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Abstract: The uncertainty brought about by the high proportion of distributed generations poses
great challenges to the operational safety of novel distribution systems. Therefore, this paper proposes
an online reactive power and voltage control method that integrates source–load uncertainty and
a mechanism–data hybrid drive (MDHD) model. Based on the concept of a mechanism and data
hybrid drive, the mechanism-driven deterministic reactive power optimization strategy and the
stochastic reactive power optimization strategy are used as training data. By training the data-
driven CNN–GRU network model offline, the influence of source–load uncertainty on reactive power
optimization can be effectively assessed. On this basis, according to the online source and load
predicted data, the proposed hybrid-driven model can be applied to quickly obtain the reactive
power optimization strategy to enable fast control of voltage. As observed in the case studies,
compared with the traditional deterministic and stochastic reactive power optimization models, the
hybrid-driven model not only satisfies the real-time requirement of online voltage control, but also
has stronger adaptability to source–load uncertainty.

Keywords: source–load uncertainty; data-mechanical hybrid drive; reactive power optimization;
CNN–GRU

1. Introduction

In recent years, with the concept of “carbon peak and carbon neutrality”, the high
proportion of renewable energy (e.g., solar and wind) access will become the fundamental
feature and development trend of the novel power system [1]. However, the widespread
connection of distributed generations and the increasing popularity of electric vehicles have
made the source–load uncertainty of the power grid more and more obvious, which has
aggravated the voltage violation risk caused by the randomness of power flow distribution
and has posed a serious challenge to the reactive power and voltage control of the power
system [2]. At the same time, with the improvement of digital informatization technology
and the increase in the level of equipment automation, the novel distribution system also
puts forward higher requirements for real-time control and adaptability to source–load
uncertainty. The randomness of the source and load power makes it difficult to accurately
predict, which also seriously reduces the reliability of power system control decisions.
Current research usually adopts the Monte Carlo (MC) method to convert the deterministic
power flow calculation in the traditional reactive power optimization model to probabilistic
power flow in order to reasonably cope with the influence of source–load uncertainty on
the reactive power optimization [3].

Ref. [4] proposed a linearization modeling method for on-load tap changers (OLTCs)
and verified the effectiveness of the second-order cone programming (SOCP) model for
solving reactive power optimization problems with OLTCs. Ref. [5] adopted a chance
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constraint approach to convert the uncertainty problem into a deterministic problem, which
effectively solved the problem of voltage control for the uncertainty of distributed energy
resources (DERs). Ref. [6] adopted the MC method and scenario reduction technique to
generate typical scenarios to deal with the stochastic optimal reactive power dispatch
problem with uncertainties in load and DERs. Ref. [7] adopted a data-driven, distribu-
tionally robust optimization model to deal with the uncertainty of renewable generation,
which, to a certain extent, effectively reduced the conservativeness of the results. Ref. [8]
constructed a two-stage robust optimization model for the coordinated control of discrete
and continuous reactive power compensation devices, in order to effectively address the
influence of wind power uncertainty on a reactive power strategy; however, the model was
complicated, and the computation time was long. The above reactive power and voltage
control methods are mainly solved based on the mechanism-driven model of optimization
theory, while in the novel distribution system, with a wide variety of devices, multi-source
heterogeneous data and complex coupling relationships, the traditional solution driven by
the mechanism model will lead to huge computational costs and even exceed the capability
of the optimization solver. It is also difficult to meet the rapidity requirements for online
reactive power and voltage control in distribution system.

In recent years, with the rapid development of artificial intelligence technology, data-
driven methods have been widely used in the field of reactive power control. In Ref. [9],
a distributed Q-learning algorithm was adopted to minimize active power loss while sat-
isfying operational constraints, and it showed good adaptability and robustness under
different operating conditions. Ref. [10] proposed a reactive power control method based
on a deep deterministic policy gradient algorithm, in order to effectively solve the voltage
violation problem in the active distribution network. Ref. [11] proposed a data-driven,
two-stage, stochastic dynamic reactive power optimization model, which aimed to find
the optimal solution under the worst-case probability distribution. In Ref. [12], a big data
modeling method based on large-dimensional random matrix theory was proposed for
reactive power optimization. Ref. [13] proposed a data-driven, multi-agent deep rein-
forcement learning (MADRL) model for voltage control. Since the data-driven reactive
power optimization algorithm lacks prior knowledge as guidance, and the model itself has
“black-box” characteristics, its performance largely depends on the quality of training data,
and its reliability in practical applications cannot be effectively guaranteed. The model-data
hybrid drive (MDHD) method combines the explicit principle of the mechanism model and
the excellent fitting capability of the data model, which has become an important factor
in refining of power system models [14]. Ref. [15] combined the linear power flow model
based on physical equations and the data-driven error model to improve the accuracy of
calculation results. Ref. [16] applied the model-data hybrid drive method to distribution
line fault assessments. Ref. [17] used the frequency prediction results, which were calcu-
lated using the mechanism model, as the training input for the data model, in order to
achieve the correction of the frequency prediction error. Ref. [18] proposed an MDHD
modeling approach to generate accurate linear models for multiple energy flow (MEF) cal-
culations. Considering the contradiction between model complexity and the computation
speed of existing reactive power and voltage control methods, it is difficult to satisfy the
real-time control requirements of novel distribution systems. Therefore, the application
of an MDHD modeling method to the online control of the power grid is an effective
solution. To summarize, in order to reasonably cope with the influence of source–load
uncertainty on real-time voltage control, this paper proposes an MDHD model for online
reactive power and voltage control. Mechanism-driven deterministic reactive power op-
timization results and stochastic reactive power optimization results are used as training
data. The CNN–GRU network is trained offline and used for online control to achieve the
fast correction of the deterministic reactive power optimization results, which takes into
consideration the influence of source–load uncertainty on voltage control. Compared with
the traditional deterministic and stochastic optimization models, the proposed MDHD
model can better satisfy the real-time requirements, and shows a stronger adaptability to
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source–load uncertainty, which has outstanding advantages in the online voltage control of
novel distribution systems.

