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Abstract: The high volatility of commodity prices and various problems that the energy sector has
to deal with in the era of COVID-19 have significantly increased the risk of oil price changes. These
changes are of the main concern of companies for which oil is the main input in the production
process, and therefore oil price determines the production costs. The main goal of this paper is
to discover decision rules for a buyer of American WTI (West Texas Intermediate) crude oil call
options. The presented research uses factors characterizing the option price, such as implied volatility
and option sensitivity factors (delta, gamma, vega, and theta, known as “Greeks”). The performed
analysis covers the years 2008–2022 and options with an exercise period up to three months. The
decision rules are discovered using association analysis and are evaluated in terms of the three
investment efficiency indicators: total payoff, average payoff, and return on investment. The results
show the existence of certain ranges of the analyzed parameters for which the mentioned efficiency
indicators reached particularly high values. The relationships discovered and recorded in the form
of decision rules can be effectively used or adapted by practitioners to support their decisions in oil
price risk management.

Keywords: knowledge discovery; decision rules; crude oil price risk; commodity options; implied
volatility; Greeks; decision making

1. Introduction

Prices of energy resources are highly volatile, mainly due to events that cause dis-
ruptions in the supply chain and affect lead times, delivery times, and production costs.
In addition, many unpredictable situations can disturb the demand for raw materials.
This was clearly visible in 2020 when governments of many countries decided to freeze
retail trade and other economic activities to limit the spread of the COVID-19 pandemic.
In particular, various limitations and the resulting slowdown in production during the
first COVID-19 wave (and the first lockdown) significantly reduced the demand for crude
oil and that which follows reduced its price [1]. The COVID-19 pandemic also caused
the crude oil market to become ineffective, and it was difficult to predict the crude oil
prices [2]. Moreover, the commodity markets, including the crude oil market, are strongly
interconnected with other financial markets [3–6]; therefore, they have a significant impact
on the condition of the whole world economy [7,8]. There is also an observed transmission
of volatility from the oil market to the stock market, which has become more prominent
with the COVID-19 pandemic [9].

One of the instruments that was created to hedge against fluctuations in commodity
prices is derivatives. There are financial instruments that derive their values based on the
underlying assets. Furthermore, derivatives make it to possible to settle future deliveries
at a price determined at the moment of concluding the contract. Thanks to this form of
settlement, each counterparty entering into the contract knows exactly how much it will
pay or what amount it will receive for future supplies of raw material, and is therefore able
to plan future expenses. The very idea of derivatives was born in the 17th century, while
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the first stock exchange derivatives (futures contracts) were introduced to trading in the
mid-19th century on the CBOT (Chicago Board of Trade) exchange. Currently, commodity
derivatives play a very important role in global trading.

One of the main types of exchange-traded derivatives are options. An option is defined
as a “contract between two parties, a buyer (holder, long position) and a seller (writer, short
position), in which the buyer has a right, but not the obligation, to buy or sell a certain
amount of the underlying asset (stock, bond, interest rate, commodity or other assets) at
the denoted strike price within a specific time period” [10]. Sellers willing to accept the risk
of unlimited loss as a result of fluctuations in the price of the underlying asset can write
options, collecting the premium and taking advantage when options expire worthless. The
premium collected by a seller is seen as a liability until the option either is offset (by buying
it back) or expires [11].

