respectively [40].

Remark 4. Note that the Gaussian distribution formula in (15) allows defining the initial popula-
tion, i.e., the set of initial solutions, which takes the following form:

xt
k =

[
5, i, . . . , 15 | 1, c, . . . , 6

]
, (16)

where the dimension of xt
k is a 1× Nava

cap , corresponding to a discrete representation of the xic. In the
potential solution presented in (16), it is observed that a type-1 capacitor is located at node 5,
a type-c one at node i, and a type-6 one at node 15. In addition, k denotes the position of the solution
individual in the population composed of Ns vectors, as in (16).

It is worth mentioning that, with the codification presented in (16), the second compo-
nent of the objective function f2 is obtained, i.e., the purchasing, installation, and operating
costs of the fixed-step capacitor banks, which, for example, in (16), implies that x5,1, xic,
and x15,6 are activated. The remainder of binary variables is maintained at zero.

Considering the general codification of a potential solution to the studied problem,
the local and global searches through the solution space with the GNDO approach are
detailed below.
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3.2.1. Local Search Characteristic: Exploitation of the Solution Space

In this stage, the GNDO approach intensifies its exploration in a local area around the
best current solution found in order to accelerate its speed of convergence [42]. The general
evolution formula for this local exploration is defined in (16).

vt
k = µk + ηδk, k = 1, 2, . . . , Ns. (17)

where η is defined as a penalty factor; δk corresponds to the generalized standard variation;
µk means the generalized mean position; and vt

k is a potential solution individual. Each of
the terms in (17) is calculated as follows:

µk =
1
3
(
xt

k + xt
best + U

)
, (18)

δk =
1√
3

((
xt

k − µk
)2

+
(

xt
best − µk)

2 + (U − µk)
2
) 1

2
)

, (19)

η =

{ √
(− log (λ1)) cos (2πλ2), i f a ≤ b√

(− log (λ1)) cos (2πλ2 + π), i f a > b
(20)

where a, b, λ1, and λ2 are randomly generated in the interval [0, 1] with a uniform distribu-
tion; xt

best represents the best solution reached until iteration t; and U is a vector associated
with the average position of all the individuals in the current population at iteration t.

U =
1

Ns

Ns

∑
k=1

xt
k, (21)

Remark 5. Once the potential solution vt
k is generated using Equations (18) to (20), as presented

in (17), a feasibility check is implemented. This implies that

vt
kl =

{
vt

kl , i f xmin
l ≤ vt

kl ≤ xmax
l

round
(
xmin

l + r
(
xmin

l − xmin
l
))

Otherwise
, (22)

where xmax
l and xmin

l are the minimum and maximum limits allowed for the decision variable in the
lth position.

3.2.2. Global Search Characteristic: Exploration of the Solution Space

The main idea behind using a global exploration characteristic for combinatorial
optimization methods is the possibility of allowing them to escape from locally optimal
solutions by exploring new regions of the solution space [43]. The general formula to
implement global exploration in the GNDO approach is defined below [40].

vt
k = xt

k + β(|λ3|v1) + (1− β) ∗ (|λ4|v2), (23)

where λ3 and λ4 are two randomly generated numbers between 0 and 1 that are subject to
a normal distribution, and β is a calling and adjustment parameter generated between 0
and 1 with a uniform distribution. In addition, v1 and v2 are two trail vectors calculated as
defined in (24) and (25).

v1 =

{
xt

k − xt
j , i f Ff

(
xt

k
)
< Ff

(
xt

j

)
xt

j − xt
k, Otherwise

, (24)

v2 =

{
xt

i − xt
m, i f Ff

(
xt

i
)
< Ff

(
xt

m
)

xt
m − xt

i , Otherwise
, (25)

where the values of positions i, j, and m are randomly generated between 1 and the number
of potential solutions (i.e., Ns), with the main characteristic that all of them must be different
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from each other and the current solution located at position k. In addition, Ff
(
xt

k
)

defines
the value of the fitness function, considered as an adaptive representation of the objective
function [41]. Note that, in order to maintain the feasibility of the solution space regarding
the minimum and maximum permitted values for the decision variables, the revision
formula (22) is applied to the potential solution vt

k in (23).
Finally, the following evolution rule is applied to ensure that the best solution for the

current population will be maintained:

xt+1
k =

{
vt

k, i f Ff (vt
k) ≤ Ff (xt

k)
xt

k, Otherwise
. (26)

3.2.3. General Implementation of the Master–Slave Optimization Approach

To illustrate the general implementation of the solution approach, a flow diagram
is presented in Figure 1.

Figure 1. Flowchart for the improved GNDO.
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Remark 6. The main characteristic in Figure 1 is the intrinsic relationship between the master and
slave stages, as each vt

k generated with the GNDO approach requires evaluation by the power flow
problem to determine the total costs of the power losses using the slave stage [44].