The remainder of this paper is organized as follows: Section 2 describes source–load
uncertainty using the power prediction error, and constructs the source and load uncer-
tainty model. Section 3 constructs the reactive power optimization model based on mixed
integer SOCP. Section 4 proposes the online control method of reactive power and voltage
based on MDHD, and specifies the implementation processes of the offline and online
stages. Section 5 demonstrates the effectiveness and online application performance of the
proposed method through simulation results. Section 6 concludes this paper.

2. Source–Load Uncertainty Model
2.1. Renewable Energy Uncertainty Model

Wind- and solar-based renewable energies have the characteristics of randomness and
fluctuation, which has a significant influence on the decision making of power systems.
Although the prediction technology for the output of wind turbine (WT) and photovoltaic
(PV) systems has become increasingly sophisticated, the prediction results often cannot
truly reflect the actual situation due to the influence of weather, geography and other
factors [19]. Existing research results show that the output of WT and PV systems in a
certain time period can be expressed as the sum of the predicted value and the prediction
error [20,21]:

Pr(t) = Ppre
r (t) + εr(t) (1)

where Pr(t) and Ppre
r (t) represent the actual and predicted values, respectively, of the WT

or PV outputs in t time period; and εt(t) represents the prediction error of the WT or PV
outputs in that period. According to the central limit theorem, the prediction error obeys a
normal distribution with mean 0 [22,23] (i.e., εr ∈ N(0, σ2

r )). The standard deviation σr can
be calculated by the following equation:

σr(t) = krPpre
r (t) +

1
50

PI (2)

where PI represents the installation capacity of WT or PV systems; and kr is the WT or
PV output prediction error coefficient. Considering the actual situation, the WT output
prediction error coefficient is larger than that of the PV system.

2.2. Load Uncertainty Model

The load power is influenced by electricity behavior and has a certain randomness.
Considering that the load prediction technology has developed significantly, but still cannot
reflect the fluctuation of load power, in this paper, the actual load power Pld is expressed as
the sum of load power predicted value Ppre

ld and load power prediction error ∆Pld. ∆Pld is
usually considered to follow a normal distribution with mean 0 (i.e., ∆Pld ∈ N(0, σ2

ld)) [24].
The load uncertainty model can be expressed as follows:

Pld(t) = Ppre
ld (t) + ∆Pld(t) (3)

σld(t) = λPpre
ld (t) (4)

where σld(t) represents the standard deviation of the load power prediction error ∆Pld(t)
in t time period; Ppre

ld (t) represents the load active power predicted value of that period;
and λ is the proportional coefficient, which can be estimated using historical data.

Source–load uncertainty can be effectively calculated using the power prediction error
model constructed above. This paper adopts the Latin Hypercube Sampling (LHS) method
to generate simulation scenarios based on the probability distribution of the source–load
prediction error for the subsequent stochastic reactive power optimization analysis. The
LHS method can ensure that the samples cover the entire value space of the random
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variables even when the number of samples is small. The specific steps are described
in Ref. [25].

3. Reactive Power Optimization Model Based on Mixed Integer SOCP
3.1. The Objective Function

In this paper, discrete reactive power devices, such as OLTCs, capacitor banks and
continuous devices, such as SVCs, were selected as a means of regulation to optimize
system reactive power through collaborative scheduling. The reactive power optimization
objective function was constructed with the goal of minimizing the system active power
loss. Its form is shown in Equation (5):

min ∑
i,j∈φall ,i 6=j

(
P2

ij + Q2
ij

U2
i

)Rij (5)

where φall is the set of all nodes.

