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Abstract: Bearingless switched reluctance motor (BSRM) adopts a doubly salient structure without
windings on the rotor. BSRMs have the advantages of high rate of fault tolerance and simple structure,
high power, super high speed and strong adaptability. They have broad application prospects in
aerospace, flywheel energy storage, new energy and biomedical fields. Firstly, the suspension
operation mechanism of a conventional double winding BSRM is described in this paper. The
coupling between torque and suspension force is analyzed with a finite element method. On this
basis, from the perspective of magnetic circuit optimization of the torque system and suspension
system, the magnetic circuit design, decoupling mechanism and performance characteristics of self-
decoupled BSRMs with different topological structures are described centering on the self-decoupled
topology form of the BSRM. Finally, the study and development of BSRMs in the future are prospected
based on the research status.

Keywords: bearingless switched reluctance motor; self-decoupled; topology structure; magnetic
circuit; suspension force; torque

1. Introduction

With the rapid development of modern industry, the motor is particularly important
in industrial production as the core part of mechanical and electrical energy conversion.
There is an increasing demand for high-speed and ultra-high-speed motors, especially in
flywheel energy storage, chemical, machinery and other fields. The conventional motor has
large friction, a complex structure, high cost and poor stability at high speeds because of
its mechanical bearing support [1–3]. The BSRM has combined characteristics of magnetic
bearings and switched reluctance motors. The BSRM has advantages of high power density
and high efficiency, and has broad application prospects in the industrial field, which has
high requirements for motor performance [4,5]. The stator and rotor of the BSRM are double
salient and with no windings on the rotor. Torque and suspension force are generated by
the concentrated winding of the stator [5,6]. The torque and suspension system share the
same magnetic circuit, which leads to mutual influence and coupling between suspension
force and torque. Therefore, it is difficult to build an accurate model of the motor. The
control system is complex and the control accuracy is low. More importantly, the motor is
difficult to run stably due to insufficient suspension force in the overlapping region of the
stator and rotor teeth poles [7]. Therefore, exploring ways to reduce the coupling between
suspension force and torque has become a big focus in the research of BSRMs.

Domestic and foreign scholars put forward a series of strategies to reduce coupling,
which are mainly from two perspectives of motor structure and control strategy [8]. A
strategy which is mainly from the perspective of optimizing the magnetic circuit is intro-
duced. Magnetic field distribution is changed by altering the stator and rotor structure to
make the torque and suspension magnetic field independent. The structure can be divided
into five categories: (1) hybrid stator, (2) double stator, (3) wide rotor, (4) co-suspension
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winding, and (5) composite structure. The advantages and disadvantages of each structure
are clarified.

In this paper, the operation mechanism of the BSRM is briefly analyzed, and the root of
coupling and defects caused by coupling are described. According to the classification and
summary of existing self-decoupling topological structures, improving motor performance
while realizing decoupling is taken into consideration. The future direction of research of
BSRMs is discussed based on the existing research.

2. Working Mechanism
2.1. The Generation of Torque and Suspension Force

The core of the BSRM is made of a laminated silicon steel sheet. The torque generation
follows the reluctance minimization principle, which means magnetic flux is always closed
along the path of the least reluctance. As shown in Figure 1a, taking phase A as an example,
when the main winding current ima is excited, the magnetic circuit is passed through the
stator, air gap and rotor in turn to form a closed path. The magnetic field is distorted to
generate electromagnetic force. The tangential electromagnetic force is used to produce
torque, which rotates the rotor [9]. The rotor will rotate when three phases, A, B and C, are
energized in turn. The suspension windings are energized with the current isa1 as shown in
Figure 1a and generate a biased magnetic field to break the original magnetic field balance
and generate radial force. The simulation results are shown in Figure 1b. The air gap
magnetic field at the relative position of the rotor in the α direction changes. The magnetic
density at A increases, generating the positive suspension force Fα of α direction. Similarly,
radial force Fβ can be generated in the longitudinal direction (β direction) to ensure the
radial suspension of the rotor.
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Figure 1. Torque and suspension force generation mechanism: (a) Principle of torque generation;
(b) Mechanism of suspension force generation.

2.2. Electromagnetic Characteristics Analysis of Torque and Suspension Force

When ima and isa1 in Figure 1a are energized, inductance matrix is deduced according
to the equivalent magnetic circuit method. Then magnetic field energy storage W is
obtained based on the principle of electromechanical energy conversion. The suspension
force shown in Formula (1) can be obtained by using the virtual displacement method
to compute the partial derivative of the magnetic field energy storage W with respect to
the rotor displacement in α direction. Similarly, the suspension force in β direction can
be obtained. The electromagnetic torque expression can be obtained by taking the partial
derivative of magnetic field energy storage W with respect to rotor position angle θ, as
shown in Formula (2) [10]:

Fα =
∂W
∂α

= K f (θ)imaisa1 (1)

T =
∂W
∂θ

= Jt(θ)(2N2
mi2ma + N2

s i2sa1 + N2
s i2sa2) (2)
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The isa2 is the suspension current in β direction. Jt(θ) and Kf(θ) are the functions with
respect to motor structure parameters and rotor position angle θ. The rotor position angle θ
is 0 deg when the stator teeth coincide with the rotor tooth center line. The conventional
12/8 BSRM inductance characteristic curve is shown in Figure 2a. It is noted that the
positive torque generation range is from θ1 to θ3 when the suspension range is from θ2 to θ4.
The overlap area of torque and suspension force is shaded in green. However, according to
the conventional BSRM structure and operation principle shown in Figure 1, the overlap
area of generating torque and radial force is narrow. The selection of a working point
must compromise between the torque and radial force. Therefore, the region generating
torque and radial force cannot be fully utilized, which may lead to the problem of small
torque and insufficient suspension force. In this interval, the inductance of suspension
winding changes with the position angle of the rotor. Therefore, the suspension winding
will generate torque when energized. The torque current will also produce suspension
force. In other words, there is coupling between torque and suspension force. Figure 2b
shows the change curve of torque T when the main winding current of 12/8 BSRM ima is
10 A and the suspension winding current isa1 in the α direction takes different values. It
is noted that when isa1 increases to 2 A, the torque increases by 0.1 N/m with a relative
changing rate of 5%. Figure 2c shows the changing curves lα and lβ of the suspension force
with the torque current when the suspension current is 1 A and the current of the A phase
torque winding is from 1 A to 9 A. The changing rates dFα and dFβ of the suspension
force with the torque current are 20% and 17%, respectively. As can be seen from the
simulation results in Figure 2, there is coupling between suspension force and torque. Such
strong coupling will directly lead to insufficient or unbalanced suspension force during the
running of the motor. Furthermore, the torque output capacity is reduced and the control
is complex. Therefore, the question of how to reduce the coupling between suspension
windings has become the research direction of many scholars [11–13].
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(c) Variation curves of suspension force.

3. Magnetic Circuit Optimization Decoupling Strategy

Compared with the conventional BSRM, this optimization strategy improves the
magnetic circuit by reconstructing the pole number of the stator and rotor and changing
the polar arc and shape of the stator and rotor, which achieves the purpose of reducing
the coupling between torque and suspension force. The loss of the motor is reduced, and
operation efficiency is improved.