Due to the specific structure (asymmetric risk), options offer opportunities for price
risk management, including the risk of changes in energy commodity prices. The effective
use of options in price risk management depends on parameters such as the strike price,
the level of implied volatility, or the expiry date of the option. All of these parameters have
a significant impact on the final result achieved by the buyer or option writer; however,
only some of them (e.g., strike price) are set by those who open their positions in options,
while the others (e.g., the level of implied volatility) are only observable. In this paper,
we use association analysis to discover decision rules to adjust the price risk management
parameters. We decided to use decision rules because they can be easily understood by
business practitioners who do not always have much IT or statistical knowledge. The
research focuses on WTI Crude Oil call options, i.e., call options written on the WTI crude
oil and listed on the NYMEX exchange. The data used in the performed analyses cover
a period of over 14 years (2008–2022) and concern the ATM (At-The-Money) option with
the execution period from 1 to 90 days. The decision rules are discovered based on the
levels of implied volatility, number of days to expiration, and the values of four option
sensitivity coefficients (the Greeks): delta (∆), gamma (Γ), vega (V), and theta (Θ). The
rules are optimized in terms of indicators related to the total return on long positions in call
options and the costs incurred by the option buyer (total option premiums paid), i.e., we
focus solely on the option buyer, for whom the maximum loss on the option market is
limited and known on the day of opening the position. The decision to include only long
positions is due to the fact that the rules are intended to hedge against the rise of oil prices
and not to speculate on the commodity options market.

The approach proposed in this paper fills the research gap regarding the possibility of
using commodity options in hedging against the risk of oil price fluctuations. There are only
a few works that compare the effectiveness of these financial tools. Several articles [12–15]
analyze the use of different types of options to construct buying strategies. However, the
methods described therein do not consider market parameters (such as those used in our
work) to find signals for taking a long position in the options market.

This work extends the research conducted in [16–18] which investigated the possibili-
ties of using artificial neural networks (ANNs) for searching for buy signals for European
WTI crude oil call options. In the approach presented here, we focus on discovering de-
cision rules that are based on parameters, such as implied volatility, number of days to
expiration, and the value of the Greeks, that are strictly linked to option premium. More-
over, we analyze American options that can be exercised at any time of option activity. Data
used in the performed analysis cover the years used in [16–18] plus the years 2020–2022
(characterized by high volatility in the energy commodity markets; these last years had
significant impact on the results obtained by participants of the options market).

The rest of the paper is organized as follows. Section 2 presents an overview of related
works. The data and their properties are presented in Section 3. The proposed methods and
efficiency indicators used in the performed analyses are provided in Section 4. The obtained
results are presented in Section 5. The paper ends with discussion and concluding remarks.
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2. Related Works

The most relevant parameter that affects an option’s price is related to the volatility
of the underlying asset. One particular type of volatility, extensively studied in financial
literature, is the implied volatility, usually estimated from the Black–Scholes model [19,20].
The growing importance of implied volatility has led to the development of various implied
volatility indices for different assets classes. There are a number of studies that investigate
and document the information content of implied volatility indices for forecasting the real-
ized volatility and the returns of the underlying asset [21,22]. Fassas and Siriopoulos [23]
suggest that “implied volatility includes information about future volatility beyond that
contained in past volatility”. Furthermore, they find a significant relationship between
changes in implied volatility and returns on the underlying assets, but at the same time
show that implied volatility for commodities such as crude oil, among others, reacts differ-
ently to changes in the price of the underlying assets than to stocks. In turn, Slim et al. [24]
showed that implied volatility index can be used as an input variable for VaR (value-at-risk)
calculation. Furthermore, a growing number of studies (see, e.g., [25–27]) explore the
transmission of implied volatility from international markets and various asset classes.

In the literature on implied volatility, studies can also be found on the phenomenon of
the “implied volatility smile”, which is an inconsistency with the assumptions of the Black–
Scholes model (all options on the same underlying asset and with the same time to maturity
should have the same implied volatility regardless of the strike price). The existence of this
phenomenon in the real market has consequences when selecting options with different
strike prices. Soini and Lorentzen [28] studied the determinants of WTI oil call option prices,
focusing on the relationship between implied volatility and moneyness. They showed, in
particular, that the curvature of implied volatility as a function of moneyness is positively
and significantly correlated with the basis and hedging pressure of the underlying crude
oil futures contract. In turn, Łamasz and Iwaszczuk [29] studied the impact of implied
volatility on chosen spread option strategies on the WTI crude oil market. They showed that
a change in the strike price significantly affects the level of implied volatility (according to
the implied volatility phenomenon) and, thus, the effectiveness of hedging against volatility
using option strategies.