3.2. The Constraints

1. Distflow constraints [26] {
Pij − Rij I2

ij + Pj = Pjk

Pj = Pj,DG − Pj,d
(6)

{
Qij − Xij I2

ij + Qj = Qjk

Qj = Qj,DG + Qj,CB + Qj,SVC −Qj,d
(7)

U2
i −U2

j = 2(RijPij + XijQij)− (R2
ij + X2

ij)I2
ij (8)

I2
ij = (P2

ij + Q2
ij)/U2

i (9)

where Pij and Qij represent the active and reactive power, respectively, of the sending end
from bus i to j; Pj and Qj represent the active and reactive power injection, respectively,
at bus j; Rij and Xij represent the resistance and reactance, respectively, on branch ij;
Iij represents the current amplitude on branch ij; Ui represents the voltage amplitude
of node i; Pj,DG and Qj,DG represent the active and reactive power, respectively, of the
distributed generations connected to node j; Qj,CB and Qj,SVC represent the compensating
reactive power of the capacitor bank and SVC, respectively, connected to node j; and Pj,d
and Qj,d represent the active and reactive power, respectively, of the load connected to
node j.

2. DG operation constraints:

0 ≤ Pj,DG ≤ Pmax
j,DG (10)

−Qmax
j,DG ≤ Qj,DG ≤ Qmax

j,DG (11)

where Pmax
j,DG and Qmax

j,DG represent the upper limits of the active and reactive power, respec-
tively, of the distributed generations connected to node j.

3. Capacitor bank operation constraints:

Qj,CB = djQ
step
j,CB (12)

0 ≤ dj ≤ nj,CB (13)

where Qstep
j,CB represents the reactive power compensation of a set of capacitor bank; nj,CB

represents the maximum switching sets of the capacitor bank; and dj represents the actual
switching sets of the capacitor bank, which is an integer variable.

4. SVC operation constraints:
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Qmin
j,SVC ≤ Qj,SVC ≤ Qmax

j,SVC (14)

where Qmin
i,SVC and Qmax

i,SVC represent the lower and upper limits, respectively, of reactive
power compensation of the SVC connected to the node j.

5. OLTC operation constrains:

Ui = kijUj (15)

kij = kmin
ij + ∆kij

Nij

∑
n=0

2nλij,n (16)

Nij

∑
n=0

2nλij,n − Kmax
ij ≤ 0 (17)

The OLTC is represented in binary code. Where λij,n is 0–1 integer variable; Nij is a
constant, and its value represents the number of binary bits needed to express the maximum
position of the OLTC; Kmax

ij represents the maximum adjustable position of the OLTC; kij

represents the OLTC adjustable ratio; and kmin
ij and ∆kij represent the lower limit and the

adjustment step of kij, respectively.

6. Security constraints:

Ui,min ≤ Ui ≤ Ui,max (18)

Iij,min ≤ Iij ≤ Iij,max (19)

where Ui,min and Ui,max represent the lower and upper limits of the node voltage amplitude,
respectively; and lij,min and lij,max represent the lower and upper limits of the branch circuit
current amplitude, respectively.

3.3. Second-Order Cone Relaxation

According to the characteristics of SOCP [27], ui = U2
i , lij = I2

ij, and then a second-
order cone relaxation of the non-linear power flow constraints in Equations (6)–(9) can be
calculated, which can be converted into the following constraints:

Pij − Rijlij + Pj = Pjk (20)

Qij − Xijlij + Qj = Qjk (21)

ui − uj = 2(RijPij + XijQij)− (R2
ij + X2

ij)lij (22)

lij = (P2
ij + Q2

ij)/ui (23)

and then a further relaxation of Equation (23) is made, which can be represented as the
standard form of SOC constraint:∥∥∥∥∥∥

2Pij
2Qij
lij − ui

∥∥∥∥∥∥
2

≤ lij + ui (24)

After the above cone processing, the original non-convex constraints can be converted
into linear constraints. In this paper, due to the inclusion of discrete variables, the reactive
power optimization model becomes a mixed integer second-order cone programming
model, which can be effectively solved by using commercial software, such as Cplex.
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4. Online Control Model of Reactive Power and Voltage Based on MDHD
4.1. CNN–GRU Network

In this paper, a CNN–GRU network was constructed as the data-driven model. The
network used CNN to extract data and input the results into GRU, which was used to
construct complex mapping relationships. The CNN–GRU network not only enables the
full utilization of historical data, but also effectively improves the output accuracy [28].

The main role of the CNN–GRU model constructed in this paper was to correct
the reactive power optimization strategy solved by the deterministic mechanism model
under source–load uncertainty conditions. Considering that the stochastic optimization
model can effectively reflect the influence of source–load uncertainty on the calculated
results, its results were more reasonable compared to the deterministic optimization model.
Therefore, the reactive power strategies solved by the deterministic optimization model at
each operating moment of the system were taken as the input features, and the reactive
power strategies solved by the stochastic optimization model were taken as the output
labels. Moreover, considering that the stochastic optimization results depend on the degree
of source–load uncertainty at each moment, the source and load prediction error coefficients
at the corresponding moment were also used as input features.

The network training effect depends largely on the quality and format of the sample
data, and the discrete data included in the reactive strategy will cause the network training
accuracy to decrease. Therefore, this paper used a binary-coded method to process the
discrete variables in input features and output labels [29]. Specifically, the OLTC was
represented in m-bit binary codes, and the switching sets of the capacitor bank were
represented in n-bit binary codes.