4. Test Feeder Characterization

To validate the proposed GNDO approach in combination with the successive approx-
imations power flow method to locate and size fixed-step capacitor banks while aiming to
reduce the expected annual operating costs associated with energy losses and including
the purchasing, installing, and operating costs of reactive power compensators, the IEEE
33-bus grid with radial and meshed configurations was employed. Figure 2 depicts the
electrical configurations of this test feeder.

slack

(a)

1 2

3

4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

19

20

21

22

23

24

25
26 27 28 29 30 31 32 33

slack

(b)

1 2

3

4 5

6

7 8 9 10 11 12 13 14 15 16 17

18
19

20

21

22

23

24

25
26 27 28

29

30 31 32 33

Figure 2. Single line diagrams for the IEEE 33-bus grid: (a) radial and (b) meshed configurations.

Data regarding branches and peak load conditions for the IEEE 33-bus grid are pre-
sented in Table 1.

In addition, to evaluate the effect of load variations, Figure 3 presents the daily
variations regarding the active and reactive power profiles.
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Figure 3. Daily variations for loads considering active and reactive power curves.
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Table 1. Parametric information of the IEEE 33-bus grid with radial and meshed configurations.

Bus i Bus j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60
2 3 0.4930 0.2511 90 40
3 4 0.3660 0.1864 120 80
4 5 0.3811 0.1941 60 30
5 6 0.8190 0.7070 60 20
6 7 0.1872 0.6188 200 100
7 8 1.7114 1.2351 200 100
8 9 1.0300 0.7400 60 20
9 10 1.0400 0.7400 60 20
10 11 0.1966 0.0650 45 30
11 12 0.3744 0.1238 60 35
12 13 1.4680 1.1550 60 35
13 14 0.5416 0.7129 120 80
14 15 0.5910 0.5260 60 10
15 16 0.7463 0.5450 60 20
16 17 1.2890 1.7210 60 20
17 18 0.7320 0.5740 90 40
2 19 0.1640 0.1565 90 40
19 20 1.5042 1.3554 90 40
20 21 0.4095 0.4784 90 40
21 22 0.7089 0.9373 90 40
3 23 0.4512 0.3083 90 50
23 24 0.8980 0.7091 420 200
24 25 0.8960 0.7011 420 200
6 26 0.2030 0.1034 60 25
26 27 0.2842 0.1447 60 25
27 28 1.0590 0.9337 60 20
28 29 0.8042 0.7006 120 70
29 30 0.5075 0.2585 200 600
30 31 0.9744 0.9630 150 70
31 32 0.3105 0.3619 210 100
32 33 0.3410 0.5302 60 40
12 22 2 2 - -
18 33 0.5 0.5 - -
25 29 0.5 0.5 - -

To evaluate the objective function regarding expected energy losses costs during the
planning period, as well as the purchasing, installation, and operating costs of the fixed-step
capacitor banks, the parameters listed in Table 2 are considered.

Table 2. Parametric information to evaluate the objective function.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 USD-kW/h T 365 days
∆h 0.5 h ie 8 %
ir 15 % io 10 %
|Y| 5 Year Cpurc

c 25 USD/kvar
Cins

c 1600 USD Cope
c 300 USD/bank-year

Note that the step-size per capacitor is 100 kvar, and the maximum reactive power
injection per node is 1000 kvar, i.e., from 0 to 10 banks in parallel per node.

5. Numerical Results

For the computational implementation of the proposed master–slave optimization
approach, the MATLAB software (version 2021b) was employed on a PC with an AMD
Ryzen 7 3700 2.3 GHz processor and 16.0 GB RAM, running a 64-bit version of Microsoft
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Windows 10 Single Language. The GNDO and the successive approximations power flow
method were implemented with our developed scripts. For the simulations, the possibility
of installing 0 to 5 sets of capacitor banks is tested by assuming that only a pack can be
installed per node.

Note that the parametrization of the GNDO approach considered a population size
of 10 individuals, 100 consecutive repetitions, and 1000 iterations, with a local stopper of
100 iterations without improvements in the objective function value.

5.1. Results Obtained for the Radial Grid Configuration

Table 3 presents the numerical simulations for the IEEE 33-bus grid with a radial
topology. In this simulation, each node selected to locate a reactive power compensator
must have at least one pack of capacitors installed.

Table 3. Numerical results for the IEEE 33-bus grid with a radial topology.