Option market participants are also interested in the sensitivity of the option premium
to the parameters that shape its value, i.e., the price of underlying asset, implied volatility,
risk-free rate, and time to expiration. The Greeks, so named after the Greek letters, are
basically derivatives of a certain order of the price of an option relative to its selected param-
eters [30]. They are financial measures that have a great impact on portfolio management
and are considered by many investors to be essential for making informed decisions in
options trading.

One of the main applications of the Greeks is to construct a hedging portfolio, consist-
ing of an underlying asset and an option written on that underlying asset in such a way that
a change in price does not change the value of the portfolio. This is achieved by holding
selected Greeks at a fixed level and modifying the number of options in the portfolio hedg-
ing the underlying asset (delta-, delta–gamma-, delta–gamma–vega-hedging). However,
the very idea of such an approach implies that the composition of the portfolio needs to be
adjusted frequently, with the consequence that transaction costs may significantly reduce
the potential gains from using such a form of hedging. Previous research has shown no
significant differences in performance between delta-neutral portfolio construction based
on parametric and nonparametric models, such as, for example, ANNs (cf. [31–36]). More-
over, nonparametric models, which performed better in option price prediction, did not
necessarily produce better results in delta-hedging, mainly due to the high complexity and
time-consuming nature of applying these models.

In this paper, we move away from the described classical application of the Greek
coefficients and try to use their values to discover decision rules to take (or not) positions
in the WTI crude oil options market.
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3. Data

The data used in our research were obtained from QuikStrike—an options analysis
platform available on the CME Group’s website via Bantix Technologies LLC [37]. The data
include ATM American options (with price rounded to USD 0.5/b) written on WTI crude
oil between 26 August 2008 and 15 November 2022 (10,484 observations) with an expiry
period of up to 90 days. The reason for choosing American options was their large volume
and high liquidity. Options with different strike prices and different number of days to
expiration have different levels of option premiums that must be paid by the buyer. The
options available through QuikStrike can be divided (in terms of the execution period) into
the following three categories:

• One-month option—with the execution period from 1 to 30 days;
• Two-months option—with the execution period from 31 to 60 days;
• Three-months option—with the execution period from 61 to 90 days.

The Bantix database also contains information on the level of implied volatility for
options with different expiry dates and different strike prices, and provides Greeks values
for each option. Below, we present background information on the Greeks because it is
important for the discovery of the decision rules in the empirical part of our work [30].

• Delta (∆) measures the change rate of the theoretical option value V with respect to
changes in the underlying asset’s price S:

∆ =
∂V
∂S

. (1)

• Gamma (Γ) measures the change rate of ∆ with respect to changes in S:

Γ =
∂∆
∂S

=
∂2V
∂S2 . (2)

• Vega (V) measures sensitivity of V with respect to the volatility σ:

V =
∂V
∂σ

. (3)

Vega can be an important Greek to monitor for an option trader, especially in volatile
markets. For example, the values of the at-the-money options, which are the subject of
this research, are extremely dependent on changes in volatility.

• Theta (Θ) measures the sensitivity of V to the “time decay” τ:

Θ = −∂V
∂τ

. (4)

It is expressed in value per year. To obtain the amount by which the price of the option
will fall in relation to the price of the underlying asset, the result is usually divided by
the number of days in a year.

4. Methodology

In this section, we describe the proposed tool to support decision making in the crude
oil options market. In order to hedge against the risk of oil price fluctuations, we took long
positions in call options. The proposed tool uses association analysis which was carried out
in relation to the three categories of options defined in Section 3. The rules were evaluated
using the effectiveness indicators defined in Section 4.2. The pseudocode of the algorithm
used to discover decision rules is presented in Section 4.3.

4.1. Association Analysis

The process of discovering valuable knowledge from a set of data is known as knowl-
edge discovery in databases (KDD). This widely used data mining technique involves
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various steps such as data preparation, selection, cleansing, and interpretation of results.
In addition to this, prior knowledge on datasets is also taken into account. KDD has a
broad range of applications including marketing, fraud detection, telecommunication,
and manufacturing. Extracting decision rules is one of the primary research focuses in
knowledge discovery and data mining.

