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Abstract: Autonomous vehicles in highway driving scenarios are expected to become a reality in
the next few years. Decision-making and motion planning algorithms, which allow autonomous
vehicles to predict and tackle unpredictable road traffic situations, play a crucial role. Indeed, finding
the optimal driving decision in all the different driving scenarios is a challenging task due to the
large and complex variability of highway traffic scenarios. In this context, the aim of this work is
to design an effective hybrid two-layer path planning architecture that, by exploiting the powerful
tools offered by the emerging Deep Reinforcement Learning (DRL) in combination with model-based
approaches, lets the autonomous vehicles properly behave in different highway traffic conditions and,
accordingly, to determine the lateral and longitudinal control commands. Specifically, the DRL-based
high-level planner is responsible for training the vehicle to choose tactical behaviors according to
the surrounding environment, while the low-level control converts these choices into the lateral
and longitudinal vehicle control actions to be imposed through an optimization problem based on
Nonlinear Model Predictive Control (NMPC) approach, thus enforcing continuous constraints. The
effectiveness of the proposed hierarchical architecture is hence evaluated via an integrated vehicular
platform that combines the MATLAB environment with the SUMO (Simulation of Urban MObility)
traffic simulator. The exhaustive simulation analysis, carried out on different non-trivial highway
traffic scenarios, confirms the capability of the proposed strategy in driving the autonomous vehicles
in different traffic scenarios.

Keywords: autonomous vehicles; autonomous highway driving; hierarchical control architecture

1. Introduction

Autonomous vehicles (AVs) are expected to transform our understanding of trans-
portation systems. AVs are going to hit the road in the next few years, bringing a variety of
positive social impacts such as increased safety for passengers and pedestrians, reduced
traffic congestion on highways, and environmental pollution, just to name a few [1–5]. The
main feature of AVs is their ability to be “smart“, i.e., to make autonomous decisions. This is
possible by leveraging information coming from exteroceptive and proprioceptive sensors,
such as IMU, GNSS, cameras, and LiDAR, as well as the ones that are beyond line-of-sight
and field-of-view, i.e., the information shared among cars and/or infrastructure through
the V2X communication paradigm [6].

To perform this task, control architectures for AVs are hierarchical and composed of
four main modules: perception, decision-making, planning, and control [7]. Within this
technological paradigm, particular attention must be paid to the decision-making module
since it performs the same functions as the human brain in adapting the behavior of the
AV to the current traffic situation [8]. Since the daily driving experience shows a wide
variety of traffic situations and possible interactions among users [9], the open challenge is
to ensure that AVs could effectively take, in real-time, safe and efficient driving decisions.
Therefore, given the highly uncertain and potentially dangerous dynamic traffic scenarios,
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the decision-making task has to tackle a large wide variety of traffic scenarios [10]–ranging
from structured highways to intricate urban roads–while, at the same time, guaranteeing
robustness w.r.t. the unavoidable uncertainties and/or unexpected actions from other users
(e.g., human-driven vehicles in heterogeneous traffic flows [11]).

Along this line, nowadays, the decision-making module has received extensive atten-
tion in the autonomous driving field [12], as well as in other engineering applications [13–15].
The proposed current solutions for the design of the decision-making module can be catego-
rized into three main groups [16]: motion planning-based methods, risk assessment-based
methods, and learning-based methods (commonly based on supervised learning or re-
inforcement learning (RL)). The model-based ones are designed by assuming partial or
full knowledge about the travelling environment and/or the vehicle dynamics, while the
other model-free ones do not explicitly consider the motion capability of the vehicle nor its
prediction of future behavior. This might lead to a policy that cannot respect the limits of
vehicle dynamics [17].

To overcome these limitations, by combining the advantages of the reinforcement
learning approaches (recently studied by the control community [18]) with classical model-
based control strategies, this work proposes a hybrid hierarchical architecture for the
autonomous highway driving of AV traveling in uncertain and unknown highway traffic
scenarios. Differently from a fully RL-based autonomous highway driving, a hybrid
hierarchical architecture simplifies this process since any RL methodology that tries to solve
both decision-making and motion planning simultaneously may require a large amount
of training data [19]. Whereas, herein, the RL is used for the decision-making process,
while the model-based constrained controller achieves the motion planning task. In doing
so, the proposed solution is capable of jointly deciding the proper longitudinal/lateral
control actions for the AV in order to face the different encountered unknown and uncertain
driving situations (thanks to the exploitation of RL strategies), while explicitly taking into
account the vehicle kinematics, state, and control constraints (thanks to optimal control
theory), with the aim of improving also the safety and comfort experience. Accordingly,
the decision-making layer is designed by exploiting the Markov decision process (MDP)
and Deep Q-Learning (DQN) algorithms. Specifically, the AV learns the optimal driving
decision via a learning-by-doing process that involves deep interaction with the unknown
and uncertain highway environment. At each interaction, the environmental reaction is
evaluated and exploited to train the artificial-intelligence agent towards the next driving
decision to take. Once the training phase is complete, the decision-making layer is able to
provide the desired driving maneuvers to be performed by the AV according to the current
highway scenarios. Instead, the motion planning layer, developed based on the Nonlinear
Model Predictive Control (NMPC) theory, is responsible for vehicle dynamics control in
the longitudinal and lateral planes.