No. of Nodes Location Size (kvar) fNPV (USD) Ave. Time (s)

0 - - 468,749.2023 -
1 30 600 410,939.1048 62.9109
2 [13, 30] [200, 500] 403,811.3704 68.8260
3 [11, 15, 30] [ 100, 100, 500] 404,805.4441 49.9192
4 [11, 15, 30, 32] [ 100, 100, 400, 100] 405,860.1101 51.5080
5 [11, 14, 29 30, 31] [100, 100, 100 200, 200] 407,754.4498 45.8391

The numerical results in Table 3 show that:

i. An increase in the number of capacitors does not guarantee that the objective function
will continue to decrease; for the radial version of the IEEE 33-bus grid with the
available set of capacitors (steps of about 100 kvar), it is observed that the option with
two capacitors at nodes 13 and 30 with sizes of about 200 and 500 kvar allows for
the best reduction concerning the benchmark case (i.e., 13.8534%). In contrast, all the
other options report lower impacts in the final objective function value.

ii. Note that from three to five sets of capacitor banks, the objective function deteriorates
with the increase in capacitors, which confirms that, depending on the electrical
characteristics (i.e., grid topology and total active and reactive power consumptions),
each distribution network has an optimal number regarding compensation devices,
and, if this number is exceeded, the final solution becomes sub-optimal. Note that the
expected improvement in the objective function is 13.0122% when five capacitors are
installed, showing that the expected gain has deteriorated about 0.8412% concerning
the best solution reported in Table 3.

iii. The main characteristic of the list of solutions in Table 3 is that the most interesting
node to install capacitor banks is node 30, which appears in all of the solutions,
with sizes between 400 and 600 kvar (thus being the node with the highest penetration
regarding reactive power in all solutions). In addition, the expected penetration
regarding reactive power varies from 600 to 700 kvar.

Regarding processing times, it is worth mentioning that the last column in Table 3
evidences that the processing times required for solving the MINLP model via the proposed
GNDO approach range between 45 and 69 s to reach a solution, depending on the number
of nodes analyzed. However, it is noted that these times can be considered minimal due to
the enormous dimensions of the solution space for this optimization problem.

5.2. Results Obtained for the Meshed Grid Configuration

Table 4 presents the numerical simulations for the IEEE 33-bus grid with a meshed
topology.
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Table 4. Numerical results for the IEEE 33-bus grid with meshed topology.

No. of Nodes Location Size (kvar) fNPV (USD) Ave. Time (s)

0 - - 302,404.0994 -
1 30 600 279,154.9647 42.2342
2

[
30, 32

] [
400, 200

]
279,488.0998 42.2345

3
[
14, 30, 32

] [
100, 400, 100

]
280,597.3739 47.9757

4
[
16, 29, 30, 32

] [
100, 100, 300, 100

]
282,273.7510 46.2040

5
[
8, 13, 25 30, 31

] [
100, 100, 100 300, 100

]
284,287.0318 40.7188

The numerical results in Table 4 show that:

i. In the case of the meshed version of the IEEE 33-bus grid, the best solution is reached by
only installing a capacitor bank of 600 kvar at node 30, which allows for a reduction of
about 7.6881% concerning the benchmark case. However, this solution is very closely
followed by the solution with two capacitor banks at nodes 30 and 32, with sizes of
400 and 200 kvar, which allows for a reduction of about 7.5779% with respect to the
benchmark case, i.e., a slight variation of 0.1102% between both solutions.

ii. As in the radial version of the IEEE 33-bus grid, node 30 seems to be the most attractive
node to install a set of capacitor banks; in all solutions, this node appears with the
highest value of reactive power injection, which implies that, for this test feeder, node
30 is key for optimal reactive power compensation, regardless of the grid topology
under analysis.

iii. The difference between the best solution with one pack of capacitors at node 30 and the
solution with five capacitors is about USD 5132.0671, which confirms that an increase
in the number of fixed-step capacitor banks is not necessarily the most economical
solution, since it depends exclusively on the grid topology, the number of nodes,
and the demand behavior.

Regarding processing times, it is observed that, on average, the solution times required
by the GNDO approach in the meshed configuration are lower than 48 s, and lower than
the times taken by the radial topology. However, this is an expected behavior, given
that, for meshed grid configurations, the successive approximations power flow method
takes fewer iterations in comparison with the radial topology, which finally translates into
reduced processing times.

5.3. Complementary Analysis

This subsection presents additional numerical validations to demonstrate the efficiency
of the proposed GNDO approach for selecting and installing reactive power compensators
in distribution networks. These analyses include the following:

i. Illustrating the energy losses behavior in the IEEE 33-bus grid with radial and meshed
configurations.

ii. A comparative analysis of the GNDO approach in the IEEE 69-bus grid with different
combinatorial optimizers regarding the optimal selection and location of fixed-step
capacitor banks for power losses minimization while considering peak load operating
conditions.

iii. A comparative analysis in the radial versions of the IEEE 33-and 69-bus grids considering
static distribution compensators (D-STATCOMs) with respect to literature reports.

iv. An evaluation of the proposed master–slave approach in the IEEE 85-node test feeder
with zero to five capacitors. These will be considered as new reference results in
medium-size distribution networks for future optimization algorithms.

5.3.1. Energy Losses Behavior in the Radial and Meshed Versions of the IEEE 33-bus Grid

To illustrate the positive effect of the optimal integration of fixed-step capacitor banks
in radial and meshed distribution networks, Figure 4a,b present the initial daily energy
losses without capacitor banks, as well as the best solutions reported in Tables 3 and 4.