3.1. Hybrid Stator
3.1.1. Ordinary Hybrid Stator BSRM

In light of the coupling between torque and suspension force, an 8/10 hybrid stator
BSRM [14,15] (Appendix A) is proposed by Kyungsung University in South Korea. As
shown in Figure 3a, wide stator teeth generate suspension force while narrow stator
teeth generate torque, which means the torque and suspension pole are independent of
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each other. The windings on each pair of torque poles form a phase in series, while the
windings on the four suspension poles are controlled independently. Due to advantages
such as capability of independent control for each phase and three switching modes, an
asymmetric converter is applied in the 8/10 hybrid stator BSRM. However, only four stator
teeth generate torque in this structure, which are fewer than that of an ordinary BSRM
generating torque. Therefore, the power density is low. Moreover, due to long magnetic
circuit and few poles producing torque and suspension force, the torque current has a
great influence on suspension force when the torque and suspension windings are excited
simultaneously. To further improve motor performance, a 12/14 pole hybrid stator BSRM
(Appendix A), the addition of the number of stator poles on the basis of the 8/10 pole
hybrid stator BSRM is proposed in reference [16], as shown in Figure 3b. Compared with
the 8/10 pole structure, the magnetic circuit is shortened in this structure, improving the
power density. The core loss is effectively reduced, and the output torque is improved.
Figure 3c,d, respectively, show the changing curves of suspension force F of the two hybrid
stator tooth structures with the torque current ima. The suspension current isa is 2 A, and ima
varies from 0 A to 2 A. It is noted from the two figures that ima of the 12/14 pole structure
has little influence on F compared with that of the 8/10 structure. However, the power
density is low, in that each stator tooth of the hybrid stator BSRM only generates torque
or suspension force. In addition, the stator pole arc is the same as the rotor pole arc. The
torque is very small or even zero during commutation due to the delay characteristics of
current on the actual operation of the motor. The torque characteristic curve of the 12/14
pole BSRM is shown in Figure 3e. It is observed that there is a torque dead zone near the
commutation position, which may lead to the disadvantages of large torque fluctuation.
Since both motors are two-phase motors, the self-starting ability is weak.
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Figure 3. Common hybrid stator tooth BSRM: (a) 8/10 pole hybrid stator tooth structure; (b) 12/14
pole hybrid stator tooth structure; (c) Changing curves of F of 8/10 structure; (d) Changing curves of
F of 12/14 structure; and (e) Torque characteristic curve of 12/14 structure.

3.1.2. Asymmetric Rotor Pole Hybrid Stator BSRM

Due to the disadvantages of large torque fluctuation and weak self-starting ability of
the conventional 12/14 BSRM, an asymmetric rotor pole hybrid stator BSRM (Appendix A)
is proposed [17]. The only difference between a conventional 12/14 hybrid stator BSRM and
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the proposed structure is that the rotor pole surface of the proposed motor has a structure
similar to a step. As shown in Figure 4a, βst is the pole arc of the torque pole, βsf is the pole
arc of the suspension pole, βr is the pole arc of the asymmetric rotor pole, βrs is the step
angle of the asymmetric rotor pole and hrs is the step height of the asymmetric rotor pole.
Reference [17] finally concludes that the combination of βst = 11◦, βr = 14◦ and βrs = 3◦ is
the best, which means motor has smaller torque ripples and higher starting torque and
average torque. Figure 4b–e show torque characteristics, starting torque, torque ripple
and suspension force in conventional and proposed hybrid stator BSRMs. The proposed
motor eliminates the torque dead zone, produces positive torque at any rotor position,
improves the starting torque of the motor and reduces torque ripple. However, due to the
asymmetric rotor pole, the average suspension force is slightly reduced compared with the
conventional one.
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Figure 4. Asymmetric rotor pole hybrid stator BSRM: (a) Structure of asymmetric rotor pole hybrid
stator BSRM; (b) Torque characteristics of conventional and proposed BSRMs; (c) Starting torque in
conventional and proposed BSRMs; (d) Torque ripple in conventional and proposed BSRMs; and
(e) Average suspension force in conventional and proposed BSRMs.

3.1.3. Permanent Magnet Biased Hybrid Stator BSRM

The coupling cannot be completely eliminated due to the existence of a common
magnetic circuit of the hybrid stator tooth BSRM torque system and suspension system.
Researchers proposed a strategy to separate the torque magnetic circuit from the suspension
magnetic circuit with magnetic isolation materials. The suspension force is increased by
permanent magnets, providing a biased magnetic field [18–22]. As shown in Figure 5a, the
structure (Appendix A) is evenly embedded with four permanent magnets (yellow area in
the figure) along the stator circumference to produce the biased flux, which is superimposed
with the magnetic field generated by the suspension winding to generate suspension force.
The purple dotted line is the biased magnetic flux path in the figure. The green dotted line is
the suspension magnetic flux path generated when the suspension winding is excited. The
black dotted line is the torque magnetic flux path. It is noted that the torque magnetic circuit
and the suspension magnetic circuit are independent from each other. Figure 5b shows
the suspension force curves when the suspension windings in α direction are energized
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with different iα. It is observed that the force generated by the current with the same size
and different directions is the same size in different directions. For example, when iα is
1 A and iα is -1 A, the Fα is 50 N in different directions. Beyond that, the force is almost
constant, which is beneficial to the stable suspension of the motor. Magnetic isolation
aluminum is added into the stator yoke to make the torque magnetic field independent
of the suspension magnetic field, realizing the self-decoupling of suspension force and
torque. At the same time, a secondary air gap is designed to prevent the permanent magnet
from short-circuiting and provide a path for the suspended flux. However, the size of
the permanent magnet in the stator has a great influence on the biased flux. It is difficult
to accurately grasp the precision of the permanent magnet size in actual manufacturing.
A permanent magnet biased hybrid stator BSRM has large torque fluctuation and weak
self-starting ability because it only has two phases.
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Figure 5. Permanent magnet biased hybrid stator BSRM: (a) Motor flux path and structure diagram;
(b) Suspension force curve.

3.1.4. Axially Magnetized Four Degrees of Freedom BSRM

In actual operation of the motor, the rotor offset direction is arbitrary. In order to
improve the suspension performance of the motor, a four degrees of freedom (4-DOF)
of a suspension BSRM is proposed. The structure consists of two motors, each of which
has two radial control degrees of freedom. Four degrees of freedom of suspension is
realized while achieving decoupling. Reference [23] proposes a double 12/12 pole BSRM
(Appendix A). Each motor has a 12/12 pole structure and also adopts a hybrid stator
tooth structure. A permanent magnet is inserted between the two motors to separate
them. The permanent magnet generates an axial biased flux. The motor topology is shown
in Figure 6a. The two 12/12 pole structure BSRMs are on the left and right sides of the
permanent magnet. The two opposite windings on the wide stator teeth of each motor
are connected in series to form a set of suspension windings, which act together with
the biased flux generated by the permanent magnet to realize 4-DOF suspension of the
motor. Like a permanent magnet biased hybrid stator BSRM, the stator is embedded with
magnetic isolation materials to separate the torque poles from the suspension poles to
realize the independence of the torque magnetic circuit and the suspension magnetic circuit.
In order to improve the self-starting ability of the motor, the two rotors of the motor are
not completely coincident in axial direction, making the two inductance rising regions
have overlapping parts. Therefore, only a small voltage is needed on a torque winding to
move the rotor into an aligned position. Then a voltage is applied to another motor torque
winding to make the rotor rotate.
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Figure 6b shows the changing curve of BSRM torque T with the suspension current i of
this structure. It is observed that when i changes between 1A and 5A, the variation region
of T is from 0.039 to 0.0413 N/m. The maximum relative error is about 5.56%, which is
within the error range. Therefore, the mutual effects between torque control and suspension
control is almost ignored, indicating that the motor in this structure can realize natural
decoupling between the torque and suspension force.

In order to reduce the coupling of the BSRM itself, the above strategy adopts a special
structure design for the motor itself. The hybrid stator teeth reduce the coupling between
torque and suspension force while one-phase-wide stator teeth must be sacrificed to gen-
erate suspension force, resulting in few teeth to generate torque. The output capacity of
torque is weakened and the motor can only be used as a two-phase motor. Therefore, the
motor has poor self-starting ability and low power density. Additionally, the number of
rotor poles is larger than that of stator poles. The motor has poor high-speed adaptability.

