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Abstract: The proliferation of inverter-based distributed energy resources (IBDERs) has increased the
number of control variables and dynamic interactions, leading to new grid control challenges. For
stability analysis and designing appropriate protection controls, it is important that IBDER models
are accurate. This paper focuses on the accurate estimation and parameter calibration of DER_A,
a recently proposed aggregated IBDER model. In particular, we focus on the parameters of the
reactive power–voltage regulation module. We formulate the problem of parameter tuning as a
non-linear least square minimization problem and solve it using the Levenberg–Marquardt (LM)
method. The LM method is primarily chosen due to its flexibility in adaptively selecting between
the steepest descent and Gauss–Newton methods through a damping parameter. The LM approach
is used to minimize the error between the actual measurements and the estimated response of the
model. Further, the computational challenges posed by the numerical calculation of the Jacobian are
tackled using a quasi-Newton root-finding approach. The proposed method is validated on a real
feeder model in the northeastern part of the United States. The feeder is modeled in OpenDSS and
the measurements thus obtained are fed to the DER_A model for calibration. The simulation results
indicate that our approach is able to successfully calibrate the relevant model parameters quickly and
with high accuracy, with a total sum of square error of 3.57× 10−7.

Keywords: damped least-squares; distributed energy resources; DER_A; Jacobian; model calibration;
model parameter estimation; model validation; nonlinear least squares; OpenDSS

1. Introduction

The growing penetration of inverter-based distributed energy resources (IBDERs) has
provided opportunities for a sustainable and smarter renewable-rich smart power grid
(RRSPG). In fact, renewable energy sources (RESs) can supply up to 60% load demand in
today’s power systems. In traditional electric grids, system characteristics were based on
conventional generators, such as synchronous machines. However, with advancements
in control flexibility, DC-AC conversion, and power electronics, the penetration level of
IBDERs in RRSPG has increased to the point where their influence on system characteristics
can no longer be disregarded. The IBDERs impact includes, but is not limited to, peak
demand [1], voltage control [2], hosting capacity [3], and dynamic performance [4]. In con-
trast to conventional synchronous generators, which are governed by physics (principles
such as flux linkage, etc.), the behavior of IBDERs is regulated by power electronics and
control algorithms. Due to these features, IBDERs have the ability to perform a range of
functions, such as high/low voltage ride through (LVRT/HVRT) and primary frequency
response through active power–frequency control. The functional and structural differ-
ences/features are described in standard IEEE 1547-2018, which discusses operation and
stability for IBDERs [5].
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Each IBDER possesses unique characteristics, and even if the underlying electronic
systems are identical, their dynamic behavior may vary depending on their location in
the feeder or on the variance between the medium voltage network and the low voltage
network. Ideally, every individual DER would be modeled to precisely represent its
dynamic behavior, but due to the growing number of IBDERs, this becomes computationally
challenging. Moreover, many IBDERs are usually placed behind the meter, adding to
the uncertainty and complexity of modeling. The aggregation of IBDERs provides an
adequate approximation of the collective behavior of smaller IBDERs, which offers sufficient
detail for utilities to conduct studies on transient stability, grid planning, and the system’s
performance at the point of interconnection (POI) [6,7]. The authors in [8] show that
aggregators do add value to the power system in the long term, though the regulation
should be improved. Despite the necessity of accounting for the aggregated behavior of
IBDERs, industry research shows that in approximately one-third of cases, IBDERs are
modeled through negative loads in bulk system dynamic studies [9]. This could be a result
of one or more of the following [4]:

• Lack of well-defined, well-validated model for IBDERs.
• Lack of widely accepted model for IBDERs and their parameters.
• Little information about IBDERs, especially at low voltage levels.
• Lack of accepted approaches for IBDER aggregation.
• Lack of widely accepted approach for parameter calibration of IBDERs.

Significant efforts have been made over the past decade to define a generic model
for IBDERs. The Western Electricity Coordination Council (WECC) first proposed pvd1
to account for the aggregation of IBDERs [10–12]. However, pvd1 lacks the ability to
mimic several new functionalities, such as LVRT/HVRT, active power–frequency control,
and reactive power–voltage control introduced by the recently updated IBDER standard
IEEE Std 1547-2018 and California Rule 21. Other generic models, such as regc_a, reec_a,
repc_a, lhvrt and lhfrt, mostly intended for large-scale PV plants, are very complex
with 5 modules, 121 parameters, and 16 states [13]. Therefore, a simpler model is needed
that can mimic the new features of modern inverters as outlined in IEEE 1547-2018.