As a result, the input data of the CNN–GRU model was a single-channel grayscale
image with the dimensions (N + 3)× 1× 1. In the first dimension, 3 represents the number
of prediction error coefficients for PVs, WTs and load power; and N represents the number
of all adjustable variables in reactive power strategy. The value of N is as follows:

N = NOLTC·m + NCB·n + NSVC·1 (25)

where NOLTC, NCB and NSVC represent the number of OLTCs, capacitor banks and SVCs,
respectively, involved in reactive power control. The output data was a sequence with the
dimensions N × 1, which represents the corrected reactive power strategy by considering
the source–load uncertainty, where each discrete device is coded in the same order as the
input data.

By processing the input and output data as described above, the CNN–GRU network
can be trained to map from deterministic reactive power optimization results to stochastic
reactive power optimization results, thus taking into account the influence of source–load
randomness on the reactive power optimization strategy.

4.2. Online Reactive Power and Voltage Control Model Based on MDHD

The online control method of reactive power and voltage based on the MDHD model
was divided into two stages: offline training and online application. The implementation
processes are shown in Figure 1. The offline stage mapped the relationship between
the deterministic reactive power optimization results and the stochastic reactive power
optimization results by training the CNN–GRU model, and applied the trained model
directly to the online stage. This method can make voltage control faster and more accurate,
while effectively handling source–load uncertainty. Its specific implementation processes
are as follows. The offline training stage included the following steps:

(1) Based on the historical data, the source and load prediction error coefficients at a
certain time were determined, and then the source and load uncertainty models were
constructed. On this basis, the LHS method was used to generate several groups of
source and load scenarios.
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(2) The deterministic reactive power optimization was carried out with each group of
scenarios as boundary conditions in turn, and the results were statistically analyzed.
The expected values of the positions of the OLTC, the switching sets of the capacitor
bank, and the reactive power compensation of the SVC was taken as the reactive
power control strategy obtained by stochastic optimization.

(3) Steps (1) and (2) were performed for the WT, PV and load historical power data,
and the set of reactive power strategies were stored in the historical strategy library,
denoted as W = [W1, W2, · · · , Wt, · · · ]. Wt represents the reactive power control
strategy obtained by the stochastic optimization model at time t.

(4) For the above WT, PV and load historical power data, the deterministic model based
on mixed integer second-order cone programming was used for reactive power
optimization. The set of reactive power control strategies obtained at each time was
noted as W ′ = [W ′1, W ′2, · · · , W ′t , · · · ].

(5) The set of reactive power control strategies obtained from the deterministic optimiza-
tion model and the set of source and load prediction error coefficients were spliced
vertically as the input features, and the set of reactive power strategies obtained from
the stochastic optimization model was used as output labels to construct the data
sample set and train the CNN–GRU model. The discrete variables in W and W ′ were
converted into a binary-coded form.

The online application stage was mainly conducted as follows:

(1) The WT, PV and load power for a future time was predicted and noted as
Xpre = [Ppre

pv , Ppre
wt , Ppre

ld ]. Where Ppre
pv was the predicted value of the PV output, Ppre

wt
was the predicted value of the WT output and Ppre

ld was the predicted value of the
load power.

(2) The predicted data Xpre was input into the deterministic reactive power optimization
model to obtain the initial reactive power strategy Wini.

(3) Wini and the source and load prediction error coefficients at that time were in-
put into the CNN–GRU model which had already been trained offline. The out-
put Wcor was the corrected reactive power optimization strategy, considering the
source–load uncertainty.

(4) The reactive power control strategy was decoded and sent into the grid to provide
auxiliary decisions for the schedulers.
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To verify the performance of the online reactive power and voltage control method
based on the MDHD model proposed in this paper, MATLAB 2020a was used for simulation
calculations, with an embedded deep learning toolbox and YALMIP optimization toolbox,
and a Cplex 12.8 commercial solver was used for optimization solutions. The computer
configuration was an Intel(R) Corei7-7700HQ with 2.8 GHz processor and 8 GB RAM.

5. Results and Discussion

In this section, a modified IEEE 33-node distribution system is taken as a case study
to verify the feasibility and effectiveness of the voltage control method proposed above.
The system structure is shown in Figure 2. Regulation equipment such as WTs, PV systems,
OLTCs, SVCs and capacitor banks were added, and the specific parameter configurations
are shown in Table 1. The system voltage reference was set to 12.66 KV and the power
reference was set to 10 MVA. The parameters of the case system refer to Ref. [30], and the
line parameters are shown in Appendix A. The upper and lower limits of the node voltage
were set to 1.05 p.u. and 0.95 p.u, respectively. In addition, the WT and PV systems were
operated in a constant power factor mode, and the relevant parameter configurations are
shown in Table 2.
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Table 1. Regulation equipment parameters.

Grid-Connected Position Range/kVar Step/kVar

CB1 15 [0, 800]
100CB2 26 [0, 800]

SVC1 7 [−100, 1200]
continuous>SVC2 31 [−100, 1200]

Grid-connected Position Range Step

OLTC 1–2 [0.95, 1.05] 0.025

Table 2. PV and WT parameters.