3.2. Double Stator BSRM

Considering the deficiency of the hybrid stator tooth structure BSRM, a decoupling
strategy of a double stator BSRM (DSBSRM) (Appendix A) is proposed [24]. This structure
adopts a three-phase operation system. Torque and torque magnetic circuits are provided
by the outer stator, the principle of which is the same as that of a conventional SRM.
However, suspension force is provided by the inner stator. The independent windings on
the inner stator pole are controlled to output suspension force.

3.2.1. Conventional DSBSRM

Figure 7a shows the magnetic line of force when phase A of the outer stator is energized.
Figure 7b shows the magnetic line of force when the suspension winding in +α and −β
direction of the inner stator is energized. Theoretical analysis shows that the design realizes
the fundamental decoupling between torque and suspension force in the structure.

Nevertheless, according to the finite element simulation results, when the torque
windings of phase A and the suspension windings in +α direction are energized at the
same time, the generated magnetic flux paths are not completely independent of each other.
As shown in Figure 7c, the magnetic force lines generated by the torque and suspension
force are interwoven when the torque and suspension windings are excited simultaneously.
Therefore, the torque and suspension force affect each other, and the decoupling of this
structure is not completely realized.
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Figure 7. Double stator BSRM: (a) Phase A torque magnetic line of force; (b) +α and −β direction;
and (c) Magnetic line of force of phase A torque winding and +α suspension winding.

3.2.2. Segmental Rotor Type 12/8 DSBSRM

On the basis of the above conventional DSBSRM, a structure of a segmental rotor type
12/8 DSBSRM (Appendix A) [25] is proposed as shown in Figure 8a. The outer stator of the
proposed structure is divided into two magnetic poles: excitation and auxiliary magnetic
poles. Torque is produced by the torque windings, which wind around the excitation mag-
netic poles. The rotor is adopted as a non-salient structure and the nonmagnetic isolator
is employed to achieve independence between torque and the suspension system. The
suspension mechanism of the proposed DSBSRM is the same as that of a conventional
DSBSRM. Figure 8b,c show magnetic flux distribution of a conventional 12/8 DSBSRM and
segmental rotor type 12/8 DSBSRM, respectively, when phase A and all suspension wind-
ings are excited simultaneously. It is observed that the magnetic flux generated by torque
and suspension winding passes the same rotor yoke in a conventional 12/8 DSBSRM, while
the magnetic flux generated by torque and suspension windings is independent from each
other because of the nonmagnetic isolator in the segmental rotor type 12/8 DSBSRM. There-
fore, the proposed structure reduces the coupling between torque and suspension force and
improves the output torque density compared with that of a conventional 12/8 DSBSRM.
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Figure 8. Segmental rotor type 12/8 DSBSRM: (a) Motor structure; (b) Magnetic flux distribution of
conventional 12/8 DSBSRM; and (c) Magnetic flux distribution of segmental rotor type 12/8 DSBSRM.

3.2.3. Axial Magnetizing Hybrid Excitation DSBSRM

Due to the small size of inner stators and weak suspension carrying capacity of the
above common double stator BSRM, researchers propose an axial magnetizing hybrid
excitation double stator bearingless switched reluctance motor (HEDSBSRM) [26] (Ap-
pendix A). Figure 9a shows the topology of the motor. Compared with a conventional
double stator BSRM, there are two inner stators in the proposed motor. Permanent magnet
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rings are added between the two inner stators to provide a biased magnetic field. The di-
rection of the biased magnetic field generated is axial. The two inner stators are embedded
with suspension windings. The magnetic field generated by the suspension windings and
the magnetic field generated by the permanent magnet generate suspension force jointly.
Figure 9b describes the biased magnetic circuit provided by the permanent magnet of the
proposed motor and the suspension magnetic circuit provided by the suspension windings.
Among them, the biased flux Φm is produced by the middle permanent magnet. The sus-
pension flux ΦLFx is generated by the left inner stator suspension winding. The suspension
flux ΦRFy is generated by the right inner stator suspension winding. The suspension force
required by the operation of the motor is produced by the biased flux and the suspension
flux jointly.
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circuit and control flux path; and (c) Suspension power consumption.

Figure 9c shows the comparison of suspension power consumption of the two motors.
It is observed that when iα changes from 0 A to 4 A, the average suspension power
consumption of HDSBSRM is reduced by 80% compared with that of a conventional
DSBSRM. This HEDSBSRM effectively reduces suspension power consumption due to
permanent magnets providing a biased magnetic field.

3.2.4. Novel Hybrid Excitation DSBSRM

Although the double stator axial magnetization structure strengthens the suspension
of the motor, the axial length of the motor increases, resulting in a low critical speed of
the motor and a complex suspension control system. On the basis of the above double
stator, reference [27,28] propose a novel hybrid excitation dual stator BSRM (HEDSBSRM)
(Appendix A). Compared with the common double stator structure, the permanent magnet
is nested in the inner stator on the basis of increasing the stator poles. As shown in
Figure 10a, the suspension force is generated jointly by the inner stator permanent magnet
and suspension windings. Stable suspension is realized by controlling the current of the
suspension windings. Figure 10b shows the magnetic force line path when the torque and
suspension windings of phase A are energized at the same time. It is noted in Figure 10a
that the torque magnetic circuit and suspension magnetic circuit are independent from
each other, indicating that this structure realizes the decoupling fundamentally. Figure 10c
shows the comparison of core loss under the same suspension force output of the two
motors. It is observed that the core loss of the novel HEDSBSRM is smaller than that of
the conventional DSBSRM. Especially when the suspension force is 64N, the core loss of
the novel HEDSBSRM is reduced by about 75% than that of conventional DSBSRM. In
conclusion, the magnetic circuit is shorter and the core loss is smaller compared with a
conventional DSBSRM. However, the rotor speed is difficult to be improved upon due to
excessive stator and rotor poles.



Energies 2023, 16, 3492 10 of 18

Energies 2023, 16, x FOR PEER REVIEW 11 of 19 
 

 

10c shows the comparison of core loss under the same suspension force output of the two 

motors. It is observed that the core loss of the novel HEDSBSRM is smaller than that of 

the conventional DSBSRM. Especially when the suspension force is 64N, the core loss of 

the novel HEDSBSRM is reduced by about 75% than that of conventional DSBSRM. In 

conclusion, the magnetic circuit is shorter and the core loss is smaller compared with a 

conventional DSBSRM. However, the rotor speed is difficult to be improved upon due to 

excessive stator and rotor poles. 

ix
Fx

x
y

 

Outer stator The rotor

Inner stator

Permanent 

magnet

A

Torque 

magnetic field 

lines

Suspension 

magnetic 

field lines  
0 8 16 24 32 40 48 56 64

0

15

30

45

60
Conventional DSBSRM

Novel HEDSBSRM

Suspension force /(N)

C
o
re

 l
o
ss

 P
F

e/
(W

)

75%

 

(a) (b) (c) 

Figure 10. Hybrid excitation double stator BSRM: (a) Suspension force generation; (b) Motor topol-

ogy; and (c) Comparison of core loss. 

3.3. Wide Rotor BSRM 

The above structure reduces coupling by optimizing the magnetic circuit. In addition, 

researchers propose a wide rotor BSRM, which realizes decoupling by improving the 

magnetic circuit and enhancing the inductance overlap region. The torque and suspension 

force principle of the structure are the same as that of an ordinary 12/8 BSRM. The mag-

netic flux path is also similar. That said, the rotor teeth are wider than the stator teeth, 

which improves the overlap area of stator and rotor poles and the winding inductance 

changing curve, making the flat top region appear when the inductance is at maximum. 