Note that, despite their well-established value and advantages, hybrid techniques that
combine classical control tools and the AI theory are still less investigated and, typically,
implemented without explicitly taking into account unavoidable state/control constraints
from the very beginning of the design phase [19,20], where classical PID-like controllers
are exploited for the motion planning task.

According to automotive best practices, which require a strict process of validation
before real-life testing, we carry out virtual testing simulations via a high-detailed ve-
hicular co-simulation platform [21]. Extensive simulations confirm the effectiveness of
the proposed hybrid solution. Moreover, in order to disclose its advantages, we made
a comparison analysis w.r.t. the classical well-known models, named Intelligent Driver
Model (IDM) [22] and the Minimizing Overall Braking Induced by Lane Changes (MOBIL)
model, used for modeling the car-following and the lane change scenarios, respectively.
Note that this choice is dictated by the fact that they are considered athe benchmark for
testing new strategies [23] and/or to simulating surrounding vehicles [18].

The contributions of this work can be summarized as follows:
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• We propose a novel and innovative hybrid hierarchical decision-making and motion
planning control architecture for autonomous vehicles driving in unknown and uncer-
tain non-trivial highway scenarios, which combines the DRL theory for the decision-
making layer with the optimal NMPC control theory for the motion-planning task;

• The proposed hybrid architecture solves the problem of autonomous highway driving
in a unified fashion by simplifying the overall decision process. Indeed, the decision-
making task is demanded to a high-level layer, which only selects the proper route
to follow, while the lower-layer computes an optimized and smooth driving profile
compliant with vehicle dynamics. Therefore, different from other solutions dealing
with both tasks via fully-AI methods, our approach requires fewer data for the training;

• Differently from the hybrid architectures proposed for autonomous highway driving
(see refs. [19,20]), our approach is able to explicitly take into account the practical and
unavoidable AV state/control constraints;

• Unlike the automotive technical literature, where vehicle behavior is modeled accord-
ing to car-following scenarios and lane-change maneuvers via IDM, MOBIL, or their
combination, here the motion planning layer is designed by exploiting NMPC theory,
which enables the prediction of vehicle future behavior. This allows optimizing safety
and comfort requirements, also taking input and state constraints into account;

• The proposed hierarchical architecture is validated in a high-detailed co-simulation
platform and a comparison analysis w.r.t. to well-known benchmark IDM solution is
provided, in order to better disclose the benefits of the proposed solution.

Finally, the rest of the paper is organized as follows. Section 2 presents the related
technical literature. The proposed hybrid DRL and optimal control-based hierarchical
decision-making and motion planning architecture is designed in Section 3. Section 4
discloses the DRL agent training methodologies adopted for the design of the decision-
making module as well as the training results. Virtual testing simulations are reported in
Section 5, while the conclusions are drawn in Section 6.

2. Related Works

Several related works have addressed the problem of designing the decision-making
and motion planning control architecture. Regarding motion planning-based methods,
there are approaches inspired by the robot motion planning algorithms such as A? [24] and
Artificial Potential Field (APF [25]). However, these kinds of solutions usually do not fully
take into account the controlled vehicle dynamics, thus generating planned trajectories
that could be potentially unfeasible. To overcome this crucial issue, some alternative
approaches have been recently investigated, ranging from the on-line Rapidly-exploring
Random Trees [26] to the predictive occupancy map [27] to the use of Model Predictive
Controllers (MPC) [28]. Risk assessment-based methods, instead, propose hierarchical
solutions that adopt a two-step approach for guaranteeing safety, i.e., the risk of the current
driving state is first evaluated and then a suitable control action is formulated according
to this assessment [29]. Note that, in order to perform the first step, some deterministic
safety metrics (such as Time To Collision (TTC), Time To Brake (TTB), or Time Headway
(THW)) are commonly used, while only fewer works assess risk via probabilistic methods
(interested readers can be referred to [16] for an exhaustive literature overview). The third
class of decision-making solutions exploits machine learning theory to deduce the correct
policy to follow based on the shared data. When leveraging supervised learning approaches,
human experience is exploited to assess the driving policy (behavior cloning), but the
difficulty of collecting enough labeled data from skilled drivers makes these solutions
hard to use [30]. To overcome this problem, given its capacity to solve decision-making
problems in an unsupervised fashion, the alternative Reinforcement Learning (RL) method
has recently become one of the most promising solutions. In addition, RL methods can learn
the optimal, or near-optimal, policy by directly interacting with the environment without
the need to make restrictive assumptions about it, such as its partial knowledge [31].
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More recently, following the major breakthroughs of Deep Learning (DL) [32], and by
leveraging the capability of neural networks to serve as universal function approximators,
the brand new concept of Deep Reinforcement Learning (DRL) has been raised [33,34]. DRL
approaches can be mainly categorized into model-based, which require partial information
about the system [35], and model-free, which do not make any assumptiosn about the
environment [36]. Due to their advantages, researchers have been also started to apply
the DRL theory to solve various autonomous driving tasks [16]. For example, in ref. [37]
authors propose an RL-based strategy to train an agent to learn an automated lane change
behavior in order to improve the collision avoidance task in unforeseen scenarios, while in
ref. [38] a hierarchical architecture is exploited to learn a sequential collision-free decision
strategy for AVs. Again, a hierarchical architecture is suggested in ref. [17], where the
decision-maker implements a kernel-based least-squares policy iteration algorithm while
the lower layer is designed via a dual heuristic programming algorithm to address the
motion planning problem. Conversely, ref. [16] proposes a novel lane change decision-
making framework based on DRL in order to let the AVs learn a risk-aware driving
decision strategy with the minimum expected risk. Instead, ref. [20] presents a safe deep
reinforcement learning system for automated highway driving where both rule-based and
learning-based approaches are exploited for safety assurance.