WECC introduced DER_A [13,14], a time-domain positive-sequence model to represent
the combined dynamic behavior of up to a hundred IBDERs, which can account for both
legacy and modern IBDERs. DER_A was subsequently attached to the WECC composite
load model for representing aggregated IBDERs [15] and is now included as a library model
in major positive sequence simulation software tools [16]. Overall, DER_A has significantly
reduced the order of 2nd generation RES models by decreasing the number of parameters
to 48, i.e., 1/3 of the number of parameters in a full 2nd generation model. Despite a
significant reduction in the number of parameters in this model, the challenge of tuning
these parameters remains significant. It is crucial that these parameters accurately reflect
the actual behavior of IBDERs without imposing any limitations on their capabilities.

The DER_A model development and parameter tuning studies in the literature are
shown in Figure 1. A comprehensive study on the DER_A model is carried out in [16] by
applying small and large disturbances of voltage and frequency using various commercial
simulation platforms; however, the focus of the study is limited to verifying the accuracy
of the model response [16]. Nevertheless, Ref. [16] can be considered a suitable benchmark
for further analysis and parameterization studies of the model. Parameterization studies
are mostly focused on the partial trip setting of the model [17]. Authors in [18] derive a
set of generic parameters with a focus on the parameterization of the fractional tripping
module and assume generic settings for the rest of the parameters. Authors in [19] obtain
the voltage tripping parameters of DER_A using dynamic Monte Carlo simulations, but
they do not address other model parameters. Nevertheless, the proposed DER_A model
is relatively new and there is a lack of extensive research. Further, most of the studies
address the parameterization of fractional tripping parameters while assuming default
values for other parameters. However, as mentioned in [4], appropriate model selection
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with inappropriate parameters is a very critical issue. Therefore, it is extremely important
to address other parameters of the model, especially voltage control parameters.

Figure 1. Comparison of DER_A parameter calibration in the literature [15–20] and our pro-
posed method.

This paper addresses the above challenge by investigating the problem of the parame-
terization of aggregated models of IBDERs, focusing on mostly unexplored parameters of
the model that cannot be specifically determined from the system characteristics. A frame-
work based on Levenberg–Marquardt (LM) is proposed for IBDER parameter calibration.
The proposed LM algorithm is designed to minimize the error between the measurements
and model response by adaptively selecting between the steepest descent method and the
Gauss–Newton method using a damping parameter. To this end, an optimization-based
approach is proposed, relying on minimizing the square error in a nonlinear fashion. Gen-
erally, in such studies, the calculation of the Jacobian can become a bottleneck—(1) many
commercial simulation platforms do not provide internal states crucial for Jacobian cal-
culation; (2) further, numerical calculations of Jacobian can be very time consuming and
computationally expensive. Our proposed framework addresses the challenges of the Jaco-
bian calculation using a quasi-Newton root-finding approach, reducing the computation
time simultaneously. A real-world RRSPG feeder with considerable PV penetration [21]
was selected for numerical validation. The feeder was modeled in OpenDSS, and measure-
ments were obtained for calibration. These measurements were then fed to the simulated
DER_A model developed in MATLAB to generate the response. The error between modeling
the behavior and the measurement forms the basis of the parameter calibration using the
LM method. The simulation results show a considerable match between the measurement
and the model response with calibrated parameters. The estimation errors also confirm the
successful calibration of targeted parameters. Correctly tuned models play an important
part in DER_A benchmarking and testing, which is currently beyond the scope of this paper.
The contributions of this work can be summarized as follows:

1. We provided a comprehensive review of IBDER model estimation and calibration.
2. We developed an approach for calibration of aggregated IBDER models in RRSPG,

which can be generalized to any model and integrated with any simulation platform.
3. We addressed grid reliability issues imposed by inaccurate aggregated IBDER models

by proposing a new optimization-based algorithm. The proposed Levenberg–Marquard
method minimizes the error between measurements and the simulated response of
aggregated IBDER model by adaptively selecting between the steepest descent and
the Gauss–Newton using a damping factor.