Energies 2023, 16, 3532 14 of 23

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 48
0

5 · 10−2

0.1

0.15

0.2

Time (h)

(a
)E

ne
rg

y
lo

ss
es

(M
W

h/
da

y) Ben. case
Optimal solution

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 48
0

5 · 10−2

0.1

0.15

0.2

Time (h)

(b
)E

ne
rg

y
lo

ss
es

(M
W

h/
da

y) Ben. case
Optimal solution

Figure 4. Daily energy losses behavior for the radial and meshed networks when comparing the
benchmark case vs. the optimal solution: (a) radial and (b) meshed configurations.

The main characteristic of the daily energy losses behavior in Figure 4 is that the fixed
reactive power injection effectively reduces the total grid power losses throughout the day,
as observed in the difference between the benchmark curve and the optimal solution curves.

5.3.2. Optimal Selection and Location of Fixed-Step Capacitor Banks in the IEEE
69-bus Grid

To demonstrate that the proposed GNDO approach is an efficient optimization tech-
nique for integrating fixed-step capacitor banks, a comparative analysis with different
combinatorial methods and exact optimization method is presented, using the IEEE 69-
bus grid as a test feeder. The electrical configuration of this system and its branch load
parameters are depicted in Figure 5 and Table 5, respectively.
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Figure 5. Schematic nodal connections in the IEEE 69-bus grid.
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Table 5. Branch and load parameters for the IEEE 69-bus system.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0005 0.0012 0.00 0.00 3 36 0.0044 0.0108 26.00 18.55
2 3 0.0005 0.0012 0.00 0.00 36 37 0.0640 0.1565 26.00 18.55
3 4 0.0015 0.0036 0.00 0.00 37 38 0.1053 0.1230 0.00 0.00
4 5 0.0251 0.0294 0.00 0.00 38 39 0.0304 0.0355 24.00 17.00
5 6 0.3660 0.1864 2.60 2.20 39 40 0.0018 0.0021 24.00 17.00
6 7 0.3810 0.1941 40.40 30.00 40 41 0.7283 0.8509 1.20 1.00
7 8 0.0922 0.0470 75.00 54.00 41 42 0.3100 0.3623 0.00 0.00
8 9 0.0493 0.0251 30.00 22.00 42 43 0.0410 0.0478 6.00 4.30
9 10 0.8190 0.2707 28.00 19.00 43 44 0.0092 0.0116 0.00 0.00

10 11 0.1872 0.0619 145.00 104.00 44 45 0.1089 0.1373 39.22 26.30
11 12 0.7114 0.2351 145.00 104.00 45 46 0.0009 0.0012 29.22 26.30
12 13 1.0300 0.3400 8.00 5.00 4 47 0.0034 0.0084 0.00 0.00
13 14 1.0440 0.3450 8.00 5.50 47 48 0.0851 0.2083 79.00 56.40
14 15 1.0580 0.3496 0.00 0.00 48 49 0.2898 0.7091 384.70 274.50
15 16 0.1966 0.0650 45.50 30.00 49 50 0.0822 0.2011 384.70 274.50
16 17 0.3744 0.1238 60.00 35.00 8 51 0.0928 0.0473 40.50 28.30
17 18 0.0047 0.0016 60.00 35.00 51 52 0.3319 0.1114 3.60 2.70
18 19 0.3276 0.1083 0.00 0.00 9 53 0.1740 0.0886 4.35 3.50
19 20 0.2106 0.0690 1.00 0.60 53 54 0.2030 0.1034 26.40 19.00
20 21 0.3416 0.1129 114.00 81.00 54 55 0.2842 0.1447 24.00 17.20
21 22 0.0140 0.0046 5.00 3.50 55 56 0.2813 0.1433 0.00 0.00
22 23 0.1591 0.0526 0.00 0.00 56 57 1.5900 0.5337 0.00 0.00
23 24 0.3463 0.1145 28.00 20.00 57 58 0.7837 0.2630 0.00 0.00
24 25 0.7488 0.2475 0.00 0.00 58 59 0.3042 0.1006 100.00 72.00
25 26 0.3089 0.1021 14.00 10.00 59 60 0.3861 0.1172 0.00 0.00
26 27 0.1732 0.0572 14.00 10.00 60 61 0.5075 0.2585 1244.00 888.00
3 28 0.0044 0.0108 26.00 18.60 61 62 0.0974 0.0496 32.00 23.00

28 29 0.0640 0.1565 26.00 18.60 62 63 0.1450 0.0738 0.00 0.00
29 30 0.3978 0.1315 0.00 0.00 63 64 0.7105 0.3619 227.00 162.00
30 31 0.0702 0.0232 0.00 0.00 64 65 1.0410 0.5302 59.00 42.00
31 32 0.3510 0.1160 0.00 0.00 11 66 0.2012 0.0611 18.00 13.00
32 33 0.8390 0.2816 14.00 10.00 66 67 0.0470 0.0140 18.00 13.00
33 34 1.7080 0.5646 19.50 14.00 12 68 0.7394 0.2444 28.00 20.00
34 35 1.4740 0.4873 6.00 4.00 68 69 0.0047 0.0016 28.00 20.00

Table 6 presents all of the numerical comparisons with the IEEE 69-bus grid for locating
and sizing fixed-step capacitor banks in radial distribution grids. Note that this comparison
is made while considering peak load conditions, as well as with the primary objective of
minimizing the expected power losses.