However, any RL methodology that tries to solve both decision-making and motion-
planning simultaneously may require a large amount of training data [19]. In addition,
the large amount of data required by RL strategies is mainly used to maximize a long-
term reward, defined as a function of different aspects, e.g., comfort, efficiency, and even
safety. Thus, it implies that only sub-optimal performance can be achieved for the safety
aspect, and consequently, they are not comparable with the ones achievable via optimal
control methods [39]. To address this issue, some hybrid control approaches combining
RL methods and model-based strategies have been proposed. Along this line, ref. [19]
proposes a hybrid RL and PID control for solving the problem of autonomous highway
driving, where RL is used for the decision-making task and the PID ensures the actuation
of the selected decision. In order to improve the performance and safety of these hybrid
architectures, MPC approaches have been proposed in combination with RL [40]. For
instance, ref. [39] suggests this solution to allow an AV to autonomously merge a highway
from an on-ramp. However, in this framework, to the best of our knowledge, there are
no works combining RL with NMPC and applying this solution to solve the problem of
autonomous highway driving.

Finally, focusing on the design of the model-based motion planning layer, it is worth
noting that the technical literature widely exploits the IDM and MOBIL benchmark models,
along with their modifications [22]. However, these classical approaches are characterized
by some drawbacks and limitations. Specifically, the IDM can be used to reproduce the car-
following behavior easily, but it does not take into account the mechanical characteristics of
the AV [41], while the MOBIL model, relying on a threshold definition for safety decision
criteria, is not able to define a single threshold to handle various traffic conditions [42].
Conversely, a combined architecture composed of IDM and MOBIL only relies on the
observations at the current time instant, hence neglecting the possible predictions of future
traffic conditions [43]. Differently, the proposed NMPC-based motion planning layer is
able to optimize safety and comfort requirements while taking into account state and
control constraints.

3. Hybrid Hierarchical Decision-Making and Motion Planning Control Architecture
for Highway Autonomous Driving

Consider an AV, named Ego, which, whil travelling in an unknown and uncertain three-
lane highway environment, has to make smart decisions about its motion by leveraging
exteroceptive and proprioceptive sensors, as well as from the information shared with
other road entities (such as other cars and/or infrastructure) via V2X communication. Due
to the variety and complexity characterizing this traffic scenario, the problem addressed
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in this work, as depicted in Figure 1, is how to provide the Ego vehicle with the abilities
to make proper driving decisions (e.g., lane keeping or lane changing) when traveling in
the presence of different traffic flow conditions, while improving efficiency and preserving
safety. To solve this problem, we propose the hybrid hierarchical architecture depicted
in Figure 2, where, at the higher layer, a double deep Q-learning approach is exploited
for solving the real-time decision-making problem, while the lower-layer aims at finding
an optimal trajectory via the solution of an Optimal Control Problem (OCP), which also
takes into account state and input constraints. Details about the design of both layers are
provided in the following sections.

Figure 1. Autonomous Highway Driving problem. The Ego vehicle, i.e., the red one, has to au-
tonomously take a safe driving decision, e.g., lane keeping or changing, for traveling in a three-lane
highway scenario in the presence of other surrounding vehicles, i.e., the grey ones.

Figure 2. Hybrid Hierarchical decision-making and motion planning control architecture. The
proposed solution driving the motion of the Ego-vehicles runs on the MATLAB Platform, while the
interactions between the ego vehicle and the other road entities are emulated by exploiting SUMO.

3.1. Decision-Making Layer

The decision-making problem is here solved via Deep Reinforcement Learning theory.
In our case study, the agent and the environment are represented by the Ego and the
surrounding vehicles, respectively. The problem is modelled as a Markov Decision Process
(MDP), i.e., the tuple <S, A, T, R, γ>, where S is the set of states, A is the set of actions,
T : S× A → S is the state transition function, R : S× A× S → R is the reward function,
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and γ ∈ [0, 1] is the discount factor. The objective of the training process is to find a policy
that maximizes the following discounted cumulative reward:

Rt =
∞

∑
k=0

γkrt+k, (1)

where rt+k is the reward at the time instant t + k and γ is the discount factor. To this aim,
the action value function, or Q-function, representing the relation between state-action
(st, at) and reward Rt, is defined as:

Q(st, at) = E[Rt‖st, at, π], (2)

being π the control action policy. The function (2) can be rewritten in the following
recursive form:

Q(st, at) = E[rt + γ max
at+1

Q(st+1, at+1)]. (3)

It follows that the optimal control action with respect to the policy π is the one
maximizing the Q-function (2), i.e.,:

π(st) = arg max
at

Q(st, at). (4)

The solution of the above maximization problem involves the use of adaptive neural
estimators (approximating the action-value function Q(s, a)) whose weights θ are updated
at each training iteration according to the following loss function [44]:

L(θi) = E[(yt −Q(st+1, at+1, θi))
2], (5)

where, according to the Double Deep Q-Learning (DDQN) approach,

yt = rt + γQ(st+1, arg max
at

Q(st+1, at, θi), θi−1). (6)

In the appraised case study, the state vector is selected as s(t) ∈ R19. Its components
are the Ego vehicle speed v(t) and all the data gathered by the surrounding vehicles. These
latter are the longitudinal/lateral distances and the relative longitudinal velocities of both
the vehicles ahead and the ones on the rear that occupy the three closest lanes, i.e., the
three vehicles in front of the Ego vehicle and the three on the rear, hence yielding a total of
18 measurements. If a lane is free, dummy values, corresponding to a vehicle at the limit of
the sensor detection range, are used.