As shown in region II of Figure 11c, this wide rotor structure can give full play to its 

decoupling efficiency when adopting the dual-phase conduction strategy. It means that 

torque and suspension force are generated in different regions: the inductance is un-

changed in the flat top region of the inductance. The excitation is applied to provide sus-

pension force. At this time, the suspension winding has no effect on the torque. The torque 

is provided in the inductance changing region I and III, realizing decoupling. In addition, 

due to the ratio of the suspension force to the input current is the largest in the flat top 

region of the inductance, the output efficiency of suspension force is high, and it is bene-

ficial to reduce the suspending power consumption. References [29,30] propose a 12/8 

wide rotor structure BSRM (Appendix A). The proposed BSRM is added to the rotor pole 

arc on the basis of the conventional 12/8 pole. The winding connection of the proposed 

motor is the same as that of the conventional single-winding BSRM, as shown in Figure 

11a. Reference [31] proposes a single-winding 12/4 pole wide rotor structure BSRM (Ap-

pendix A), reducing the rotor poles on the basis of a 12/8 pole, as shown in Figure 11b. 

Due to only four rotor poles, the rotor teeth of the proposed BSRM are wider than the 

stator teeth. Therefore, the flat top region of inductance is larger, realizing the control of 

torque and suspension force in different areas. Figure 11d shows the changing curves of 

suspension force F in the α direction of two wide rotor teeth BSRMs. It is noted that the 

suspension force generated by the 12/8 pole structure has a wider region. Reference [32] 

also shows that a 12/8 pole has better torque characteristics than a 12/4 pole. But the rotor 

with the 12/4 pole structure has few poles and is more suitable for high-speed operation. 

Since the rotor teeth are larger than the stator teeth, the wide rotor teeth BSRM can com-

pensate for the weak self-starting ability of the hybrid stator teeth BSRM and is easy to 

Figure 10. Hybrid excitation double stator BSRM: (a) Suspension force generation; (b) Motor topology;
and (c) Comparison of core loss.

3.3. Wide Rotor BSRM

The above structure reduces coupling by optimizing the magnetic circuit. In addition,
researchers propose a wide rotor BSRM, which realizes decoupling by improving the
magnetic circuit and enhancing the inductance overlap region. The torque and suspension
force principle of the structure are the same as that of an ordinary 12/8 BSRM. The magnetic
flux path is also similar. That said, the rotor teeth are wider than the stator teeth, which
improves the overlap area of stator and rotor poles and the winding inductance changing
curve, making the flat top region appear when the inductance is at maximum.

As shown in region II of Figure 11c, this wide rotor structure can give full play to its
decoupling efficiency when adopting the dual-phase conduction strategy. It means that
torque and suspension force are generated in different regions: the inductance is unchanged
in the flat top region of the inductance. The excitation is applied to provide suspension force.
At this time, the suspension winding has no effect on the torque. The torque is provided
in the inductance changing region I and III, realizing decoupling. In addition, due to the
ratio of the suspension force to the input current is the largest in the flat top region of the
inductance, the output efficiency of suspension force is high, and it is beneficial to reduce
the suspending power consumption. References [29,30] propose a 12/8 wide rotor structure
BSRM (Appendix A). The proposed BSRM is added to the rotor pole arc on the basis of
the conventional 12/8 pole. The winding connection of the proposed motor is the same
as that of the conventional single-winding BSRM, as shown in Figure 11a. Reference [31]
proposes a single-winding 12/4 pole wide rotor structure BSRM (Appendix A), reducing
the rotor poles on the basis of a 12/8 pole, as shown in Figure 11b. Due to only four rotor
poles, the rotor teeth of the proposed BSRM are wider than the stator teeth. Therefore, the
flat top region of inductance is larger, realizing the control of torque and suspension force
in different areas. Figure 11d shows the changing curves of suspension force F in the α

direction of two wide rotor teeth BSRMs. It is noted that the suspension force generated by
the 12/8 pole structure has a wider region. Reference [32] also shows that a 12/8 pole has
better torque characteristics than a 12/4 pole. But the rotor with the 12/4 pole structure
has few poles and is more suitable for high-speed operation. Since the rotor teeth are larger
than the stator teeth, the wide rotor teeth BSRM can compensate for the weak self-starting
ability of the hybrid stator teeth BSRM and is easy to process and assemble. However, the
wide rotor teeth compress the inductance rise interval, and the effective torque interval is
reduced accordingly.
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3.4. Co-Suspension Winding BSRM

The stator of a conventional 12/8 dual-winding BSRM has both torque windings and
suspension windings. The suspension windings, which are also known as control windings,
are divided into A, B and C three-phase windings. There is one set in α and β direction of
each phase. A total of six sets of control windings are required. Therefore, another six sets
of control windings are required to generate radial force besides the alternating conduction
of three-phase torque windings when the motor is running. Hence, six sets of transistors
are needed to switch to control radial force. Moreover, the control windings increase with
the increase of phase number, making the control system more complex. References [33,34]
propose a co-suspension winding BSRM (Appendix A). The torque winding of the proposed
structure is the same as that of a conventional BSRM. However, only two sets of control
windings that generate radial force are required.

Figure 12a is the schematic diagram of a magnetic circuit when the main winding of
A phase of the motor is on and the suspension winding in the direction of α is energized.
There is one co-winding winding around the three poles of phases A, B and C. The two
opposite groups of winding are connected in series to form the control winding in direction
α (the yellow winding in the figure). Direction β has the same series. The red solid lines are
the lines of magnetic force generated by the main windings. The black dotted lines are the
lines of magnetic force generated by the suspension windings. The main and suspension
windings of phase A in the positive direction of α generate a magnetic field simultaneously,
and the magnetic field direction is the same in the positive direction. Thus, the air gap flux
at pole A in the positive direction of α is enhanced, generating radial force in the positive
direction of α. Therefore, the proposed three-phase motor only needs two sets of windings
in α and β direction to control suspension. When the motor is running, the three-phase
torque windings switch to generate torque. The control windings do not need to move but
adjust the current of two sets of control windings according to the position of the rotor to
realize rotor suspension, which means just two groups of transistors are required to achieve
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the motor suspension control. The amount of control windings does not change with the
motor phase number. The transistors of the control circuit are reduced to 1/3 of the original.
The control circuit is simplified, and the algorithm is easy to write. Figure 12b shows the
comparison curve of the influence of suspension winding current is1 of a conventional
motor and co-suspension structure motor on the torque T when phase A is on. The torque
winding current is a constant 3A. The is1 varies from 0 to 1.5A. It is noted that the influence
of is1 on static torque is relatively small, while the torque of the conventional structure
increases slightly with the increase of current of control winding. In conclusion, the co-
suspension winding BSRM simplifies the complexity of control while realizing decoupling.
However, the different stator shape of this motor results in unbalanced torque of each phase
and large torque pulsation.
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3.5. Composite Structure BSRM

Since BSRMs have combined characteristics of magnetic bearings and switched reluc-
tance motors, reference [35] proposes a co-winding composite structure BSRM (Appendix A)
that combines two stator block radial magnetic bearings (RMB) and a 12/8 pole switched
reluctance motor (SRM). The proposed motor can realize 4-DOF suspension control, which
is the same with axially magnetized four degrees of freedom BSRM.