Table 6. Optimal location of fixed-step capacitor banks in the IEEE 69-bus grid.

Method Nodes Size [kvar] Losses [kW]

Base case - - 225.072

GSA [45] {11, 29, 60} {900, 1050, 450} 163.280
TSM [46] {19, 62, 63} {225, 900, 225} 148.910
TBLO [47] {12, 61, 64} {600 1050, 150} 146.350
FPA [48] {11, 61, 22} {450, 1350 150} 145.860
MI-SOCP [22] {11, 18, 61} {300, 300, 1200} 145.397

GNDO {11, 18, 61} {300, 300, 1200} 145.397

In Table 6, the metaheuristic algorithms used for comparison are the gravitational
search algorithm (GSA) [45], the two-stage method (TSM) [46], the teaching-based learning
optimizer (TBLO) [47], and the flower pollination algorithm (FPA) [48], and the convex
optimization method corresponds to the mixed-integer second-order cone programming
(MI-SOCP) approach [22]. Only the GNDO and the MI-SOCP approaches found the best
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possible solution in the IEEE 69-bus grid when power losses were minimized under peak
load conditions. Both methods found the same set of nodes (11, 18, and 31), with capacitor
sizes of 300 kvar in the first two and 1200 kvar in the last one. Note that the remainder of
metaheuristic algorithms are stuck in locally optimal solutions, which can be attributed to
the large dimensions of the solution space, confirming that the GNDO approach based on
a statistical formulation (Gaussian distributions) is an efficient tool to deal with complex
MINLP models; as demonstrated in the previous sections, it is an excellent alternative to
locate and size fixed-step capacitor banks in radial and meshed distribution grids.

5.3.3. Optimal Location and Sizing of D-STATCOMs in the IEEE 33- and 69-bus Grids

To confirm the effectiveness and efficiency of the proposed GNDO approach in defin-
ing the optimal location and sizing of reactive power compensators in electrical distribution
networks, this subsection presents the application of this algorithm to the problem regard-
ing the optimal placement and sizing of D-STATCOMs in the IEEE 33- and 69-bus grids
with radial configurations.

For this comparison, the objective function considers the investment costs of D-
STATCOMs (z1) and the operating costs associated with the energy losses (z2), considering
a one-year period of study. Both functions are algebraically summed, as defined by zcost.
The structure of the studied objective functions is presented below.

z1 = T
(

k1

k2

)
∑

k∈N

(
ω1

(
qcomp

k

)2
+ ω2qcomp

k + ω3

)
qcomp

k , (27)

z2 = CkWhT ∑
h∈H

∑
k∈N

∑
m∈N

Ykmvkhvmh cos(δkh − δmh − θkm)∆h, (28)

min zcost = z1 + z2, (29)

where k1 and k2 are positive constant parameters associated with the annualization of the
investment costs of the shunt compensators, considering a planning period of 10 years [3]
qcomp

k is the nominal size of the shunt reactive power compensator located at node k; and
ω1, ω2, and ω3 are the cubic, quadratic, and linear coefficients regarding the investment
costs in shunt reactive power compensators.

The parameters used for evaluating the objective functions in (27) and (28) are listed
in Table 7 [49]. Note that the remaining parameters were previously defined in Table 2.

Table 7. Parametrization of the objective function for evaluating the location of D-STATCOMs in
distribution grids.

Par. Value Unit Par. Value Unit

k1 6/2190 1/Days k2 10 Years

D-STATCOM

ω1 (USD/Mvar3) ω2 (USD/Mvar2) ω3 (USD/Mvar)

0.30 −305.10 127,380

For comparison, the optimization algorithms reported by the authors of [49] are used
to validate the efficiency of the proposed GNDO approach for installing D-STATCOMs
in distribution grids. These are the genetic algorithm combined with a particle swarm
optimizer (GA/PSO), the vortex search algorithm (VSA), and two solvers available in the
GAMS software: COUENNE and BONMIN. Table 8 lists the comparative results for the
proposed GNDO approach and the literature reports regarding the optimal location and
sizing of D-STATCOMs in distribution grids.
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Table 8. Comparative results regarding D-STATCOM location and sizing in the IEEE 33- and
69-bus grids.