The action vector is selected as a(t) ∈ R5. Specifically, the Ego vehicle can choose
among the following possible five actions: (1) performing the lane changing to the left;
(2) performing the lane keeping; (3) performing lane changing to the right; (4) perform-
ing an acceleration maneuver in order to decrease the distance w.r.t. the vehicle ahead;
(5) braking to the increase the distance w.r.t. the vehicle ahead. A summary of the state and
action vectors can be found in Table 1 where j = 1, 2, . . . , 6.

Regarding the choice of a suitable reward function, here the idea is to ensure the
proper tracking of the reference behavior by the Ego vehicle while encouraging speed
gain and discouraging potentially dangerous and aggressive behaviors. To this end, the
following reward function has been designed:

rt = rv − rlc − rttc − rcoll , (7)

where rv = 1− (vdes − v)/v is a velocity-dependent positive reward driving the agent to
follow the desired speed vdes; rlc is a constant term that penalizes useless lane changes
maneuvers and, in this case, is set to 1; rttc is a constant term that penalizes the reward
when the Time-To-Collision (TTC) with respect to vehicles ahead goes below the safety
threshold of 2[s], i.e., rttc = 5; rcoll penalizes possible collisions with the vehicles in the
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surrounding. Note that the last two terms in Equation (7) are responsible for steering the
agent towards safe behavior. On the one hand, when a collision is detected, the rcoll = 10 is
assigned, and, hence, the episode is terminated. On the other hand, inspired by human-like
behavior, rttc aims to improve collision avoidance performance by penalizing the reward
when a possible dangerous situation occurs.

The output of the decision-making layer is the best suitable action to be performed
by the AV according to the actual traffic conditions. The chosen action a(t) is, then, fed
as input to the motion planning layer and converted into the reference behavior for the
NMPC, as detailed in the next section.

Table 1. State and action spaces for the DDQN agent driving the Ego vehicle.

State Description

s1 Ego vehicle speed
s1j Longitudinal distance of Ego Vehicle w.r.t. the j-th vehicle
s2j Lateral distance of Ego Vehicle w.r.t. the j-th vehicle
s3j Relative velocity of Ego Vehicle w.r.t. the j-th vehicle

Action Description

a1 Changing Lane to the left
a2 Lane Keeping
a3 Changing Lane to the right
a4 Acceleration manoeuvre
a5 Braking manoeuvre

3.2. Motion Planning Layer

Based on the driving decisions, which are on-line computed by the DRL agent and
dynamically adapted to the current traffic scenario, the motion planning layer finds the
optimal longitudinal and lateral trajectories to be imposed on the AV. More specifically,
with the aim of reducing the complexity of the optimization problems and decreasing the
total execution time, the proper AV motion is derived via the design of two NMPC, i.e.,
one for the longitudinal dynamics and one for the lateral dynamics. To this end, we first
introduce the Ego vehicle’s lateral and longitudinal dynamics.

The Ego lateral dynamics are described by the kinematic bicycle model in a rear-axle
centered frame, recast in the curvilinear Frenet frame [45], i.e.,

ṡ(t) =
v(t)cos(eψ(t))

1− ρey(t)
(8)

ėy(t) = v(t)sin(eψ(t)) (9)

v̇(t) = 0 (10)

ėψ(t) = v(t)

(
tan(δ(t))

l f + lr
−

ρcos(eψ(t))
1− ρey(t)

)
(11)

δ̇(t) = u1(t), (12)

where s(t) m is the arc length on the curvilinear reference path; ey(t) m and eψ(t) [rad]
are the lateral and angular errors with respect to the reference path, respectively; v(t) m/s
is the vehicle speed in the C.o.G. reference frame; δ(t) rad is the steering angle while the
input u1(t) rad/s is the steering rate command; the parameters l f m and lr m are the
distances between the center of gravity and the front/rear axles, respectively; ρ(s) 1/m
is the curvature of the reference path as a function of the arc length. It is worth noting
that, although a more accurate dynamical model could also be adopted, here we chose a
kinematic model due to its well-known performance when mimicking driving conditions
far from handling limits, in addition to being more suitable for embedded applications due
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to its lower computational complexity [46]. The Ego vehicle longitudinal dynamics are,
instead, described by the well-known car-following model [45], under the assumption that
the leading vehicle acceleration is zero, i.e.,

ḋ(t) = ∆v(t) (13)

∆̇v(t) = −a(t) (14)

v̇(t) = a(t) (15)

ȧ(t) =
1
τ
(−a(t) + u2(t)), (16)

where d(t) [m] and ∆v(t) = vlead(t) − v(t) [m/s] are the distance and the relative lon-
gitudinal velocity with respect to the leading vehicle, respectively; a(t) m/s2 is the Ego
vehicle acceleration; τ s is the power-train time constant; and u2(t) m/s2 is the control
input providing the desired acceleration to be imposed. Note that, in practice, the Ego
vehicle position, speed, and acceleration are always estimated based on the combination
of GNSS information with the one provided by the IMU [47] by using, for instance, the
Kalman filter [48], the parallel adaptive Kalman filter [49], or vision-based techniques [50].