4. We addressed the computational challenges of numerical calculation of the Jacobian
through a quasi-Newton root-finding approach.

5. We validated the developed algorithm using the real system feeder modeled in
OpenDSS. For DER_A response to an emulated fault, the d-axis and q-axis current val-
ues were used as measurements, while the measured terminal voltage and frequency
were taken as the model response. We developed and simulated DER_A employing the
LM-based proposed method in MATLAB.
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6. We proposed a general framework to integrate the model parameter calibration
method of the aggregated IBDER model into industrial dynamic simulators for RRSPG.
Specific model parameters selected for calibration in this work can be extended to
other parameters easily.

The rest of the paper is organized as follows: Section 2 reviews the DER_A model and
its parameters. Section 3 formulates the problem of parameter estimation, while Section 4
discusses the proposed method in detail. Section 5 explains the numerical simulations
carried out to test and validate the proposed method, and, finally, Section 6 concludes the
paper and sets the direction for future works.

2. Review of the DER_A Model

Over the last decade, various attempts have been made to develop aggregated inverter-
based generation (IBG) models for transmission planning and stability studies. To this
end, DER_A was introduced by WECC in compliance with interconnection standards [13].
It was added as a positive-sequence load at the end of the feeder; it can be used either
as a standalone or aggregate, and is a simplified version of previous models. The DER_A
model has fewer states and parameters compared to other generic models, yet is inclusive
of modern inverter features. Figure 2 shows the detailed block diagram of DER_A, which
includes the following features:

• Active power–frequency control;
• Frequency tripping logic input;
• Reactive power-voltage control;
• Active–reactive current priority logic;
• Fractional tripping;
• Voltage source representation.

Among all the modules, the partial tripping module has attracted the most attention,
as the partial tripping parameters determine the behavior of the aggregated DERs in
a direct way. The module emulates the aggregated behavior of DERs along the feeder
under abnormalities in the grid, such as low- or high-voltage scenarios. The ratio of
legacy inverters to modern inverters, corresponding time settings, and locations along the
feeder collectively determine the values of Vrfrac and other parameters of the tripping
module. The North American Electric Reliability Corporation (NERC) has recommended
a few options to roughly determine voltage break points (vl0, vl1, vh0, vh1), though it is
encouraged to use engineering judgment and sensitivity analysis as well [22]. The NERC
guideline is mostly considered as a starting point, and probes for alternate methods are
underway. Authors in [18] randomly distributed DERs along the feeder and characterized
the tripping module by extensive simulations. A dynamic study and quasi-static simulation
are conducted in [17] to explore the low voltage dynamic response of the aggregated model.
It is shown that the obtained behavior is significantly different from the response of default
values provided by NERC [23]. The parameters of a generic PV model can be divided into
four categories [20]:

• Parameters in accordance with grid connection requirements (GCRs);
• Parameters that are highly manufacture dependent;
• Parameters that do not affect the simulation results;
• All other parameters.
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Figure 2. Block diagram for the DER_A model version A [13].
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Such a classification might be helpful for areas with specific grid connections, such as
Dutch Netcode, which requires fast fault current for IBGs. However, restricted requirements
often limit the boundaries of some parameters. However, the U.S. IEEE 1547 and California
Rule 21 are voluntary industry standards and have no inherent authority. While the
standards recommend certain features, such as voltage regulation, they are still quite flexible
and allow the governing authority to configure these capabilities as they see fit for meeting
the interconnection requirements. Note that manufacture-dependent parameters are not
particularly useful in the case of aggregating several hundred DERs behind the meter.

To the best of the authors’ knowledge, there are no other studies other than [20] that
address the parametrization of non-tripping parameters of DER_A. The authors in [20]
used sensitivity analysis and literature research to assign values to unknown parameters.
Sensitivity analysis has been used as a primitive identifiability test for other problems, such
as composite load model identification [24], although it is acknowledged that sensitivity
analysis can be performed in a more intrinsic manner by using optimization-based tuning.
The determination of other model parameters, such as time constants and gains, has not
been discussed thoroughly, and default values are mostly considered in the literature.
These parameters are the main focus of the paper.