IEEE 33-bus Grid

Method Location Size (Mvar) zcost (USD/year) Reduction (%) Time (s)

Benchmark case - - 112,740.90 - -
COUENNE

[
16, 17, 18

] [
0.0109, 0.0224, 0.2065

]
107,589.50 4.56 3.03

BONMIN
[
17, 18, 30

] [
0.0339, 0.0227, 0.2395

]
102,447.29 9.13 7.59

GA/PSO
[
14, 30, 31

] [
0.1599, 0.3497, 0.1117

]
98,511.63 12.62 6417.91

VSA
[
14, 30, 32

] [
0.1599, 0.3591, 0.1072

]
98,497.90 12.63 59.64

GNDO
[
14, 30, 32

] [
0.1599, 0.3591, 0.1072

]
98,497.90 12.63 47.71

IEEE 69-bus Grid

Method Location Size (Mvar) zcost (USD/year) Reduction (%) Time (s)

Benchmark case - - 119,715.63 - -
GA/PSO

[
21, 61, 64

] [
0.0839, 0.4600, 0.1139

]
102,990.79 13.97 9325.89

VSA
[
21, 61, 64

] [
0.0839, 0.4601, 0.1139

]
102,990.79 13.97 202.66

GNDO
[
21, 61, 64

] [
0.0839, 0.4601, 0.1139

]
102,990.79 13.97 171.15

The numerical results in Table 8 show that:

i. The proposed GNDO and the VSA approaches reach the exact solution value for
the D-STATCOMs in both test feeders, with a final objective function value of about
USD 98,497.90 for the IEEE 33-bus grid and USD 102,990.79 in the case of the IEEE
69-bus grid. On the other hand, the GA/PSO approach fails to find the optimal
solution in the case of the IEEE 33-bus grid, with an additional investment of about
USD 13.73. In contrast, for the IEEE 69-bus grid, the exact solution value is found by
the GNDO and the VSA approaches.

ii. The GAMS solvers confirm the nonlinearity and non-convexity of the exact MINLP
model, and both solvers are stuck in locally optimal solutions for the IEEE 33-bus
grid. The COUENNE solver finds a reduction of about 3.03% in the annual grid
operating costs with respect to the benchmark case, while the BONMIN solver reaches
a reduction of approximately 7.59%. However, the main problem with these MINLP
solvers is that they did not find a feasible solution for the optimal placement and
sizing of D-STATCOMs in the IEEE 69-bus grid simulation scenario.

iii. The processing times in the IEEE 33- and 69-bus grids with the proposed GNDO
approach showed that, even though it has the same numerical behavior as the VSA, it
reports better average processing times, being 11.93 s faster in the IEEE 33 bus grid and
31.51 s faster in the IEEE 69-bus grid. However, it is important to mention that both
methods take less than 4 min to locate and size D-STATCOMs in radial distribution
networks, whereas the GA/PSO approach takes more than 100 min in both cases.
These long simulation times are associated with the fact that the GA selects the nodes
where the D-STATCOMS must be located, while the PSO approach determines their
optimal sizes. At the same time, the GNDO and VSA methodologies solve both
problems using a continuous-discrete codification that allows for drastically reducing
the required power flow solutions.

After locating and sizing D-STATCOMs in the IEEE 33- and 69-bus grids, the proposed
GNDO approach confirmed its robustness and efficiency in solving problems regarding
reactive power compensation in distribution networks, with notable numerical performance
when compared to recent literature developments.