By defining the following state vectors x1(t) = [s(t) ey(t) v(t) eψ(t) δ(t)]> ∈
R5×1 x2(t) = [d(t) ∆v(t) v(t) a(t)]> ∈ R4×1 the lateral and longitudinal dynamics in
Equations (8)–(12) and Equations (13)–(16) can be rewritten, respectively, in a more com-
pact form as:

ẋ1(t) = f1(x1(t), u1(t)),
ẋ2(t) = f2(x2(t), u2(t)).

(17)

Given the lateral dynamics as in (17), we define the vector e1(t) = [ey(t)− eyre f eψ(t)]> ∈
R2×1. The trajectory eyre f is the reference lateral error, which is on-line computed by the DRL
and dynamically adapted to the encountered driving scenario. Indeed, if a lane change to
the left is suggested, the lateral error reference eyre f is increased by the lane width Lw m;
conversely, it is decreased by the same value if a lane change to the right is required. Finally,
if the DRL agent chooses to keep the current lane, the lateral reference does not change.
The reference angular error is, instead, always null since, at steady state, the vehicle must
be always aligned to the lane.

Thus, the goal of the lateral motion planner is to regulate the vector e1(t) to zero-thus
yielding ey(t)→ eyre f and eψ(t)→ 0-while minimizing, at the same time, the steering angle
variations, i.e., the control input u1(t) in (17), as well as increasing the driving comfort. To
solve this problem, the lateral NMPC-based path planner is designed as the solution, at
each sample time Ts, of the following Optimal Control Problems (OCP):

min
x1(·),u1(·)

∫ T

0
e1(t)TQ1e1(t) + r1δ2(t) + r1u2

1(t) dt (18)

s.t. ẋ1(t) = f1(x1(t), u1(t)) (19)

eymin ≤ ey(t) ≤ eymax (20)

eψmin ≤ eψ(t) ≤ eψmax (21)

δmin ≤ δ(t) ≤ δmax (22)

u1min ≤ u1(t) ≤ u1max (23)

where T indicates the prediction horizon; Q1 = diag(q1, q2); and r1 are the tracking and
control effort weights, respectively; the subscripts max and min represent the maximum and
minimum admissible state/input values for the related variable.

Moreover, given the longitudinal dynamics as in (17), we define the vector
e2(t) = [d(t) − dre f (t) ∆v(t) v(t) − vre f ]

> ∈ R3×1, where dre f (t) and vre f are the refer-
ence spacing policy and the reference Ego vehicle speed, respectively. The desired distance
is set as dre f (t) = d0 + THv(t), where d0 m is the required safe distance at a standstill
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and TH s is the headway time. This last parameter is on-line computed and dynamically
adapted by the DRL agent. In particular, TH is augmented or reduced by step increments
∆TH , if the distance to the leading vehicle must be increased or decreased, respectively. In
any case, the heading time cannot go below the minimum value of 0.1 s, which guaran-
tees that the leading distance reference is always positive and that longitudinal collisions
are avoided. The reference velocity is set according to the highway environment, i.e.,
vre f = 33 m/s.

Hence, the aim of the longitudinal planner is to achieve the convergence of the error
vector e2 towards zero, thus yielding d(t) → dre f (t), ∆v(t) → 0 and v(t) → vre f -while
minimizing at the same time the control effort u2(t), i.e. minimizing the vehicle jerk, as well
as increasing the driving comfort. To this end, the longitudinal path planner is designed as
the solution of the following OCP:

min
x2(·),u2(·)

∫ T

0
e2(t)TQ2e2(t) + r2a2(t) + r2u2

2(t) dt (24)

s.t. ẋ2(t) = f2(x2(t), u2(t)) (25)

dmin ≤ d(t) (26)

v(t) ≤ vmax (27)

amin ≤ a(t) ≤ amax (28)

u2min ≤ u2(t) ≤ u2max (29)

where Q2 = diag(q3, q4, q5) and r2 are the tracking and control effort weights, respectively.
In the special case where a leading vehicle does not exist, the Ego vehicle control speed
objective is taken into account by setting to zero the elements q3 and q4. Finally, it is worthy
to remark that the simultaneous accomplishment of the control objectives ∆v(t)→ 0 and
(v(t)− vre f ) → 0 is in general not always possible. Nonetheless, the NMPC is designed
for dealing with this trade-off and to converge toward the best suitable solution according
to the choices made for the different weights, penalizing the deviations of the actual
measurement from their desired values within the performance index as in (24).

In both the OCP, the control horizon Tc, i.e., the time interval in which control com-
mand can be chosen, is set as less or equal to the prediction horizon T in order to achieve
an acceptable trade-off between control performances and solving time [51]. Note that,
according to common practice in the technical literature, the functional cost weights are
chosen through a trial-and-error procedure. All the weighting factors, along with all the
other NMPC parameters and constraints, are summarized in Table 2.