Figure 13a shows this motor’s topology. Each winding passes through two stators of
radial magnetic bearing (RMB1, RMB2) and one SRM stator. That means stators of three
motors share a same winding which is divided into three phases. Each phase winding is
separated by 90◦ in series to form the main winding of this phase. The middle stator teeth of
each block stator are wrapped with suspension windings, and the two relative suspension
windings are connected in series to form a set of suspension windings to control motor
suspension. The torque generation principle of this motor is similar to an SRM. Three-phase
windings A, B and C are energized in turn to generate torque for the motor rotating. At
this time, the magnetic field generated by the torque windings is a biased magnetic field
for RMB. Further, suspension force is generated by the suspension windings, which are
jointly generated by biased magnetic field and suspension magnetic field. Figure 13b takes
RMB1 as an example to illustrate the mechanism of suspension force generation. When
iα is introduced in the positive direction of α, the magnetic field of the main winding and
suspension winding are superimposed. Thus, the magnetic field of air gap 1 is enhanced
and the magnetic field of air gap 3 is weakened, resulting in radial force Fα in the positive
direction of α. Fβ is similar to that. By changing the iα in two directions, the suspension
force required by the motor can be generated to realize 4-DOF suspension of the rotor.
Although the structure realizes the decoupling of torque and suspension force because
of non-interfering torque and a suspension magnetic circuit, the coupling relationship
between the suspension force still exists because of its unique structure. Figure 13c shows
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the magnitude of Fβ when iα in α direction changes under excitation of different phases.
When the suspension current in β direction iβ is 0A, Fβ does not change with iα when
phase A conducts alone. However, Fβ changes linearly with iα when phase B or phase C are
conducting separately, which is due to the asymmetrical distribution with respect to α and
β of biased flux when the other two phases are conducting separately. The analysis shows
that this composite structure BSRM has a coupling relationship between the interplay of
suspension forces in different directions. Therefore, the winding structure is improved by
adopting a double winding structure on each RMB and SRM on this basis to reduce the
coupling between suspension forces [35].
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4. Future Research Direction of BSRM

Generally speaking, the BSRM has obvious advantages in industry, flywheel energy
storage, aerospace and other fields that require high comprehensive performance of motors,
due to its advantages of low fault tolerance, low loss and high power density. Based on
the above discussion in methods of improving BSRM performance, the BSRM has great
potential in future theoretical research and practical applications. BSRMs have a variety of
topological structures. Compared with conventional SRMs, the BSRM has a long way to go
in commercial application and industrialization due to the integration of double salient
poles and torque suspension. Meanwhile, requirements of different application fields also
pose different challenges to BSRM performance. The key research direction of BSRMs in
the future should be carried out from the following aspects:

1. Derivative of novel topologies: New structures such as block stator and double stator
hybrid excitation make the electromagnetic performance of BSRMs more excellent.
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However, there is more room for improvement, obviously. Better topology design can
further improve the power density and suspension performance and reduce iron loss,
making the electromagnetic performance of the BSRM superior. Therefore, BSRM
topology is still a hot spot for future research [36–45].

2. Multi-objective global optimization: The BSRM optimization objective is determined
by its application occasions. There are often multiple optimization objectives in
a specific occasion. Each performance index is mutually constrained. Therefore,
exploring ways to optimize BSRM power density, efficiency and other comprehensive
performance indicators is a significant direction of BSRM research in the future [46].

3. Fault tolerance design and control technology: When the motor is running, phase
deficiency, winding short circuit, open circuit and other faults may exist, making
torque and suspension force uncontrollable. Therefore, the study of fault tolerance
technology is inevitable, such as establishing short-circuit or open-circuit suspension
compensation models, etc. In addition, the selection of an appropriate control strategy
can also improve the fault tolerance of a motor and effectively reduce the torque and
suspension force pulsation and improve the control accuracy [47–49].

4. Ameliorate eccentric effect: The rotor decentration of a BSRM is caused by no mechan-
ical bearing support of the BSRM, technological error during manufacturing and the
element of gravity and centrifugal force during motor operation. Decentration will
produce unbalanced magnetic pulling force, which leads to noise and vibration of the
motor and other phenomena affecting motor performance. Therefore, exploring ways
to reduce the influence of decentration on motor performance and improve motor
stability is the focus of future research [50–52].

5. Conclusions

Based on the analysis of the operation mechanism of BSRMs, this paper first analyzes
the root of the coupling between the torque and suspension force and summarizes existing
strategies for decoupling and improving motor performance from the motor structure.
Secondly, the structures of stator and rotor are altered to transform the magnetic circuit to
realize the decoupling of torque and suspension force. Different topology structures are
derived by each structure. The motor performance is improved while coupling is reduced.
Finally, the future research direction of BSRMs is proposed. In conclusion, BSRM has
superiority in the high efficiency, high power density and high reliability dependence of
motor applications. However, the existing research is not mature enough to fully meet the
needs of modern equipment. It is firmly believed that researchers will conduct in-depth
research on BSRM technology to achieve breakthroughs in the future.
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Pole arc of stator(deg): 15 

Difficult to  

design the 

permanent 

magnet 

size 

Goo

d 

self-

star

ting 

abil

ity 

Pole arc of rotor(deg): 30 

Pole arc of rotor (deg): 13 

Diameter of axle(mm): 20 

Rotor tooth height(mm): 7 

Length of axial stack(mm): 45 Stator tooth height(mm): 16.5 

 
 

De-

cou-

pling 

of 

torque 

and 

Poor self-

starting 

ability and 

low power 

density 

Pole arc of stator for radial force(deg): 30 

 

Outer diameter of stator (mm): 115 

Pole arc of stator for torque(deg): 15 

Mo

re 

suit

able 

Outer diameter of rotor  (mm): 59.7 

Pole arc of stator (deg): 15 

12/8 wide rotor 

structure BSRM

A1

A2

A3

A4

A

A1

A2

A3

A4

12/4 wide rotor 

structure BSRM

Axially
magnetized

DSBSRM

Improving the
suspension
efficiency

Low critical
speed and
complex
suspension
control system

Outer/inner diameter
of outer stator(mm): 129/73

Inner diameter of
stator(mm): 62 Outer/inner diameter

of rotor(mm): 72/40

Yoke thickness of
Stator(mm): 10 Outer/diameter of

inner stator(mm): 39/19

Inner diameter of
rotor(mm): 18

Thickness of
permanent
magnet(mm):

2

Pole arc of stator
for torque(deg): 18

Diameter of
permanent
magnet(mm):

19

Pole arc of stator
for radial
force(deg):

36
Yoke thickness
of outer
stator/rotor(mm):

8/8

Pole arc of
rotor (deg): 18

Yoke thickness of
inner stator(mm): 9.5

Large torque
fluctuation
and weak
self-starting
ability

Length of axial
stack(mm): 40
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Ad-
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es 
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Ad-

van

tag

es 

Disadvant

ages 
Parameters Value 

 

The 

torque 

and 

sus-

pen-

sion 

pole 

are in-

de-

pend-

ent of 

each 

other 

Long mag-

netic cir-

cuit 

Outer diameter of stator(mm): 112 

 

Im-

pro

vin

g 

the 

sus-

pen

sion 

effi-

cien

cy 

Low criti-

cal speed 

and com-

plex sus-

pension 

control 

system 

Outer/inner diameter of outer stator(mm): 129/73 

Inner diameter of stator(mm): 62 Outer/inner diameter of rotor(mm): 72/40 

Yoke thickness of Stator(mm): 10 Outer/diameter of inner stator(mm): 39/19 

Inner diameter of rotor(mm): 18 Thickness of permanent magnet(mm): 2 

Pole arc of stator for torque(deg): 18 Diameter of permanent magnet(mm): 19 

Pole arc of stator for radial force(deg): 36 Yoke thickness of outer stator/rotor(mm): 8/8 

Pole arc of rotor (deg): 18 

Yoke thickness of inner stator(mm): 9.5 

Large 

torque 

fluctuation 

and  weak 

self-start-

ing ability 

Length of axial stack(mm): 40 

 

Short 

mag-

netic 

circuit 

and 

low 

core 

loss 

Outer diameter of stator(mm): 112 

 

Im-

pro

vin

g 

sus-

pen

sion 

forc

e 

and 

sho

rten

ing 

ma

gne

tic 

cir-

cuit  

Difficult to 

improve 

the rotor 

speed 

Outer diameter of outer stator(mm): 113 

Inner diameter of stator(mm): 60.2 Inner diameter of outer stator(mm): 72.6 

Yoke thickness of stator(mm): 7.7 Outer diameter of inner stator(mm): 42.2 

Yoke thickness of rator(mm): 9.7 Yoke thickness of outer stator(mm): 4.6 

Pole arc of stator for torque(deg): 11 Yoke thickness of rotor(mm): 4.8 

Pole arc of stator for radial force(deg): 25.7 Outer diameter of rotor(mm): 72 

Pole arc of rotor (deg): 14 Pole arc of outer stator/rotor(deg): 7.5/7.5 

Length of axial stack(mm): 40 

Length of axial stack(mm): 37.5 

Rotor tooth height(mm): 9.8 

 