3. Problem Formulation

In this paper, we focus on unaddressed time constants and gain parameters of the
DER_A model. These include parameters of the voltage regulation module—time constant
T_rv, proportional control gain K_qv, and lower and upper deadbands dbd_1 and dbd_2,
respectively. We adopt a more structured and reliable approach based on optimizing
the estimation error for parameterization. The proposed tuning framework can be easily
adapted for other parameters of the model as well.

The problem of parameter tuning is formulated as a least-squares problem. Here,
the desired outputs or true measurements of the sub-system model are used as the reference.
These desired outputs are the d-axis and q-axis currents (Ip and Iq) of aggregated DERs,
as shown in Figure 2. Considering DER_A model as a grey box system, the output is written
as follows:

ŷ = f (p, u) (1)

where u is the input vector comprising the terminal voltage Vt and frequency F, p represents
the uncalibrated parameters, and f denotes the nonlinear function that maps the input
vector to the estimated output vector ŷ with the specified parameters. The input vector
along with the aggregated active and reactive power outputs of DERs, P and Q, can be
measured from the field or the simulator modeling the whole feeder. The terminal currents
of dq-axes are calculated as

P = Vdid + Vqiq (2)

Q = Vdiq −Vqid (3)

Note that, here, Vd is the terminal voltage and Vq = 0. By feeding the input vector
to the model aggregator f , an estimation of outputs ŷ is obtained that can be used for the
parameter tuning process. This approach is called signal playback and has been used in a
variety of model validation and calibration applications in the literature [25].

Problem Statement: The problem of tuning the DER_A parameters based on the mea-
surements is a nonlinear least-squares problem. Here, the unknown parameters of aggre-
gated DER model p are calibrated by minimizing the error between the measurements taken
from the field y(t) and the estimated response of the model. The problem is mathematically
formulated as

minimizep ||y− f (p, u)||2 (4)
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4. Proposed Solution Approach
4.1. Levenberg–Marquardt Method for Parameter Tuning

To solve the above problem, we propose to implement the Levenberg–Marquardt
(LM) method. The LM was first introduced by Levenberg [26] and then by Marquardt [27]
independently. It is one of the well-known and most successful nonlinear least-squares
methods due to its easy implementation and fast convergence characteristics. LM exhibits
adaptive behavior by incorporating a damping factor into its step-size calculation formula.
This factor is increased if LM fails to reduce the square error, and decreased otherwise.
In a sense, LM can be defined as a mixture of the Gauss–Newton and steepest descent
methods [28]. Because of the inherent flexibility and efficiency, LM is used to estimate the
unknown parameters of the DER_A model. The LM method creates an affine approximation
of f around p as

f (p + δp) ≈ f (p) + Jδp (5)

where f is the function that maps parameters p and inputs vector u to an estimation of
measurements ŷ(t) = f (t; p, u). Here, δp is the Gauss–Newton step and J is the Jacobian of
f . Like other nonlinear optimization methods, LM tries to estimate a series of parameter
vectors pk iteratively, where k denotes the iteration step. The objective is to lead the
parameter vector pk closer to its optimal value at each iteration so that the error between the
actual measurements and the estimated measurements ultimately becomes zero or close to
zero. An incremental step δp is added to the parameter vector for updates, and the 2-norm
of estimation error is minimized as

‖ y− f (p + δp) ‖≈‖ y− f (p) + Jδp ‖=‖ εp − Jδp ‖ (6)

where y(t) is the measurement vector, and εp(t) = y(t)− ŷ(t; p) is the estimation error.
Without loss of generality and for the simplicity of representation, we drop the input vector
u from the equations. Note that the measurement time series is treated as a batch in the
above framework. To minimize the estimation error, the derivative of (6) with respect to p
is set to zero, which leads to the following normal equations:

JT Jδp = JTεp (7)

where JT J is first-order approximation of Hessian of error, JTε refers to the direction of the
steepest descent and T denotes the transpose operation. To adaptively switch between the
steepest descent and the Gauss–Newton, a damping parameter µ is introduced, and the
augmented normal equations are

(JT J + µI)δp = JTεp (8)