Remark 1. Note that, the proposed hybrid architecture is designed under the assumption that
perception results are accurate and no adversarial attacks are present on the V2X communication
networks. Indeed, in practice, the performance of the proposed solution heavily relies on: (i) the
accuracy of the perception results, which often suffer from partial perception problems, i.e., potential
dangers obscured by obstacles may be ignored; (ii) the deployment of robust measures to counter
adversarial attacks. However, how to combine these issues into the design of control architecture for
intelligent vehicles, still an open challenge in the field [52], is beyond the scope of this work.

Table 2. Vehicle model and OCP parameters.

Parameter Value

Sampling Time, Ts 0.2 [s]
Prediction Horizon, T 4 [s]

Front axle-C.o.G. distance, l f 1.2 [m]
Rear axle-C.o.G. distance, lr 1.6 [m]
Power-train time constant, τ 5 [s]
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Table 2. Cont.

Parameter Value

Lane width, Lw 3.6 [m]
Minimum reference distance, d0 3 [m]
Tracking weights, q1 q2 q3 q4 q5 50, 50, 30, 30, 20

Effort weights, r1 r2 10, 1
Headway time increments, ∆TH 0.1 [s]

Lateral error constraints, eymin eymax −5.4, 5.4 [m]
Angular error constraints, eψmin eψmax −0.35, 0.35 [rad]

Steering constraints, δmin δmax −0.35, 0.35 [rad]
Steering rate constraints, u1min u1max −0.035, 0.035 [rad/s]

Distance constraint, dmin 2 [m]
Velocity constraint, vmax 35 [m/s]

Acceleration constraints, amin amax −5, 2.4 [m/s2]
Acceleration command constraints, u2min u2max −5, 2.4 [m/s2]

4. Scenario Description and DQN Training Phase

For the training of the DRL agent at the decision-making layer, we exploit a proper
co-simulation platform which integrates in a unified framework MATLAB/Simulink and
SUMO platforms. According to Figure 2, MATLAB/Simulink is responsible for the main
training loop and the control of the Ego vehicle motion, while SUMO emulates the highway
driving environment, manages the setting up of the road structure, and is responsible for
the control of the other vehicles movements within a traffic flow.

As a road scenario, we consider a straight, endless, three-lane highway with three
traffic flows, each of them differ in terms of desired velocity and assertiveness. The
vehicular traffic flows are randomly generated by SUMO at each sample time with a at
regrandom starting speed, random position, and starting lane. Each surrounding vehicle
in the traffic scenarios is driven by the Intelligent Driver Model (IDM), which regulates
the longitudinal movements, and by the Minimizing Overall Braking Induced by Lane
Changes (MOBIL) for the lane change initiations. Additionally, the traffic vehicles can
choose randomly to perform lane changes, both on the left and right side. For them, the
system parameters, such as the maximum velocity, are randomly chosen. This is to ensure
a diverse traffic scenario in the training and evaluation phase [19].

The training of the DDQN agent is summarized in Algorithms 1 and 2 as pseudo-code.
At each simulation step, an action is chosen and translated into references for the NMPCs.
The input signals resulting from the optimization problem solutions are then fed to the
vehicle dynamics to obtain a new vehicle position to be evaluated in the highway network.
The new state observations and the reward are obtained from SUMO. This procedure is
repeated iteratively at each time step. The DRL agent has been trained for Nepisode = 60,000
and each episode is terminated after Nsteps = 500, or earlier if a collision occurs. At each
sample time, the exploration constant ε is decreased as an exponential function as:

εt+1 = (1− εdecay)εt (30)

where εdecay = 2.3026× 10−6 is the decay rate. Note thats set as the minimum exploration
value is set as εend = 0.1. The DRL agent hyper-parameters, chosen according to the
state-of-art [53], are reported along with all the training parameters in Table 3.

Regarding the optimization procedures, due to its ability to generate highly efficient
Sequence Quadratic Programming (SQP) code, we chose FORCES Pro [54] as a solver. More-
over, it can be exploited in real-time applications and presents a user-friendly MATLAB
interface. Equations (8) and (13) are discretized and integrated with an explicit fourth-order
Runge-Kutta algorithm. The sampling time is set as Ts = 0.2 s, and both the control horizon
and prediction horizon are set to Tc = T = 4.0 s, for a total of twenty integration and
control steps.
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Algorithm 1: DDQN main training loop algorithm.
Initialize the Replay Buffer Mreplay;
Randomly Initialize primary and target network weights θ0 and θ̂0;
for episode = 1→ Nepisode do

s0 ← Reset Environment;
for timestep = 1→ Nsteps do

if random value ≤ ε then
at ← random action

else
at = arg maxa Q(st, a, θ)

st+1, rt ← Step Environment(at);
store tuple (st, at, rt, st+1);
sample mini-batch Mbatch from replay memory;
θi+1 ← SGD on loss L(θi) from (5);
update ε with ε-decay from (30);
each Nupdate copy weights θi to θ̂i.

Algorithm 2: StepEnvironment(at).

if at = a1 then
eyre f = eyre f + Lw

else if at = a3 then
eyre f = eyre f − Lw

else if at = a4 then
TH = Th + ∆Th

else if at = a5 then
TH = Th − ∆Th

u1, u2 ←solve NMPC(x1,x2) in (18);
Integrate vehicle dynamics from (8), (13);
st+1 ← evaluate a SUMO step;
rt ← get reward from (7);

Table 3. Training and DDQN Agent Parameters.