Self-

decou-

pling 

of sus-

pen-

sion 

force 

and 

torque 

Outer diameter of suspending pole(mm): 132 

 
 

Sm

all 

torq

ue 

fluc

tua-

tion 

Not realiz-

ing decou-

pling 

Torque stator outer diameter (mm): 153 

Inner diameter of suspending pole(mm): 56.6 Radial force stator outer diameter (mm): 59.4 

Outside diameter of torque pole(mm): 108 Rotor outer diameter (mm): 102.6 

Permanent magnet width(mm): 10 Pole arc of stator for torque(deg): 15 

Permanent magnet height(mm): 6.6 
Pole arc of stator for radial force(deg): 32 

Pole arc of rotor (deg): 16 

Yoke thickness of rotor(mm): 9 

Length of axial stack(mm): 40 

Shaft diameter (mm): 17 

 

Lo

w 

sus-

pen

sion 

po

wer 

con

su

mpt

ion 

compress-

ing the in-

ductance 

rise inter-

val and re-

ducing the 

effective 

torque in-

terval  

Stator diameter(mm): 97 

Pole arc of stator for torque(deg): 12 
Yoke thickness of stator(mm): 6.1 

Yoke thickness of rotor(mm): 7.65 

Pole arc of stator for radial force(deg): 25 

Length of stator stack(mm): 51 

Pole arc of stator(deg): 15 

Difficult to  

design the 

permanent 

magnet 

size 

Goo

d 

self-

star

ting 

abil

ity 

Pole arc of rotor(deg): 30 

Pole arc of rotor (deg): 13 

Diameter of axle(mm): 20 

Rotor tooth height(mm): 7 

Length of axial stack(mm): 45 Stator tooth height(mm): 16.5 

 
 

De-

cou-

pling 

of 

torque 

and 

Poor self-

starting 

ability and 

low power 

density 

Pole arc of stator for radial force(deg): 30 

 

Outer diameter of stator (mm): 115 

Pole arc of stator for torque(deg): 15 

Mo

re 

suit

able 

Outer diameter of rotor  (mm): 59.7 

Pole arc of stator (deg): 15 

12/8 wide rotor 

structure BSRM

A1

A2

A3

A4

A

A1

A2

A3

A4

12/4 wide rotor 

structure BSRM

12/14 hybrid
stator tooth

BSRM

Short magnetic
circuit and low
core loss

Outer diameter of
stator(mm): 112
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Motors 

Ad-

vantag

es 

Disadvant

ages 
Parameters Value Motors 

Ad-

van

tag

es 

Disadvant

ages 
Parameters Value 

The 

torque 

and 

sus-

pen-

sion 

pole 

are in-

de-

pend-

ent of 

each 

other 

Long mag-

netic cir-

cuit 

Outer diameter of stator(mm): 112 

Im-

pro

vin

g 

the 

sus-

pen

sion 

effi-

cien

cy 

Low criti-

cal speed 

and com-

plex sus-

pension 

control 

system 

Outer/inner diameter of outer stator(mm): 129/73 

Inner diameter of stator(mm): 62 Outer/inner diameter of rotor(mm): 72/40 

Yoke thickness of Stator(mm): 10 Outer/diameter of inner stator(mm): 39/19 

Inner diameter of rotor(mm): 18 Thickness of permanent magnet(mm): 2 

Pole arc of stator for torque(deg): 18 Diameter of permanent magnet(mm): 19 

Pole arc of stator for radial force(deg): 36 Yoke thickness of outer stator/rotor(mm): 8/8 

Pole arc of rotor (deg): 18 

Yoke thickness of inner stator(mm): 9.5 

Large 

torque 

fluctuation 

and  weak 

self-start-

ing ability 

Length of axial stack(mm): 40 

Short 

mag-

netic 

circuit 

and 

low 

core 

loss 

Outer diameter of stator(mm): 112 Im-

pro

vin

g 

sus-

pen

sion 

forc

e 

and 

sho

rten

ing 

ma

gne

tic 

cir-

cuit 

Difficult to 

improve 

the rotor 

speed 

Outer diameter of outer stator(mm): 113 

Inner diameter of stator(mm): 60.2 Inner diameter of outer stator(mm): 72.6 

Yoke thickness of stator(mm): 7.7 Outer diameter of inner stator(mm): 42.2 

Yoke thickness of rator(mm): 9.7 Yoke thickness of outer stator(mm): 4.6 

Pole arc of stator for torque(deg): 11 Yoke thickness of rotor(mm): 4.8 

Pole arc of stator for radial force(deg): 25.7 Outer diameter of rotor(mm): 72 

Pole arc of rotor (deg): 14 Pole arc of outer stator/rotor(deg): 7.5/7.5 

Length of axial stack(mm): 40 

Length of axial stack(mm): 37.5 

Rotor tooth height(mm): 9.8 

Self-

decou-

pling 

of sus-

pen-

sion 

force 

and 

torque 

Outer diameter of suspending pole(mm): 132 
Sm

all 

torq

ue 

fluc

tua-

tion 

Not realiz-

ing decou-

pling 

Torque stator outer diameter (mm): 153 

Inner diameter of suspending pole(mm): 56.6 Radial force stator outer diameter (mm): 59.4 

Outside diameter of torque pole(mm): 108 Rotor outer diameter (mm): 102.6 

Permanent magnet width(mm): 10 Pole arc of stator for torque(deg): 15 

Permanent magnet height(mm): 6.6 
Pole arc of stator for radial force(deg): 32 

Pole arc of rotor (deg): 16 

Yoke thickness of rotor(mm): 9 

Length of axial stack(mm): 40 

Shaft diameter (mm): 17 

Lo

w 

sus-

pen

sion 

po

wer 

con

su

mpt

ion 

compress-

ing the in-

ductance 

rise inter-

val and re-

ducing the 

effective 

torque in-

terval 

Stator diameter(mm): 97 

Pole arc of stator for torque(deg): 12 
Yoke thickness of stator(mm): 6.1 

Yoke thickness of rotor(mm): 7.65 

Pole arc of stator for radial force(deg): 25 

Length of stator stack(mm): 51 

Pole arc of stator(deg): 15 

Difficult to 

design the 

permanent 

magnet 

size 

Goo

d 

self-

star

ting 

abil

ity 

Pole arc of rotor(deg): 30 

Pole arc of rotor (deg): 13 

Diameter of axle(mm): 20 

Rotor tooth height(mm): 7 

Length of axial stack(mm): 45 Stator tooth height(mm): 16.5 

De-

cou-

pling 

of 

torque 

and 

Poor self-

starting 

ability and 

low power 

density 

Pole arc of stator for radial force(deg): 30 

 

Outer diameter of stator (mm): 115 

Pole arc of stator for torque(deg): 15 

Mo

re 

suit

able 

Outer diameter of rotor  (mm): 59.7 

Pole arc of stator (deg): 15 

12/8 wide rotor 

structure BSRM

A1

A2

A3

A4

A

A1

A2

A3

A4

12/4 wide rotor 

structure BSRM

Hybrid
excitation
DSBSRM

Improving
suspension
force and
shortening
magnetic
circuit

Difficult to
improve the rotor
speed

Outer diameter of
outer stator(mm): 113

Inner diameter of
stator(mm): 60.2 Inner diameter of

outer stator(mm): 72.6

Yoke thickness of
stator(mm): 7.7 Outer diameter of

inner stator(mm): 42.2

Yoke thickness of
rator(mm): 9.7 Yoke thickness of

outer stator(mm): 4.6

Pole arc of stator
for torque(deg): 11 Yoke thickness of

rotor(mm): 4.8

Pole arc of stator
for radial
force(deg):