Association analysis, which is one of the KDD tools and has its origins in market
basket analysis, identifies interesting relationships between items within (often extremely)
large datasets in various types of databases and provides valuable information in assessing
significant associative and correlative behaviors for new data. Association analysis algo-
rithms have an advantage over conventional decision tree algorithms because they can
identify connections between all attributes.

We use association analysis to discover the knowledge from the collected data on
American WTI crude oil call options. This knowledge will be written in the form of decision
rules, i.e., as implications of the form X ⇒ Y. The left-hand side (LHS) of the implication
is called antecedent and the right-hand side (RHS) is called consequent. The statement
X ⇒ Y is often written as IF X THEN Y. Decision rules have been successfully applied,
e.g., in economy [38], medicine [39], and logistics [40]. We believe that decision rules can
be helpful in hedging against price fluctuations in the crude oil market. Since the stated
problem (when to take the long position) determines the consequent (“buy option”) of the
decision rules, we focus on discovering the antecedents of the rules. In addition to the
Greeks, we use the days to expiration (DTE) parameter which corresponds to the position
of the hedge. The time horizon was “naturally” divided into monthly intervals since we
analyze one-, two-, and three-month options (we also analyze the whole dataset, DTE 6 90,
for comparison purposes). Similarly, the range of each sensitivity parameter was divided
into smaller intervals. The set of rules was determined for each interval of the parameters.

4.2. Indicators

The proposed construction of decision rules and the problem under consideration
(when to take the long position in WTI crude oil call option) makes it impossible to evaluate
the detected rules using standard indicators (e.g., the confidence level). This is due to the
fact that the observations differ in terms of, e.g., payoff value. In addition to information on
whether it is beneficial to buy collateral on a given day, it is also worth taking into account
the payoff value, which may be used as the weight of a given observation. Therefore, the
discovered rules were evaluated in terms of the following three indicators:

• Summary value of payoffs:
P = ∑

c∈C
Pc, (5)

where C is the set of all positions, Pc = max{F − K, 0} − opc is the payoff of the
position c, F is the future price of a good (here, crude oil) on the day of the option’s
expiration, K is the strike price of the option, and opc is the option premium (for the
strike price K) of the position c.

• Average payoff per one position:

AvgP =
1
|C| ∑

c∈C
Pc. (6)

• Return of investment:

ROI = ∑c∈C Pc

∑c∈C opc
× 100%, (7)

which is interpreted as costs resulting from an investment of some resources at a point
in time.
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4.3. Rules Discovery

To determine the decision rules, we use an algorithm consisting of searching all
intervals of a given parameter that meet the given constraints. This strategy was adopted
in order not to lose detailed observations during discretization (of continuous variables)
used in such cases. The constraints that were imposed on the ranges of values for a given
parameter are as follows:

• The number of observations (N) in a given interval must be not fewer than 10
(N > Nmin = 10)—this corresponds to the minimum level of support for the rule and
was adopted at the level for which one can talk about the repeatability of the situation
requiring the hedge.

• The maximum number of observations (Nmax) in the given interval was limited to 500
to obtain the result in a reasonable amount of computational time.

The pseudocode of the algorithm used to generate the rules is presented in Algorithm 1.
For the purposes of the algorithm, we adopt the following notation:

I = {P, AvgP, ROI};
P = {implied volatility, ∆, Γ,V , θ};
DTE = {1month, 2months, 3months, from 1 to 3months};
R—set of decision rules;
N—number of observations, N ∈ [Nmin, Nmax].

Algorithm 1 Pseudocode of rules generation algorithm.