5.3.4. Optimal Location of Fixed-Step Capacitor Banks in the IEEE 85-bus Grid

The IEEE 85-bus grid is a medium-voltage distribution network with a radial configu-
ration, operated with 11 kV in the substation located at bus 1. The electrical topology of
this test feeder is depicted in Figure 6, and its electrical parameters are listed in Table 9.
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Table 9. Parametric information regarding branches and loads in the IEEE 85-bus system.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.108 0.075 0 0 34 44 1.002 0.416 35.28 35.99
2 3 0.163 0.112 0 0 44 45 0.911 0.378 35.28 35.99
3 4 0.217 0.149 56 57.13 45 46 0.911 0.378 35.28 35.99
4 5 0.108 0.074 0 0 46 47 0.546 0.226 14 14.28
5 6 0.435 0.298 35.28 35.99 35 48 0.637 0.264 0 0
6 7 0.272 0.186 0 0 48 49 0.182 0.075 0 0
7 8 1.197 0.820 35.28 35.99 49 50 0.364 0.151 36.28 37.01
8 9 0.108 0.074 0 0 50 51 0.455 0.189 56 57.13
9 10 0.598 0.410 0 0 48 52 1.366 0.567 0 0
10 11 0.544 0.373 56 57.13 52 53 0.455 0.189 35.28 35.99
11 12 0.544 0.373 0 0 53 54 0.546 0.226 56 57.13
12 13 0.598 0.410 0 0 52 55 0.546 0.226 56 57.13
13 14 0.272 0.186 35.28 35.99 49 56 0.546 0.226 14 14.28
14 15 0.326 0.223 35.28 35.99 9 57 0.273 0.113 56 57.13
2 16 0.728 0.302 35.28 35.99 57 58 0.819 0.340 0 0
3 17 0.455 0.189 112 114.26 58 59 0.182 0.075 56 57.13
5 18 0.820 0.340 56 57.13 58 60 0.546 0.226 56 57.13
18 19 0.637 0.264 56 57.13 60 61 0.728 0.302 56 57.13
19 20 0.455 0.189 35.28 35.99 61 62 1.002 0.415 56 57.13
20 21 0.819 0.340 35.28 35.99 60 63 0.182 0.075 14 14.28
21 22 1.548 0.642 35.28 35.99 63 64 0.728 0.302 0 0
19 23 0.182 0.075 56 57.13 64 65 0.182 0.075 0 0
7 24 0.910 0.378 35.28 35.99 65 66 0.182 0.075 56 57.13
8 25 0.455 0.189 35.28 35.99 64 67 0.455 0.189 0 0
25 26 0.364 0.151 56 57.13 67 68 0.910 0.378 0 0
26 27 0.546 0.226 0 0 68 69 1.092 0.453 56 57.13
27 28 0.273 0.113 56 57.13 69 70 0.455 0.189 0 0
28 29 0.546 0.226 0 0 70 71 0.546 0.226 35.28 35.99
29 30 0.546 0.226 35.28 35.99 67 72 0.182 0.075 56 57.13
30 31 0.273 0.113 35.28 35.99 68 73 1.184 0.491 0 0
31 32 0.182 0.075 0 0 73 74 0.273 0.113 56 57.13
32 33 0.182 0.075 14 14.28 73 75 1.002 0.416 35.28 35.99
33 34 0.819 0.340 0 0 70 76 0.546 0.226 56 57.13
34 35 0.637 0.264 0 0 65 77 0.091 0.037 14 14.28
35 36 0.182 0.075 35.28 35.99 10 78 0.637 0.264 56 57.13
26 37 0.364 0.151 56 57.13 67 79 0.546 0.226 35.28 35.99
27 38 1.002 0.416 56 57.13 12 80 0.728 0.302 56 57.13
29 39 0.546 0.226 56 57.13 80 81 0.364 0.151 0 0
32 40 0.455 0.189 35.28 35.99 81 82 0.091 0.037 56 57.13
40 41 1.002 0.416 0 0 81 83 1.092 0.453 35.28 35.99
41 42 0.273 0.113 35.28 35.99 83 84 1.002 0.416 14 14.28
41 43 0.455 0.189 35.28 35.99 13 85 0.819 0.340 35.28 35.99

Table 10 presents the numerical simulations for the IEEE 85-bus grid, considering
the possibility of selecting zero to six nodes with shunt capacitors. In this simulation,
each node selected to locate a reactive power compensator must have at least one pack of
capacitors installed.
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Table 10. Numerical results for the IEEE 85-bus regarding the optimal selection and location of
fixed-step capacitor banks.

No. of Nodes Location Size (kvar) fNPV (USD) Ave. Time (s)

0 — — 643,005.2405 —
1 26 900 503,325.5728 231.6172
2

[
32, 60

] [
500, 500

]
469,918.4905 360.2201

3
[
12, 34, 60

] [
200, 400, 400

]
463,494.7688 417.9952

4
[
12, 35, 40, 64

] [
200, 200, 200, 400

]
463,290.0220 367.9361

5
[
12, 29, 48 60, 68

] [
200, 300, 200 200, 200

]
461,133.6344 360.5564

6
[
27, 35, 53 60, 70, 80

] [
200, 300, 100 200, 100, 200

]
462,226.7173 471.7108
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Figure 6. Schematic nodal connections of the IEEE 85-bus grid.

The numerical results in Table 10 reveal that:

i. The maximum reduction in the expected net present value (NPV) is reached when five
capacitor banks are installed in the distribution network. These are installed at nodes
12 (200 kvar), 29 (300 kvar), 48 (200 kvar), 60 (200 kvar), and 68 (200 kvar), which
summarizes a total of 100 kvar of reactive power injection in the IEEE 85-bus grid, and
thus allows for a reduction of about 28.2846%, i.e., USD 181,871.6061.

ii. Solutions containing three and four capacitors show a similar reduction in the expected
NPV, both installing 1000 kvar in the form of fixed-step capacitor bank compensators.
For three capacitors, these were installed at nodes 12 (200 kvar), 34 (400 kvar), and 60
(400 kvar), which allowed for a reduction of about 27.9174% in the objective function
value with respect to the benchmark case. In the case involving four capacitors, these
were assigned to nodes 12 (200 kvar), 35 (200 kvar), 40 (200 kvar), and 64 (400 kvar),
which allowed for a reduction in the objective function value of about 27.9493% with
respect to the benchmark case.

iii. Solutions involving six shunt capacitor banks show that, for the IEEE 85-bus grid,
the objective function tends towards saturation after five capacitors, given that, with six
devices, the objective function starts to increase again. The reduction with six capac-
itors was about 28.1146% with respect to the benchmark case (i.e., USD 1093.0829),
which is more expensive than the best solution found with five fixed-step capacitor
banks. This is a significant result, as it shows that, for the IEEE 85-bus grid, after three
shunt capacitors, the expected reduction in the NPV varies by less than 1%, which
implies that the distribution company has a variety of reactive power compensa-
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tion options to improve their NPV with similar reductions, i.e., between 27.9174%
and 28.2846%.