Parameter Value

Number of training episodes, Nepisode 60,000
Number of steps per episode, Nsteps 500

Sampling Time, Ts 0.2
Replay Memory size, Mreplay 500,000

Mini-batch size, Mbatch 32
Discount factor, γ 0.99
Learning rate, η 0.0005

Initial exploration constant, εstart 1
Final exploration constant, εend 0.1

Exploration decay, εdecay 2.3026 × 10−6

Target Network update frequency, Nupdate 20,000
Input neurons, ninput 19

Number of dense layers, ndense 2
Number of neurons for dense layers, nneurons 128

Output neurons, noutput 5
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Training Results

In this study, we report the results of the training phase for the DDQN agent and the
overall decision-making layer. During the training phase, the agent parameters are saved
and stored every 300 episodes, while in the testing phase, each saved agent’s performance
is evaluated on 100 episodes of 500 maximum steps by setting the exploration factor ε to
zero. The total normalized return per episode is collected, and the mean and the variance
are used as performance indexes. Figure 3 shows the result in terms of mean (red line) and
variance (shaded area) for each saved agent. It can be observed how, as the training phase
proceeds, the overall performance of the DRL agent increases. Despite that, due to the high
variability of the road scenarios, high variance can be observed in the resulting normalized
return. Moreover, even though the first agent achieves a non-zero total reward because
it does not perform any lane changes, the NMPC is still capable of keeping its lane and
avoiding frontal collisions. According to the reward definition in (7), we point out that a
maximum reward is achieved only if the speed v(t) is kept at the constant desired value
vdes, without ever changing from the starting lane. Note that, these goals can be achieved
only if the starting lane is always empty, and since this scenario is devoid of interest, it
is therefore excluded from the training and testing phase. The last agent exhibits better
performance, achieving a collision rate of around 4.0%.

Finally, we highlight that the training process is performed via an Intel® CoreTM

i7-11900K 3.2 GHz processor, 64 GB 4.400 MHz DDR5 of RAM, GPU NVIDIA ® GeForce
RTXTM 3080, and a Windows 11 system. The time required for the training phase, with
regards to the hyper-parameters in Table 3, is approximately 20 h. It is worth noting that
the training phase represents the highest computational burden required by the decision-
making layer, which is, however, offline executed. Conversely, the one required to make
the driving decision is very low during the deployment phase, since only the forward
propagation in deep NN is involved [55].

Figure 3. Training results of the DQN agent. Trend of the normalized reward over the evaluated
agent index. The red line is the mean while the shaded blue area is the variance over 100 episodes
per agents.

5. Virtual Testing Simulation

Leveraging the above-mentioned co-simulation platform, the proposed control decision-
making and motion planning control architectures are evaluated in non-trivial highway
scenarios. For illustrative purposes, we first consider the single-lane changing scenario shown
in Figure 4, where the Ego vehicle has to follow the leading one until t = 100 s, when a
lane-changing maneuver to the left free lane is required; afterward, the reference speed
is set as vre f = 33 m/s. When modeling the leading vehicle in SUMO, in order to better
grasp the dynamics of manually driven vehicles, we also consider the parameter called
driver imperfection, which is modeled as additive noise on the acceleration command. In
addition, to better show the advantages of the proposed solution, we also compare its
performance with respect to the one obtained by one of the most popular state-of-the-art
solutions. Specifically, the comparison analysis only involves the motion planning layer
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and not the decision-making one, since the performance achievable via deep learning
methods is strictly correlated to the platform adopted for its design [56]. Accordingly, for
the sake of fairness, we compare the NMPC with regards to the IDM solution (widely used
as a benchmark for testing new control strategies [23]), both running based on the results
provided by the DQN-based decision-making layer.

Figure 4. Visualization of the single lane changing scenario around t = 100 s.

Simulation results, related to Ego vehicle longitudinal dynamics until the time instant
t = 100 s, are disclosed in Figure 5, where the relative distance and the relative speed
of the Ego vehicle w.r.t. the leading one are depicted. Herein it can be observed how
the ego vehicle reaches and maintains the desired spacing policy with regards to the
preceding vehicle dre f = 30.6 m (see Figure 5a), while the relative speed converges towards
zero (see Figure 5b). Comparison results with regards to IDM disclose the improved
performances achieved by the NMPC controllers since, despite the faster convergence
exhibited by these optimal techniques, the time history of the acceleration shows lower
peaks, thus providing the highest driving comfort experience. This is also confirmed by
Figure 6, where the acceleration trends for both NMPC and IDM are reported over the
overall simulation time, i.e., t ∈ [0, 200] s. From this figure, it is possible to appreciate
that, when leveraging the NMPC, lower values of the acceleration peak can be obtained.
It results in a more comfortable driving experience. In fact, while the IDM reaches the
saturation value of amax = 2.4 m/s2, the resulting acceleration computed by the NMPC
case is always below the value of a = 1.2 m/s2. Moreover, it is worthy to point out that
the presence of noise, arising from the implementation of driver model for the leading
vehicle in SUMO, clearly affects the IDM performances, while NMPC shows enhanced
resilience. The vehicle speed v(t) and lateral position ey(t) profiles are, instead, depicted
in Figures 7 and 8, respectively. Specifically, simulation results in Figure 7 confirm that
the ego vehicle keeps the leading speed, namely vlead = 25 m/s, until the time instant
of 100 s when the lane-change maneuver to the left is performed; then, its speed reaches
the desired reference value of vre f = 33 m/s. Once more, the NMPC is able to provide a
more comfortable driving experience with respect to the IDM since the desired set-point is
reached with smoother behavior (see also Figure 6). Moreover, during the lane changing
maneuver, the Ego vehicle’s lateral position ey(t) is equal to zero before the time instant
t = 100 s and, afterwards, it is correctly regulated to eyre f = Lw = 3.6 m (the left lane
center-line) (see Figure 8).