Input: dte ∈ DTE, p ∈ P, i ∈ I
Output: Set of decision rules R

S← ∅
Vdte

p ← {values of parameter p for execution period dte}
Sort Vdte

p in non-decreasing order
Create all s← {vα, vα+1 . . . , vβ−1, vβ ∈ Vdte

p : Nmin − 1 6 β− α 6 Nmax}, S← S ∪ s
Evaluate all s with respect to the indicator i: es ← i(s)
S← S\{s : es < 0}
Sort S in non-increasing order of es
for k← 2 to |S| do

if sk ⊂ s1 or sk ⊂ s2. . . or sk ⊂ sk−1 then
S← S\sk

end if
end for
For each s ∈ S create rule r and R← R ∪ r

The presented algorithm has three parameters: the analyzed market parameter, the
option execution period, and the efficiency indicator. First, the values of the considered
market parameter are sorted in nondecreasing order. Then, the parameter intervals are
created so as to meet the condition of minimal number of cases. Each interval is then
evaluated in terms of the efficiency indicator i. Next, the intervals with the indicator value
lower than zero and the redundant (i.e., with lower value of the indicator and included in
another interval) intervals are removed from S. The last step of the algorithm is to create
the decision rules of the form dte ∧ s⇒ buy option for each s ∈ S.

The next section presents discovered decision rules grouped against the indicator
they were supposed to optimize, and each group contains three best-rated rules. Detailed
information on the value of each of the listed indicators for each of the presented rules is
provided in Appendix A.

5. Results

In this section, we present the best-rated decision rules for each considered indicator
(P, AvgP, ROI); they are sorted in nonincreasing order of the indicator value, i.e., the first
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rule gives the highest indicator value and the last rule gives the smallest indicator value.
The first set of rules (R1–R5) maximizes the P indicator:

R1: IF DTE ∈ [61, 90] AND V ∈ [3.7138, 8.3791] THEN Buy option.
R2: IF DTE ∈ [1, 90] AND Implied Volatility ∈ [0.5199, 0.6301] THEN Buy option.
R3: IF DTE ∈ [61, 90] AND Θ ∈ [−0.0372,−0.0319] THEN Buy option.
R4: IF DTE ∈ [61, 90] AND ∆ ∈ [0.5446, 0.5621] THEN Buy option.
R5: IF DTE ∈ [61, 90] AND Γ ∈ [0.0367, 0.0436] THEN Buy option.

As can be seen, for four out of five analyzed parameters, the highest value of the P
indicator was obtained for the longest analyzed position (options exercise period) (DTE
ranging from 61 to 90 days). Only for implied volatility (rule R2) was the highest P value
obtained for the DTE covering the widest time window, i.e., from 1 to 90 days. Figure 1
presents the values of all analyzed indicators achieved by using the rules R1–R5.

R1 R2 R3 R4 R5
0

200

400

600

800

1000

1200

0

0.5

1

1.5

2

2.5
P

AvgP
ROI

Figure 1. Values of P (left axis) and AvgP and ROI (right axis) indicators obtained using 5 best-rated
rules determined to maximize P indicator.

It is clearly visible that the rules R1 and R2 stand out significantly from the remaining
rules (R3–R5) in terms of the P indicator value. The rule R1 gives a value two times higher
than the rule R5. Moreover, the rule R4 gives the highest AvgP indicator value, and there
can be observed a strong positive correlation between P (whose value was maximized) and
AvgP and ROI.

The next set of rules (R6–R10) was determined to maximize the AvgP indicator:

R6: IF DTE ∈ [61, 90] AND V ∈ [3.7138, 4.4474] THEN Buy option.
R7: IF DTE ∈ [1, 90] AND ∆ ∈ [0.6121, 0.6592] THEN Buy option.
R8: IF DTE ∈ [61, 90] AND Implied Volatility ∈ [0.9679, 1.2842] THEN Buy option.
R9: IF DTE ∈ [61, 90] AND Γ ∈ [0.0245, 0.0247] THEN Buy option.
R10: IF DTE ∈ [61, 90] AND Θ ∈ [−0.029,−0.0289] THEN Buy option.

Similarly to the case of the rules for the P indicator, for four out of five rules (R6,
R8–R10), the highest value of the AvgP indicator was obtained for the longest analyzed
position (options exercise period) (DTE ranging from 61 to 90 days). Only the R7 rule (cf.
rule R2 for P indicator) covers options with DTE ranging from 1 to 90 days. Moreover, it is
worth noting that for the AvgP indicator, the rule covering the widest time window (R7)
depends on ∆ (it does not involve the implied volatility). Figure 2 depicts the values of the
analyzed parameters achieved using the rules R6–R10.