Small values of µ result in a Gauss–Newton update, while larger values result in the
steepest descent update. Initial values of µ are usually set as large so that the step is small
in the steepest descent direction. By approaching the optimal point, µ becomes smaller, and
therefore, LM leans toward the Gauss–Newton method. In each iteration of LM, the step
δp is calculated by solving (8). If the updated parameter vector p + δp cannot reduce the
error εTε further, the damping parameter µ is increased, and the iteration continues until
an accepted step is found that reduces the error. The details of the proposed approach are
presented in Algorithm 1. The algorithm stops if it either reaches the predefined maximum
number of iterations kmax or meets the stopping criterion defined below:

||JTεp||∞ ≤ ι1 (9)

||δp|| ≤ ι2(||p||+ ι2) (10)

The parameters ι1, ι2 and kmax are user defined. Note that the maximum number of
iterations should be set to be large enough for the algorithm to converge to an acceptable
level of accuracy.
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Algorithm 1: Proposed DER_A parameter calibration with Levenberg–Marquardt
method.

Input: Measurement vector y ∈ Rm, mapping function f : Rn → Rm, and initial
parameter estimation p0 ∈ Rl .

Output: A p ∈ Rl which minimize ‖ y− f (p) ‖.
Begin : k := 0; ν := 2; p := p0;

A := JT J; εp := y− f (p); g := JTεp;
found:= (‖ g ‖∞≤ ι1); µ := τ ∗max{aii}

while (not found) and (k < kmax) do
k := k + 1;
if k = 1 or k mod 2l = 0 then

Calculate J using (11)
else

Calculate J using (12)
end
Solve (8) to find δp
if (||δp|| ≤ ι2(||p||+ ι2)) then

found:=true
else

pnew := p + δp
ρ := (||εp||2 − ||y− f (pnew)||2)/(δT

p (µδp + g))
if ρ > 0 then

p := pnew;
A := JT J; εp := y− f (p); g := JTεp
found:=(||g||∞ ≤ ι1)
µ := µ ∗max{ 1

3 , 1− (2ρ− 1)3}; ν := 2
else

µ := µ ∗ ν; ν := 2 ∗ ν
Recalculate J using (12)

end
end

end

4.2. Quasi-Newton Method for Jacobian

The numerical calculation of Jacobian is challenging and we address this problem using
a quasi-Newton root-finding approach. The Jacobian J can be approximated numerically
using either forward or central difference. The forward difference is as follows:

Jij =
∂ŷi
∂pj

=
ŷ(ti; p + hj)− ŷ(ti; p)

‖ h ‖ (11)

where hj is an all-zero vector except for the jth element which is a very small positive
number h. Although the finite difference method is an efficient method to calculate the
Jacobian, it becomes computationally expensive, especially if the number of parameters is
large. To address this problem, the quasi-Newton root-finding method is used to evaluate
the Jacobian only at the first iteration and subsequently implement a rank-1 Jacobian
update [29]:

Jk+1 = Jk +
[(

ŷ(p + δp)− ŷ(p)− Jδp
)
δT

p

]
/(δT

p δp) (12)

The Jacobian approximation using (12) may deteriorate eventually, necessitating a
re-evaluation of the Jacobian after several iterations. Hence, at the first iteration, at every
2l iteration, and at iterations where ||y− f (pnew)||2 > εT

p εp (i.e., the step gets rejected),
the Jacobian is re-calculated using finite differences using (11). Note that the gradients can
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also be calculated analytically; however, this requires having an accurate representation of
the model, which may not be readily available.

To summarize, this paper implements the LM method to calibrate unknown time
constant and gain parameters of the DER_A reactive power–voltage regulation module.
In this context, the measured fields are d-axis and q-axis current Ip and Iq, respectively,
and the mapping function f is the output of DER_A when the measured terminal voltage
and frequency feed it. The next section discusses the results of our approach.

5. Simulation Results

The proposed method is validated on a real distribution feeder located in the north-
eastern part of the US, which includes a 1.7 MW customer-owned PV [21]. The system
topology is shown in Figure 3. The feeder specifications are listed in Table 1.

Figure 3. Topology of the test system with regulators (red) and PV buses (yellow) [21].

Table 1. Test system specifications.