25.7 Outer diameter of
rotor(mm): 72

Pole arc of
rotor (deg): 14 Pole arc of outer

stator/rotor(deg): 7.5/7.5

Length of axial
stack(mm): 40

Length of axial
stack(mm): 37.5

Rotor tooth
height(mm): 9.8
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Motors 

Ad-

vantag

es 

Disadvant

ages 
Parameters Value Motors 

Ad-

van

tag

es 

Disadvant

ages 
Parameters Value 

The 

torque 

and 

sus-

pen-

sion 

pole 

are in-

de-

pend-

ent of 

each 

other 

Long mag-

netic cir-

cuit 

Outer diameter of stator(mm): 112 

Im-

pro

vin

g 

the 

sus-

pen

sion 

effi-

cien

cy 

Low criti-

cal speed 

and com-

plex sus-

pension 

control 

system 

Outer/inner diameter of outer stator(mm): 129/73 

Inner diameter of stator(mm): 62 Outer/inner diameter of rotor(mm): 72/40 

Yoke thickness of Stator(mm): 10 Outer/diameter of inner stator(mm): 39/19 

Inner diameter of rotor(mm): 18 Thickness of permanent magnet(mm): 2 

Pole arc of stator for torque(deg): 18 Diameter of permanent magnet(mm): 19 

Pole arc of stator for radial force(deg): 36 Yoke thickness of outer stator/rotor(mm): 8/8 

Pole arc of rotor (deg): 18 

Yoke thickness of inner stator(mm): 9.5 

Large 

torque 

fluctuation 

and  weak 

self-start-

ing ability 

Length of axial stack(mm): 40 

Short 

mag-

netic 

circuit 

and 

low 

core 

loss 

Outer diameter of stator(mm): 112 Im-

pro

vin

g 

sus-

pen

sion 

forc

e 

and 

sho

rten

ing 

ma

gne

tic 

cir-

cuit 

Difficult to 

improve 

the rotor 

speed 

Outer diameter of outer stator(mm): 113 

Inner diameter of stator(mm): 60.2 Inner diameter of outer stator(mm): 72.6 

Yoke thickness of stator(mm): 7.7 Outer diameter of inner stator(mm): 42.2 

Yoke thickness of rator(mm): 9.7 Yoke thickness of outer stator(mm): 4.6 

Pole arc of stator for torque(deg): 11 Yoke thickness of rotor(mm): 4.8 

Pole arc of stator for radial force(deg): 25.7 Outer diameter of rotor(mm): 72 

Pole arc of rotor (deg): 14 Pole arc of outer stator/rotor(deg): 7.5/7.5 

Length of axial stack(mm): 40 

Length of axial stack(mm): 37.5 

Rotor tooth height(mm): 9.8 

Self-

decou-

pling 

of sus-

pen-

sion 

force 

and 

torque 

Outer diameter of suspending pole(mm): 132 
Sm

all 

torq

ue 

fluc

tua-

tion 

Not realiz-

ing decou-

pling 

Torque stator outer diameter (mm): 153 

Inner diameter of suspending pole(mm): 56.6 Radial force stator outer diameter (mm): 59.4 

Outside diameter of torque pole(mm): 108 Rotor outer diameter (mm): 102.6 

Permanent magnet width(mm): 10 Pole arc of stator for torque(deg): 15 

Permanent magnet height(mm): 6.6 
Pole arc of stator for radial force(deg): 32 

Pole arc of rotor (deg): 16 

Yoke thickness of rotor(mm): 9 

Length of axial stack(mm): 40 

Shaft diameter (mm): 17 

Lo

w 

sus-

pen

sion 

po

wer 

con

su

mpt

ion 

compress-

ing the in-

ductance 

rise inter-

val and re-

ducing the 

effective 

torque in-

terval 

Stator diameter(mm): 97 

Pole arc of stator for torque(deg): 12 
Yoke thickness of stator(mm): 6.1 

Yoke thickness of rotor(mm): 7.65 

Pole arc of stator for radial force(deg): 25 

Length of stator stack(mm): 51 

Pole arc of stator(deg): 15 

Difficult to 

design the 

permanent 

magnet 

size 

Goo

d 

self-

star

ting 

abil

ity 

Pole arc of rotor(deg): 30 

Pole arc of rotor (deg): 13 

Diameter of axle(mm): 20 

Rotor tooth height(mm): 7 

Length of axial stack(mm): 45 Stator tooth height(mm): 16.5 

De-

cou-

pling 

of 

torque 

and 

Poor self-

starting 

ability and 

low power 

density 

Pole arc of stator for radial force(deg): 30 

 

Outer diameter of stator (mm): 115 

Pole arc of stator for torque(deg): 15 

Mo

re 

suit

able 

Outer diameter of rotor  (mm): 59.7 

Pole arc of stator (deg): 15 

12/8 wide rotor 

structure BSRM

A1

A2

A3

A4

A

A1

A2

A3

A4

12/4 wide rotor 

structure BSRM

Permanent
magnet biased
hybrid stator

BSRM

Self-decoupling
of suspension
force and torque

Outer diameter of
suspending
pole(mm):

132
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Motors 

Ad-

vantag

es 

Disadvant

ages 
Parameters Value Motors 

Ad-

van

tag

es 

Disadvant

ages 
Parameters Value 

The 

torque 

and 

sus-

pen-

sion 

pole 

are in-

de-

pend-

ent of 

each 

other 

Long mag-

netic cir-

cuit 

Outer diameter of stator(mm): 112 

Im-

pro

vin

g 

the 

sus-

pen

sion 

effi-

cien

cy 

Low criti-

cal speed 

and com-

plex sus-

pension 

control 

system 

Outer/inner diameter of outer stator(mm): 129/73 

Inner diameter of stator(mm): 62 Outer/inner diameter of rotor(mm): 72/40 

Yoke thickness of Stator(mm): 10 Outer/diameter of inner stator(mm): 39/19 

Inner diameter of rotor(mm): 18 Thickness of permanent magnet(mm): 2 

Pole arc of stator for torque(deg): 18 Diameter of permanent magnet(mm): 19 

Pole arc of stator for radial force(deg): 36 Yoke thickness of outer stator/rotor(mm): 8/8 

Pole arc of rotor (deg): 18 

Yoke thickness of inner stator(mm): 9.5 

Large 

torque 

fluctuation 

and  weak 

self-start-

ing ability 

Length of axial stack(mm): 40 

Short 

mag-

netic 

circuit 

and 

low 

core 

loss 

Outer diameter of stator(mm): 112 Im-

pro

vin

g 

sus-

pen

sion 

forc

e 

and 

sho

rten

ing 

ma

gne

tic 

cir-

cuit 

Difficult to 

improve 

the rotor 

speed 

Outer diameter of outer stator(mm): 113 

Inner diameter of stator(mm): 60.2 Inner diameter of outer stator(mm): 72.6 

Yoke thickness of stator(mm): 7.7 Outer diameter of inner stator(mm): 42.2 

Yoke thickness of rator(mm): 9.7 Yoke thickness of outer stator(mm): 4.6 

Pole arc of stator for torque(deg): 11 Yoke thickness of rotor(mm): 4.8 

Pole arc of stator for radial force(deg): 25.7 Outer diameter of rotor(mm): 72 

Pole arc of rotor (deg): 14 Pole arc of outer stator/rotor(deg): 7.5/7.5 

Length of axial stack(mm): 40 

Length of axial stack(mm): 37.5 

Rotor tooth height(mm): 9.8 

Self-

decou-

pling 

of sus-

pen-

sion 

force 

and 

torque 

Outer diameter of suspending pole(mm): 132 
Sm

all 

torq

ue 

fluc

tua-

tion 

Not realiz-

ing decou-

pling 

Torque stator outer diameter (mm): 153 

Inner diameter of suspending pole(mm): 56.6 Radial force stator outer diameter (mm): 59.4 