Grid-Connected Position Total Capacity/kW Power Factor

WT1 19 1000

0.9
WT2 30 800
PV1 16 1000
PV2 12 800

5.1. Analysis of Offline Model Training

In this section, the predicted values of source and load from June to September in
a certain place were selected as the input data of the WT and PV sources, and the load
in the case, and the prediction interval was known to be 1 h, with a total of 2928 groups.
Considering the strong randomness of actual wind speed, the WT output prediction error
coefficient kwt was taken as 15%, the PV output prediction error coefficient kpv was taken
as 10%, and the load power prediction error coefficient kld was taken as 5%. The sample
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size of the LHS was set to 200. The reactive power strategies solved by the stochastic model
at each time were used as output labels, and the reactive power strategies solved by the
deterministic model were used as input features to train the CNN model, the GRU model
and the CNN–GRU model. The specific training process is shown in Figure 3.
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The comparison of results in Table 3 shows that both the training performance and
prediction accuracy of the CNN–GRU model were significantly superior to those of the
CNN and GRU models. By the time the iteration reached 120 rounds, the loss function
value of the CNN–GRU model was reduced to below 0.12. Additionally, the RMSE value
of the CNN–GRU model on the test set was 0.4472. The above results fully demonstrate
that the CNN–GRU model has better performance in processing multi-dimensional and
time-series data, and can be selected as the data-driven model for the online control method
of reactive power and voltage.

Table 3. Prediction effect of different models.

RMSE

CNN 0.5164
GRU 0.5462

CNN–GRU 0.4472

5.2. Analysis of Online Application Performance

1. Analysis of Online Application Effective

To further illustrate the effectiveness of the proposed hybrid-driven model applied
to the online reactive power and voltage control, for a group of source and load predicted
values at a certain time, the deterministic model, the stochastic model and the hybrid-
driven model were used for reactive power optimization. Table 4 shows the reactive power
strategies and the computation time obtained by solving the three models.

Table 4. Comparison of reactive power optimization strategies solved by the three models.

Active Power Strategy Computation
Time/sOLTC CB1/Set CB2/Set SVC1/kVar SVC2/kVar

Deterministic model 0.975 3 5 432 738 1.92
Stochastic model 0.975 4 6 609 1079 205.13

Hybrid-driven model 0.975 4 6 586 1062 2.69

As can be seen in Table 4:

(1) Since the effect of source–load fluctuation was not considered, the strategy solved by
the deterministic model was partially different compared to the other two models,
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and the power compensation of each reactive power compensation device was smaller
than the other two models.

(2) Compared with the stochastic model, the reactive power strategy of the hybrid-driven
model had completely consistent results for the discrete variables, and the maximum
deviation of the continuous variable results was 3.78%, which shows that the hybrid-
driven model has a similar level of solution performance as the stochastic optimization
model in dealing with the source–load uncertainty.

(3) In terms of computation rapidity, the computation time of the stochastic optimization
model was 205.13 s due to the simulation of a large number of scenarios, while the
computation time of the hybrid-driven model was 2.69 s, which is only 1.31% of
that of the stochastic model, and only 0.77 s slower than that of the deterministic
model, indicating that the hybrid-driven model can effectively ensure the rapidity
requirement for online application.

Through the above analysis, the proposed hybrid-driven model was shown to have
a similar solution performance as the stochastic optimization model, which ensures the
reasonableness of the results. Additionally, the hybrid-driven model has obvious advan-
tages in terms of calculation speed. Therefore, the hybrid-driven model is more suitable for
real-time control of reactive power and voltage than the two traditional models.

2. Analysis of the Adaptation to Source–load Uncertainty

To verify the adaptability of the proposed hybrid-driven model to source–load un-
certainty, 30 groups of source and load data were randomly generated to simulate actual
source–load fluctuation scenarios, in accordance with the predicted data and prediction
error coefficients in Section 5.1. In each scenario, the power flow calculations were per-
formed based on the reactive power strategies solved by the three models. Figures 4 and 5
show the voltage distribution and active power loss based on the power flow calculation,
respectively. Different colors represent different simulation scenarios.
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As can be seen from the results of Table 5:

(1) In all simulated source–load scenarios, the reactive power strategies of both the hybrid-
driven model and the stochastic model did not lead to voltage violations, while the
reactive power strategy of the deterministic model may lead to voltage exceeding the
lower limits in the three scenarios, with the lowest voltage of 0.9428 p.u.

(2) The average voltage expectation of the hybrid-driven model was improved by 1.56%
and the average voltage offset expectation was decreased by 27.08% compared to the
deterministic model. This indicates that the hybrid-driven model performs well in
most scenarios.

(3) In most scenarios, the active power loss values corresponding to both the stochastic
model and hybrid-driven model were smaller than those of the deterministic model.
However, in some scenarios, such as scenario 11, scenario 19, scenario 21 and sce-
nario 22, the deterministic optimization model performed better. Through further
analysis, the simulated source and load data in these four scenarios were close to the
predicted data, which shows that the deterministic optimization strategy based on
the predicted data performed better.

From the above analysis, it can be concluded that the reactive power strategy solved
by the hybrid-driven model can effectively reduce the system active power loss in most
source–load fluctuation scenarios, and show stronger adaptability to source–load uncertainty.
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Table 5. Comparison of evaluation indexes of the three reactive power optimization strategies.