Category Value

Nominal Medium Voltage 12 kV

Peak Load 6 MW

Primary Lines 58 m

No. of DER 13

Total DER Capacity 1.7 MW

No. of Capacitors 4

Total MVAR Capacity 3.9 MVAR

5.1. Modeling of Actual Distribution System

The model of the distribution feeder shown in Figure 3 is developed in OpenDSS [30].
The voltage profile of the test feeder without any DERs is shown in Figure 4. To emulate the
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fault condition, a voltage sag is induced at a substation to observe the aggregated behavior
of the DERs. The voltage sag waveform is generated as

V(t) =


a if 1 ≤ t < 1 + b/60
−(1−d)(t−1−c)

b/60−c + 1 if 1 + b/60 ≤ t < 1 + c
1 otherwise,

(13)

where a = 0.47 is the voltage sag level, b = 6 cycles is the sag duration, c = 1 s is the
recovery time, and d = 0.9 is the ramp recovery starting level [16]. This waveform is
used as an input to the voltage source at a substation to simulate a three-phase fault in the
transmission system.

Figure 4. Voltage profile of the test feeder without any DER and with balanced loads. Phases A, B,
and C are denoted in black, red, and blue, respectively. The dotted lines mark the voltage magnitude
on the secondary side of the transformers [21].

Traditionally, distribution systems are simulated in steady-state or quasi-static envi-
ronments using multiple snapshots of power flow. However, the high penetration of IBGs
requires dynamic simulations. To this end, OpenDSS dynamic simulation is used to study
the response of the feeder to the emulated fault in (13). In order to calculate the active
and reactive power of aggregated DERs, the simulations are run twice—with and without
PVs. The net difference makes up for the DER response as shown in Figure 5. Finally,
the terminal currents of dq axes are calculated using (2).



Energies 2023, 16, 3512 11 of 17

Figure 5. Aggregated real and reactive power of PVs obtained from OpenDSS.

5.2. Calibration Results for DER_A Model

We assume that all inverters have the capability to return to their normal operation
after the fault has been cleared, i.e., Vrfrac = 1. The rest of the parameters are selected
based on IEEE Std. 1547-2018 (Category III) in [22]. For target parameters, we used values
listed in the “Before Calibration” column based on NERC guideline [22], as shown in
Table 2.

Table 2. Results before and after parameter calibration.

Parameters Default Parameters [22] After Calibration

Trv 0.02 0.50003

Kqv 5 2

dbd1 −0.12 −5.26

dbd2 0.1 0.050001

The DER_A block diagram is implemented in MATLAB Simulink. The signal playback
method is used for the estimation and calibration process. Figure 6 shows the terminal
voltage and frequency fed to the model. Estimated terminal currents îp and îq are considered
the model outputs. The augmented vector of terminal current values for all the simulation
time is considered as ŷ = f (p), where y is the measurement obtained from OpenDSS, and
p ∈ R4 is the parameter vector.
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Figure 6. The input signals feeding the DER_A.

The proposed LM framework developed in Section 4 is implemented in MATLAB
to calibrate the parameters. Table 2 summarizes the calibration results. The results are
validated on a real-world feeder through the following steps: first, measurements are
obtained from the OpenDSS software, which is used to model the feeder. These mea-
surements serve as the baseline. Second, these measurements are fed to the simulated
DER_A model developed in MATLAB to generate the system response. Figure 7a,b show
the model estimation before and after the calibration process and compares them to the
field measurements. While there are significant disparities between the model estimations
and the measurements prior to calibration, it is seen that the calibrated outputs match the
measurements perfectly. The error between the measurements and the estimated response
of the model is minimized using our proposed approach. In the beginning, the sum of the
squared error is 2.65× 104, which is reduced to 3.57× 10−7 at iteration 12, thus validating
our approach.

It is worth noting that despite using default parameter values as the initial parameter
values as defined by the NERC guidelines, the model estimation is highly inaccurate. This
shows that the parameters that typically do not gain significant interest from researchers
can significantly influence the model estimation and should not be ignored.

Figure 8 illustrates the calibration progress. It is observed that the step size, or rate
of change, is initially large, but as the optimization process approaches the optimal point,
it gradually decreases. This validates that the LM behaves as the steepest descent in the
beginning and then leans toward the Gauss–Newton.

Figure 9 shows the estimation error, i.e., the residuals between the measurements and
model estimation with the tuned parameters. It is observed that the errors are significantly
small, and as expected, most of the errors are concentrated during the dynamic period.
Figure 10 further illustrates the sum of squared error as the calibration progresses. Similar
to the rate of change of parameters shown in Figure 8, it is observed that the error is high at
the beginning and gradually goes toward 0 as it approaches the optimal point.