Outside diameter of torque pole(mm): 108 Rotor outer diameter (mm): 102.6 

Permanent magnet width(mm): 10 Pole arc of stator for torque(deg): 15 

Permanent magnet height(mm): 6.6 
Pole arc of stator for radial force(deg): 32 

Pole arc of rotor (deg): 16 

Yoke thickness of rotor(mm): 9 

Length of axial stack(mm): 40 

Shaft diameter (mm): 17 

Lo

w 

sus-

pen

sion 

po

wer 

con

su

mpt

ion 

compress-

ing the in-

ductance 

rise inter-

val and re-

ducing the 

effective 

torque in-

terval 

Stator diameter(mm): 97 

Pole arc of stator for torque(deg): 12 
Yoke thickness of stator(mm): 6.1 

Yoke thickness of rotor(mm): 7.65 

Pole arc of stator for radial force(deg): 25 

Length of stator stack(mm): 51 

Pole arc of stator(deg): 15 

Difficult to 

design the 

permanent 

magnet 

size 

Goo

d 

self-

star

ting 

abil

ity 

Pole arc of rotor(deg): 30 

Pole arc of rotor (deg): 13 

Diameter of axle(mm): 20 

Rotor tooth height(mm): 7 

Length of axial stack(mm): 45 Stator tooth height(mm): 16.5 

De-

cou-

pling 

of 

torque 

and 

Poor self-

starting 

ability and 

low power 

density 

Pole arc of stator for radial force(deg): 30 

 

Outer diameter of stator (mm): 115 

Pole arc of stator for torque(deg): 15 

Mo

re 

suit

able 

Outer diameter of rotor  (mm): 59.7 

Pole arc of stator (deg): 15 

12/8 wide rotor 

structure BSRM

A1

A2

A3

A4

A

A1

A2

A3

A4

12/4 wide rotor 

structure BSRM

Double stator
BSRM

Small torque
fluctuation

Not realizing
decoupling

Torque stator outer
diameter (mm): 153

Inner diameter of
suspending
pole(mm):

56.6 Radial force stator
outer diameter (mm): 59.4

Outside diameter
of torque
pole(mm):

108 Rotor outer
diameter (mm): 102.6

Permanent magnet
width(mm): 10 Pole arc of stator for

torque(deg): 15

Permanent magnet
height(mm): 6.6

Pole arc of stator for
radial force(deg): 32

Pole arc of
rotor (deg): 16

Yoke thickness of
rotor(mm): 9

Length of axial
stack(mm): 40

Shaft diameter (mm): 17
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Motors 

Ad-

vantag

es 

Disadvant

ages 
Parameters Value Motors 

Ad-

van

tag

es 

Disadvant

ages 
Parameters Value 

The 

torque 

and 

sus-

pen-

sion 

pole 

are in-

de-

pend-

ent of 

each 

other 

Long mag-

netic cir-

cuit 

Outer diameter of stator(mm): 112 

Im-

pro

vin

g 

the 

sus-

pen

sion 

effi-

cien

cy 

Low criti-

cal speed 

and com-

plex sus-

pension 

control 

system 

Outer/inner diameter of outer stator(mm): 129/73 

Inner diameter of stator(mm): 62 Outer/inner diameter of rotor(mm): 72/40 

Yoke thickness of Stator(mm): 10 Outer/diameter of inner stator(mm): 39/19 

Inner diameter of rotor(mm): 18 Thickness of permanent magnet(mm): 2 

Pole arc of stator for torque(deg): 18 Diameter of permanent magnet(mm): 19 

Pole arc of stator for radial force(deg): 36 Yoke thickness of outer stator/rotor(mm): 8/8 

Pole arc of rotor (deg): 18 

Yoke thickness of inner stator(mm): 9.5 

Large 

torque 

fluctuation 

and  weak 

self-start-

ing ability 

Length of axial stack(mm): 40 

Short 

mag-

netic 

circuit 

and 

low 

core 

loss 

Outer diameter of stator(mm): 112 Im-

pro

vin

g 

sus-

pen

sion 

forc

e 

and 

sho

rten

ing 

ma

gne

tic 

cir-

cuit 

Difficult to 

improve 

the rotor 

speed 

Outer diameter of outer stator(mm): 113 

Inner diameter of stator(mm): 60.2 Inner diameter of outer stator(mm): 72.6 

Yoke thickness of stator(mm): 7.7 Outer diameter of inner stator(mm): 42.2 

Yoke thickness of rator(mm): 9.7 Yoke thickness of outer stator(mm): 4.6 

Pole arc of stator for torque(deg): 11 Yoke thickness of rotor(mm): 4.8 

Pole arc of stator for radial force(deg): 25.7 Outer diameter of rotor(mm): 72 

Pole arc of rotor (deg): 14 Pole arc of outer stator/rotor(deg): 7.5/7.5 

Length of axial stack(mm): 40 

Length of axial stack(mm): 37.5 

Rotor tooth height(mm): 9.8 

Self-

decou-

pling 

of sus-

pen-

sion 

force 

and 

torque 

Outer diameter of suspending pole(mm): 132 
Sm

all 

torq

ue 

fluc

tua-

tion 

Not realiz-

ing decou-

pling 

Torque stator outer diameter (mm): 153 

Inner diameter of suspending pole(mm): 56.6 Radial force stator outer diameter (mm): 59.4 

Outside diameter of torque pole(mm): 108 Rotor outer diameter (mm): 102.6 

Permanent magnet width(mm): 10 Pole arc of stator for torque(deg): 15 

Permanent magnet height(mm): 6.6 
Pole arc of stator for radial force(deg): 32 

Pole arc of rotor (deg): 16 

Yoke thickness of rotor(mm): 9 

Length of axial stack(mm): 40 

Shaft diameter (mm): 17 

Lo

w 

sus-

pen

sion 

po

wer 

con

su

mpt

ion 

compress-

ing the in-

ductance 

rise inter-

val and re-

ducing the 

effective 

torque in-

terval 

Stator diameter(mm): 97 

Pole arc of stator for torque(deg): 12 
Yoke thickness of stator(mm): 6.1 

Yoke thickness of rotor(mm): 7.65 

Pole arc of stator for radial force(deg): 25 

Length of stator stack(mm): 51 

Pole arc of stator(deg): 15 

Difficult to 

design the 

permanent 

magnet 

size 

Goo

d 

self-

star

ting 

abil

ity 

Pole arc of rotor(deg): 30 

Pole arc of rotor (deg): 13 

Diameter of axle(mm): 20 

Rotor tooth height(mm): 7 

Length of axial stack(mm): 45 Stator tooth height(mm): 16.5 

De-

cou-

pling 

of 

torque 

and 

Poor self-

starting 

ability and 

low power 

density 

Pole arc of stator for radial force(deg): 30 

 

Outer diameter of stator (mm): 115 

Pole arc of stator for torque(deg): 15 

Mo

re 

suit

able 

Outer diameter of rotor  (mm): 59.7 

Pole arc of stator (deg): 15 

12/8 wide rotor 

structure BSRM

A1

A2

A3

A4

A

A1

A2

A3

A4

12/4 wide rotor 

structure BSRM

12/8 pole wide
rotor BSRM

Low
suspension
power
consumption

compressing the
inductance rise
interval and
reducing the
effective torque
interval

Stator diameter(mm): 97

Pole arc of stator
for torque(deg): 12

Yoke thickness of
stator(mm): 6.1

Yoke thickness of
rotor(mm): 7.65

Pole arc of stator
for radial
force(deg):

25

Length of stator
stack(mm): 51

Pole arc of
stator(deg): 15

Difficult to
design the
permanent
magnet size Good

self-starting
ability

Pole arc of rotor(deg): 30

Pole arc of
rotor (deg): 13

Diameter of
axle(mm): 20

Rotor tooth
height(mm): 7

Length of axial
stack(mm): 45 Stator tooth

height(mm): 16.5
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power density
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