Regarding processing times, it is worth mentioning that implementing the GNDO
approach took between 231.6172 s and 471.7108 s to solve the studied problem. This is
a reduced processing time considering that only the solution space associated with the
nodal selection varies from 84 (for one capacitor package) to 406,481,544 (for six capacitor
packages) possible nodal options. In addition, the number of capacitor options per node
varies from 10 (for one capacitor package) to 1,000,000 (for six capacitor packages), which
implies that the dimensions of the integer part of the MINLP model change from a few
hundred to trillions of options.

6. Conclusions and Future Work

The problem regarding the optimal placement and sizing of fixed-step capacitor banks
in radial and meshed distribution networks was addressed in this study by applying a
master–slave optimization technique. The master stage defined the nodes and the sizes of
the fixed-step capacitor banks to be installed, employing the discrete version of the GNDO
approach. This discrete configuration determines the purchasing, installing, and operating
costs of the fixed-step capacitor banks. The slave stage evaluated each capacitor configura-
tion provided by the master stage in order to determine the expected costs of the energy
losses for the planning period. Numerical results in the IEEE 33-bus grid with radial and
meshed configurations demonstrated that:

i. For the radial configuration, the best solution reached by the proposed optimization
approach involves two packs of capacitor banks at nodes 13 and 30 with sizes of
200, and 500 kvar, allowing for a reduction of about USD 64,937.8319 with respect to
the benchmark case, i.e., a net improvement of about 13.8534%. When the optimal
solution (two capacitor banks) was compared with the solution involving five capacitor
banks, a deterioration of about 0.8412% was observed in the objective function, which
confirmed that the increase in number of fixed-step capacitor banks installed did not
necessarily improve the expected net present value of the project.

ii. In the case of the meshed configuration for the IEEE 33-bus grid, for only one set
of capacitor banks installed at node 30, with an equivalent size of 600 kvar, the best
reduction in the objective function value was found, i.e., 7.6881%. However, when
the system was forced to install five sets of capacitors, the objective function was
deteriorated by about 1.5869% with respect to the optimal solution. This confirmed
that each distribution network topology could have a different number of capacitor
banks which will allow for a better minimization of the objective function.

iii. Regarding processing times, it was observed that, for the radial simulation, less than
69 s were needed to solve the studied problem with a different number of capacitor
banks, whereas, in the meshed configuration, less than 48 s were required. The differ-
ence between both processing times is mainly attributable to the fact that, in radial
configurations, more iterations are required to ensure the power flow convergence.
This is in comparison with a meshed grid structure.

A comparative analysis between the proposed master–slave approach with combina-
torial and exact optimization methods in the IEEE 69-bus grid with a radial configuration
and peak load conditions confirmed that the GNDO algorithm is an efficient combinatorial
optimization method supported by normal distributions to solve hard MINLP models,
which opens the possibility of its extension to multiple engineering problems.

Numerical simulations employing the proposed GNDO approach to locate and size
D-STATCOMs in the IEEE 33- and 69-bus grids with a radial structure confirmed the
effectiveness of this algorithm compared to the GA/PSO and the VSA approaches, where
less processing times were required. The exact solution of the VSA approach was found by
the GNDO approach in both test feeders. In contrast, the GA/PSO approach, as well as
the COUENNE and BONMIN solvers of the GAMS software, exhibited a locally optimal
convergence in the IEEE 33-bus grid.
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The application of the proposed master–slave approach to locate and select fixed-
step capacitor banks in the IEEE 85-bus grid showed that, after three reactive power
compensators were installed, the objective function was reduced by less than 1%. The best
solution was found when five capacitors were installed, allowing for a reduction of about
28.2846% with respect to the benchmark case. In addition, the solution with six reactive
power compensators showed that the objective function started to deteriorate, which
confirmed that the best number of shunt capacitor banks for installation is five. However,
due to the large dimensions of the solution space, more research will be required to confirm
or disprove these results for the IEEE 85-bus grid.

Future works derived from this research could include the following: (i) a sensitiv-
ity analysis regarding the interest rates applied to the investment returns, energy losses,
and operation costs, as well as with respect to capacitor bank sizes, allowing to find better
solutions for each distribution network under analysis; (ii) the inclusion of uncertainties in
the demand behavior, as well as the distinction between residential, industrial, and com-
mercial users in the studied problem, by transforming the exact MINLP model into a
mixed-integer convex model; and (iii) the combination between reactive power compen-
sators with fixed and variable injection characteristics and active power compensators,
i.e., dispersed generation for planning and operation studies in distribution networks that
involve the GNDO approach.
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