It is noted here that we performed our simulations using two traditional methods—the
steepest descent and the Gauss methods; however, they did not converge.
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(a) Before Calibration.

(b) After Calibration.

Figure 7. Measurements vs. model response (a) before and (b) after calibration.
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Figure 8. Progress of the parameters estimation process.

Figure 9. Estimation residuals for (a) Ip and (b) Iq.
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Figure 10. The sum of squared error over each step of the iteration during the calibration process.

5.3. Discussions

It is worth mentioning that at first, the calibration process diverged, and reasonable
values could not be obtained. It was observed that the instant gain and the time constant
diverged to negative values; hence, we set limits for these parameters as Trv ≥ 0, Kqv ≥ 0,
dbd1 ≤ 0 and dbd2 ≥ 0. To implement these conditions, the limits were tested with ρ > 0
in the LM algorithm.

After setting these limits, we ran the experiments again, and the calibration converged
to the values given in Table 2. It is observed that the final value of dbd1 was not reasonable.
Further investigation revealed the following: for the particular voltage input given in (13),
the lower band dbd1 is not being triggered, and therefore, the calibration for this parameter
diverges. In other words, dbd1 is not sensitive to this particular input. To address this issue,
we recommend another test, such as voltage swell [16]. This is, however, out of the scope
of the paper.

The developed LM-based calibration technique can be used for a broad range of both
commercial and industrial applications. This is because the method is entirely numerical
in nature and relies solely on the model outputs. As a result, the proposed technique
can be utilized with any other model or simulation platform. It can be implemented
without any need for model details and internal states. To do this, one can simply write a
custom-defined script for currently available dynamic simulators, such as Siemens PSS®E,
PowerWorld and DigSILENT PowerFactory, which have already included DER_A in their
libraries. Further, our proposed method is not time consuming, and hence can be used as a
preprocessing step prior to being utilized in real-time setup.

There are two limitations to our approach. First, the Levenberg–Marquardt algorithm
is sensitive to the damping parameter—a small parameter may lead to slow convergence,
while a large parameter may lead to a local minimum. Second, finding accurate values for
user-defined ι1, ι2, and kmax may pose some challenges.

6. Conclusions and Future Works

With increasing challenges of power system operation and control with DERs, this
paper investigated the parameter calibration of DER_A, a recently proposed aggregated DER
model. We focus on tuning time constants and gain parameters, specifically the T_rv, K_qv,
dbd_1 and dbd_2 parameters in the reactive power–voltage control module. These non-
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tripping parameters of the model have a huge impact on the model response and are hence
considered for tuning, which has not been done previously. Through our experiments, we
observe that the NERC guideline can only serve as a starting point for parameterization,
and further calibration is extremely necessary based on actual measurements. To this
end, we propose an optimization-based nonlinear least-squares problem to calibrate the
parameters by minimizing the error between the field measurements and the estimated
response of the model. We implement the Levenberg–Marquardt approach that solves
the nonlinear least-squares problem by adaptively choosing between the steepest descent
and the Gauss–Newton method. The challenge of accurately and quickly calculating the
Jacobian is addressed by using a quasi-Newton root-finding approach. We validate our
approach on a real-world feeder with considerable PV penetration. The error between
the model behavior and measurement forms the basis of parameter calibration for the
Levenberg–Marquardt method. The simulation results indicate a strong correspondence
between the model response and the measured data, demonstrating the successful calibra-
tion of the relevant parameters. The low estimation sum of square error of 3.57× 10−7 at
the final iteration further supports the efficacy of the calibration process. The proposed
method has several advantages: it is measurement based, entirely non-intrusive, and can
be implemented across any platform without the need for model details and internal
states. In the future, we will extend our study to evaluate other parameters (low-voltage
and high-voltage cutout breakpoints) of the model, as well as different grid conditions
and disturbances.
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Abbreviations
The following abbreviations are used in this manuscript:

δp Gauss–Newton step
εp(t) estimation error
F frequency
Ip, Iq d-axis and q-axis currents
J Jacobian
k iteration step
kmax predefined maximum number of iterations
ι1, ι2 user defined stopping criteria
p uncalibrated parameters
P aggregated active power output of DER
Q aggregated reactive power output of DER
u input vector
µ damping parameter
Vt terminal voltage
ŷ estimated output vector
y(t) field measurements
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