In order to provide more insights on the behaviour and performance achieved by
the NMPC, Figures 9 and 10 show the time history of the lateral and longitudinal control
inputs, u1(t) and u2(t), respectively. Results show that, as expected, the dynamics of these
input variables are always smooth and well-bounded, thus backing up the comfort results
shown in the previous figures, and that the NMPC enables us to tune the right trade-off
between aggressiveness and comfort in a straightforward manner; this also ensures that
the input constraints are never violated. Finally, to evaluate the real-time performance
of the proposed hybrid control architecture, we evaluate its computational load via the



Energies 2023, 16, 3490 14 of 19

Simulink Profiler Tool [2]. By leveraging the same hardware used in the training phase, the
simulation profile reports that the required total computational times are 3.75 s and 19.05 s
for the DQN agent and NMPC controller, respectively, w.r.t. an overall simulation time of
200 s.
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Figure 5. Single lane changing scenario. Performance of the proposed solution until the time instant
t = 100 [s] and comparison analysis w.r.t. IDM solution. Time-history of: (a) relative distance
d(t) between the Ego vehicle and the leading one; (b) relative speed ∆v(t) between the ego and
leading vehicles.
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Figure 6. Single lane changing scenario. Performance of the proposed solution and comparison analysis
w.r.t. IDM solution. Time-history of the ego vehicle acceleration a(t).
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Figure 7. Single lane changing scenario. Performance of the proposed solution and comparison analysis
w.r.t. IDM solution. Time-history of the longitudinal Ego vehicle speed v(t).
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Figure 8. Single lane changing scenario. Performance of the proposed solution and comparison analysis
w.r.t. IDM solution. Time-history of the Ego vehicle lateral position ey(t).
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Figure 9. Single lane changing scenario. Performance of the proposed solution and comparison analysis
w.r.t. IDM solution. Time-history of the ego vehicle lateral input u1(t).
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As a more exhaustive validation scenario, we consider a three-lane highway scenario
characterized by heavy traffic conditions, i.e., a lane count of 1500 vehicles per hour. The
vehicles along the lanes travel at different random constant speeds. However, under
heavy-density traffic conditions, they vary their velocities according to the traffic flow and
perform lane-changing maneuvres both on the right and on the left lane, when necessary.
In this highly uncertain scenario, the proposed hybrid control architecture drives the Ego
vehicle in performing safe lane-changing maneuvers to the right and left according to
the encountered traffic scenario. An exemplary visualization of this appraised scenario
is shown in Figure 11, where the ego vehicle performs a lane change maneuver to the
right in order to gain speed. Detailed results about this complex scenario, reported at
https://youtu.be/Srj7TXdrKhY (accessed on 6 March 2023), confirm the ability of the
proposed hybrid architecture in safely driving the Ego vehicle under highly-varying traffic
conditions, as well as its effectiveness in facing the uncertainties arising from unexpected
and sudden lane changing maneuvers performed by the surrounding vehicles.

Figure 11. Sequence of extracted frames from an exemplary scenario. The ego vehicle (in red) changes
lane to the right so to overtake the front vehicle and gain speed. The time initiation is appropriate to
avoid a collision with rear vehicles.

6. Conclusions

In this paper, a novel hybrid hierarchical decision-making and motion planning
control architecture for Autonomous Vehicles, driving in uncertain and unknown highway
environments has been addressed. The high-level decision-making, designed via the
emerging Deep Reinforcement Learning theory, has allowed the AV to learn how to adapt, in
real-time, its driving behavior according to the current surrounding highway environment
and, hence, how to take the proper longitudinal and lateral autonomous decisions to avoid
collisions and improve travel safety. The decision-making process has been carried out by
exploiting a proper reward function that penalizes hazardous and non-safe maneuvers.
The training of the DDQN agent has been performed by leveraging a high-fidelity co-
simulation platform, and the results have confirmed the correct learning process in this
highly uncertain driving scenario, whose features are difficult to capture via classical model-
based approaches. These optimal driving policies represent the reference behavior for the
motion planning layer, where optimal controllers based on NMPC have been responsible
for the optimized driving behaviors, also enforcing constraints in the state/control of the
ego vehicle. The validation of the designed architecture, carried out by also considering an
high-density traffic flow, has disclosed how the vehicle, thanks to the high decision-level
was able to select, according to the current highway driving situations, the proper safe
maneuver (i.e., lane changing, overtaking of acceleration/braking maneuvers) to engage,
while the low-level determines the optimal control commands to be imposed on the AV
(explicitly considering its dynamic constraints) for ensuring a safe tracking of the selected
driving mode. Summarizing, the virtual simulations in non-trivial highway traffic scenarios
have confirmed the effectiveness of the proposed hybrid architecture and its advantages in

https://youtu.be/Srj7TXdrKhY
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combining model-based and artificial intelligence-based methods. Future work will involve
the extension of the approach to different road geometries and urban environments.
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