Average Voltage Expectation/p.u. Average Voltage Offset
Expectation/p.u. Number of Voltage Violations

Deterministic model 0.9821 1.662 3
Stochastic model 0.9982 1.208 –

Hybrid-driven model 0.9974 1.212 –

5.3. Analysis of the Influence of the Distributed Generation Prediction Error

In this section, the load prediction error coefficient was set to 5%, and the distributed
generation prediction error coefficients were set to increments of 5% in turn. The determinis-
tic model and the hybrid-driven model were used to solve the reactive power optimization
separately. Based on the reactive power strategies obtained with different source–load
prediction error coefficients, the power flow calculations were performed in 50 groups of
randomly generated scenarios, and the results are shown in Table 6.

Table 6. Active power loss and voltage violation with different distributed generation prediction
error coefficients.

Distributed Generation Prediction Error Coefficients

5% 10% 15% 20% 25%

Active network loss
expectation/kW

Deterministic model 105.6 117.2 144.3 182.1 162.7
Hybrid-driven model 113.2 124.4 132.6 154.2 144.3

Number of Voltage
violations

Deterministic model – – 3 5 8
Hybrid-driven model – – – 2 4

As can be seen in Table 6:

(1) When the prediction error coefficients of WT and PV output did not exceed 10%,
the expected value of active power loss corresponding to the deterministic model
optimization strategy was smaller than that of the hybrid-driven model. When the
prediction error coefficients were greater than 10%, the expected value of active power
loss corresponding to the deterministic model optimization strategy started to increase
significantly, and was higher than that of the hybrid-driven model.

(2) When the prediction error coefficients reached 20%, the optimization strategy of
the hybrid-driven model began to incur voltage violations in some scenarios. The
deterministic model incurred voltage violations at the prediction error coefficient of
15%, with a much higher probability than the hybrid-driven model.

In summary, the hybrid-driven model showed better adaptability to both economy
and security at different levels of prediction error coefficients. When the prediction error
was large, the performance of the hybrid-driven model was more prominent.

6. Conclusions

This paper proposes a mechanism–data hybrid drive model for online voltage con-
trol. The mechanism-driven deterministic reactive power optimization strategy and the
stochastic reactive power optimization strategy were used as training features and labels
to train the CNN–GRU data-driven model, thus realizing the integration of mechanism
and data. When applied online, the hybrid-driven model can enable fast correction of the
reactive power strategy, effectively accounting for the influence of source–load uncertainty
on real-time voltage control. As can be seen from the analysis:

(1) Compared with the stochastic optimization model, the proposed hybrid-driven model
has outstanding advantages in terms of calculation speed, as it can significantly reduce
the calculation time while ensuring the reasonableness of the results. Furthermore,
compared with the deterministic optimization model, the hybrid-driven model has
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outstanding advantages in terms of adaptability to source–load uncertainty, as it
reduces the system active power loss and voltage violation risk to a certain extent.
Therefore, the hybrid-driven model can effectively satisfy the requirements for online
voltage control;

(2) Under different levels of distributed generation output prediction errors, the hybrid-
driven model has excellent adaptability in terms of system economy and security.
Therefore, it can be better applied to distribution system operation scenarios with
large-scale distributed generations access.

Author Contributions: Conceptualization, W.W. and Y.W.; methodology, W.W. and Y.W.; software,
Y.W. and Q.D.; validation, X.H., G.Z., Q.D. and R.W.; investigation, W.W and Y.W.; resources, Q.D.;
data curation, Q.D. and R.W.; writing—original draft preparation, Y.W.; writing—review and editing,
W.W.; supervision, X.H. and G.Z.; project administration, X.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the State Grid scientific and technological projects of Tianjin
Electric Power Company (KJ22-1-39).

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Line parameters of the case system.

Branch No. From Node To Node Impedance (Ω)

1 1 2 0.0922 + j0.0470
2 2 3 0.4930 + j0.2511
3 3 4 0.3660 + j0.1864
4 4 5 0.3811 + j0.1941
5 5 6 0.8190 + j0.7070
6 6 7 0.1872 + j0.6188
7 7 8 0.7114 + j0.2351
8 8 9 1.0300 + j0.7400
9 9 10 1.0440 + j0.7400
10 10 11 0.1966 + j0.0650
11 11 12 0.3744 + j0.1238
12 12 13 1.4680 + j1.1550
13 13 14 0.5416 + j0.7129
14 14 15 0.5910 + j0.5260
15 15 16 0.7463 + j0.5450
16 16 17 1.2890 + j1.7210
17 17 18 0.7320 + j0.5740
18 2 19 0.1640 + j0.1565
19 19 20 1.5042 + j1.3554
20 20 21 0.4095 + j0.4784
21 21 22 0.7089 + j0.9373
22 3 23 0.4512 + j0.3083
23 23 24 0.8980 + j0.7091
24 24 25 0.8960 + j0.7011
25 6 26 0.2030 + j0.1034
26 26 27 0.2842 + j0.1447
27 27 28 1.0590 + j0.9337
28 28 29 0.8042 + j0.7006
29 29 30 0.5075 + j0.2585
30 30 31 0.9744 + j0.9630
31 31 32 0.3105 + j0.3619
32 32 33 0.3410 + j0.5362



Energies 2023, 16, 3501 14 of 15

References
1. Liu, J.; Zhang, Y. Has carbon emissions trading system promoted non-fossil energy development in China? Appl. Energy 2021,

302, 117613. [CrossRef]
2. Liu, W.; Zhan, J.; Chung, C.; Li, Y. Day-ahead optimal operation for multi-energy residential systems with renewables. IEEE Trans.

Sustain. Energy 2018, 10, 1927–1938. [CrossRef]
3. Chen, S.; Hu, W.; Du, Y.; Wang, S.; Zhang, C.; Chen, Z. Three-stage relaxation-weightsum-correction based probabilistic reactive

power optimization in the distribution network with multiple wind generators. Int. J. Electr. Power Energy Syst. 2022, 141, 108146.
[CrossRef]

4. Wu, W.; Tian, Z.; Zhang, B. An Exact Linearization Method for OLTC of Transformer in Branch Flow Model. IEEE Trans. Power
Syst. 2017, 32, 2475–2476. [CrossRef]

5. Li, P.; Jin, B.; Wang, D.; Zhang, B. Distribution system voltage control under uncertainties using tractable chance constraints. IEEE
Trans. Power Syst. 2018, 34, 5208–5216. [CrossRef]

6. Biswas, P.; Suganthan, P.; Mallipeddi, R.; Amaratunga, G. Optimal reactive power dispatch with uncertainties in load demand
and renewable energy sources adopting scenario-based approach. Appl. Soft Comput. 2019, 75, 616–632. [CrossRef]

7. Zhao, P.; Gu, C.; Xiang, Y.; Zhang, X.; Shen, Y.; Li, S. Reactive power optimization in integrated electricity and gas systems. IEEE
Syst. J. 2020, 15, 2744–2754. [CrossRef]

8. Ding, T.; Liu, S.; Yuan, W.; Bie, Z.; Zeng, B. A Two-Stage Robust Reactive Power Optimization Considering Uncertain Wind
Power Integration in Active Distribution Networks. IEEE Trans. Sustain. Energy 2016, 7, 301–311. [CrossRef]

9. Xu, Y.; Zhang, W.; Liu, W.; Ferrese, F. Multiagent-Based Reinforcement Learning for Optimal Reactive Power Dispatch. IEEE
Trans. Syst. Man Cybern. Part C 2012, 42, 1742–1751. [CrossRef]

10. Liu, S.; Ding, C.; Wang, Y.; Zhang, Z.; Chu, M.; Wang, M. Deep Reinforcement Learning-Based Voltage Control Method for
Distribution Network with High Penetration of Renewable Energy. In Proceedings of the 2021 IEEE Sustainable Power and
Energy Conference (iSPEC), Nanjing, China, 23–25 December 2021.

11. Ding, T.; Yang, Q.; Yang, Y.; Li, C.; Bie, Z.; Blaabjerg, F. A Data-Driven Stochastic Reactive Power Optimization Considering
Uncertainties in Active Distribution Networks and Decomposition Method. IEEE Trans. Smart Grid 2018, 9, 4994–5004. [CrossRef]

12. Sheng, W.; Liu, K.; Niu, H.; Zhao, J. The anomalous data identification study of reactive power optimization system based on
big data. In Proceedings of the International Conference on Probabilistic Methods Applied to Power Systems, Beijing, China,
16–20 October 2016.

13. Cao, D.; Zhao, J.; Hu, W.; Ding, F.; Huang, Q.; Chen, Z.; Blaabjerg, F. Data-driven multi-agent deep reinforcement learning for
distribution system decentralized voltage control with high penetration of PVs. IEEE Trans. Smart Grid 2021, 12, 4137–4150.
[CrossRef]

14. Li, F.; Wang, Q.; Hu, J.; Tang, Y. Combined data-driven and knowledge-driven methodology research advances and its applied
prospect in power systems. Proc. CSEE 2021, 41, 4377–4389.

15. Tan, Y.; Chen, Y.; Li, Y.; Cao, Y. Linearizing Power Flow Model: A Hybrid Physical Model-Driven and Data-Driven Approach.
IEEE Trans. Power Syst. 2020, 35, 2475–2478. [CrossRef]

16. Li, M.; Zheng, Y.; Tang, B.; Yu, G.; Wang, Z.; Muyeen, S.M. A Failure Assessment Method of Island Distribution Lines Based on
Model-Data Hybrid Drive. IET Gener. Transm. Distrib. 2022, 16, 4867–4877. [CrossRef]

17. Wang, Q.; Li, F.; Tang, Y.; Xu, Y. Integrating model-driven and data-driven methods for power system frequency stability
assessment and control. IEEE Trans. Power Syst. 2019, 34, 4557–4568. [CrossRef]

18. Tian, H.; Zhao, H.; Liu, C.; Chen, J.; Wu, Q.; Terzija, V. A dual-driven linear modeling approach for multiple energy flow
calculation in electricity–heat system. Appl. Energy 2022, 314, 118872. [CrossRef]

19. Sharma, S.; Verma, A.; Xu, Y.; Panigrahi, B. Robustly coordinated bi-level energy management of a multi-energy building under
multiple uncertainties. IEEE Trans. Sustain. Energy 2019, 12, 3–13. [CrossRef]

20. Su, P.; Liu, T.; Li, X. Determination of Optimal Spinning Reserve of Power Grid Containing Wind. Power Syst. Technol. 2010, 34,
158–162.

21. Mohseni-Bonab, S.M.; Rabiee, A.; Mohammadi-Ivatloo, B.; Jalilzadeh, S.; Nojavan, S. A two-point estimate method for uncertainty
modeling in multi-objective optimal reactive power dispatch problem. Int. J. Electr. Power Energy Syst. 2016, 75, 194–204.
[CrossRef]

22. Li, K.; Wang, R.; Lei, H.; Zhang, T.; Liu, Y.; Zheng, X. Interval prediction of solar power using an improved bootstrap method. Sol.
Energy 2018, 159, 97–112. [CrossRef]

23. Lee, Y.; Scholtes, S. Empirical prediction intervals revisited. Int. J. Forecast. 2014, 30, 217–234. [CrossRef]
24. Xiao, T.; Pei, W.; Chen, N.; Wang, X.; Pu, T. Maximum operation duration assessment of isolated island considering the uncertainty

of load reduction capability of air conditioner. Proc. CSEE 2019, 39, 4982–4994.
25. Kabir, M.; Mishra, Y.; Bansal, R. Probabilistic load flow for distribution systems with uncertain PV generation. Appl. Energy 2016,

163, 343–351. [CrossRef]
26. Gao, H.; Liu, J.; Wang, L. Robust Coordinated Optimization of Active and Reactive Power in Active Distribution Systems. IEEE

Trans. Smart Grid 2018, 9, 4436–4447. [CrossRef]
27. Sun, X.; Qiu, J.; Tao, Y.; Ma, Y.; Zhao, J. A multi-mode data-driven volt/var control strategy with conservation voltage reduction

in active distribution networks. IEEE Trans. Sustain. Energy 2022, 13, 1073–1085. [CrossRef]

https://doi.org/10.1016/j.apenergy.2021.117613
https://doi.org/10.1109/TSTE.2018.2876387
https://doi.org/10.1016/j.ijepes.2022.108146
https://doi.org/10.1109/TPWRS.2016.2603438
https://doi.org/10.1109/TPWRS.2018.2880406
https://doi.org/10.1016/j.asoc.2018.11.042
https://doi.org/10.1109/JSYST.2020.2992583
https://doi.org/10.1109/TSTE.2015.2494587
https://doi.org/10.1109/TSMCC.2012.2218596
https://doi.org/10.1109/TSG.2017.2677481
https://doi.org/10.1109/TSG.2021.3072251
https://doi.org/10.1109/TPWRS.2020.2975455
https://doi.org/10.1049/gtd2.12649
https://doi.org/10.1109/TPWRS.2019.2919522
https://doi.org/10.1016/j.apenergy.2022.118872
https://doi.org/10.1109/TSTE.2019.2962826
https://doi.org/10.1016/j.ijepes.2015.08.009
https://doi.org/10.1016/j.solener.2017.10.051
https://doi.org/10.1016/j.ijforecast.2013.07.018
https://doi.org/10.1016/j.apenergy.2015.11.003
https://doi.org/10.1109/TSG.2017.2657782
https://doi.org/10.1109/TSTE.2022.3149267


Energies 2023, 16, 3501 15 of 15

28. Sajjad, M.; Khan, Z.A.; Ullah, A.; Hussain, T.; Ullah, W.; Lee, M.Y.; Baik, S.W. A novel CNN-GRU-based hybrid approach for
short-term residential load forecasting. IEEE Access 2020, 8, 143759–143768. [CrossRef]

29. Shao, M.; Wu, J.; Shi, C.; An, R.; Zhu, X.; Huang, X.; Cai, R. Reactive power optimization of distribution network based on data
driven and deep belief network. Power Syst. Technol. 2019, 43, 1874–1885.

30. Baran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power
Deliv. 1989, 4, 1401–1407. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.3009537
https://doi.org/10.1109/61.25627

	Introduction 
	Source–Load Uncertainty Model 
	Renewable Energy Uncertainty Model 
	Load Uncertainty Model 

	Reactive Power Optimization Model Based on Mixed Integer SOCP 
	The Objective Function 
	The Constraints 
	Second-Order Cone Relaxation 

	Online Control Model of Reactive Power and Voltage Based on MDHD 
	CNN–GRU Network 
	Online Reactive Power and Voltage Control Model Based on MDHD 

	Results and Discussion 
	Analysis of Offline Model Training 
	Analysis of Online Application Performance 
	Analysis of the Influence of the Distributed Generation Prediction Error 

	Conclusions 
	Appendix A
	References