Energies 2023, 16, 3486 8 of 14

R1 R2 R3 R4 R5
0

50

100

150

0

5

10

15
P

AvgP
ROI

Figure 2. Values of P (left axis) and AvgP and ROI (right axis) indicators obtained using 5 best-rated
rules determined to maximize AvgP indicator.

The last set of rules (R11–R15) is used to optimize the ROI indicator:

R11: IF DTE∈ [31, 60] AND V ∈ [2.4251, 3.131] THEN Buy option.
R12: IF DTE∈ [1, 30] AND Γ ∈ [0.306, 0.3211] THEN Buy option.
R13: IF DTE∈ [1, 90] AND ∆ ∈ [0.6121, 0.6392] THEN Buy option.
R14: IF DTE∈ [1, 30] AND Θ ∈ [−0.4815,−0.4531] THEN Buy option.
R15: IF DTE∈ [1, 90] AND Implied Volatility∈ [1.792, 3.7777] THEN Buy option.

Also in this case, the highest value of the considered indicator (ROI) was obtained
using the rule involving the V parameter (R11). However, contrary to P and AvgP, the
R11 rule referred to two-month options. Only in this case did the set of rules cover the
rules with the shortest DTE (one-month options). In addition, ROI is the only indicator for
which none of the rules covered the maximum considered position (three months). Figure 3
illustrates the values of the analyzed parameters achieved using the rules R11–R15.

R1 R2 R3 R4 R5
0

50

100

150

0

5

10

15
P

AvgP
ROI

Figure 3. Values of P (left axis) and AvgP and ROI (right axis) indicators obtained using 5 best-rated
rules determined to maximize ROI indicator.

Figure 3 shows that the correlation of ROI with the remaining indicator is disturbed.
However, it is worth noting that the values of P and AvgP are strongly positively correlated.
The rules for ROI can be divided into two groups:

I—with the rules R11, R13 and R15;
II — with the rules R12 and R14.

The rules from the first group give relatively high values of P and AvgP, for which
values decrease along with the decrease of the ROI. In the case of the rules from the second
group, a very clear decrease in P and AvgP indicators can be observed, with a relatively high
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value of ROI. Based on this, it can be concluded that rules from the first and second group
represent different buying strategies for achieving high level of return from investment. The
first strategy assumes the purchase of even expensive options (in terms of option premium
value), which, however, will generate potentially high profits. The second strategy is to
buy relatively cheap options that generate small returns, but which are relatively high in
relation to the investments made. Only for the rules of the second strategy were one-month
options selected.

6. Discussion and Conclusions

The problem of high volatility of oil price is extremely important in times of uncertainty
resulting, among others, from the COVID-19 pandemic or the war in Ukraine. In this paper,
we analyzed the possibility of using decision rules to support price risk management using
the example of WTI crude oil. We proposed an original basket-analysis-based method
for discovering the decision rules. The proposed approach is distinguished by the fact
that it does not discretize the domains of the parameter values and it does not omit any
important information during the rules discovering process (which can happen when using
discretization). The goal of the rules discovering process was to determine the predecessors
of the rules where the decision (antecedent) was to “buy option”. The predecessors of the
rules were determined using the following parameters: the Greeks (delta, gamma, vega,
and theta), implied volatility, and duration of the option (number of days to expiration).
The conducted analysis shows that the abovementioned parameters enable us to determine
the decision rules that can successfully support WTI crude oil price risk management. We
analyzed 15 best-rated decision rules, five rules for each of the three investment efficiency
indicators: payoff, average payoff, and return of investment. It turned out that the vega (V)
parameter is the best to use to construct the predecessors of the decision rules as it enabled
us to obtain the highest values of all the indicators. Moreover, for most of the rules, there
was a correlation between the values of the analyzed indicators. In addition, the results for
the ROI indicator enabled us to observe two decision strategies to obtain high value of this
indicator. The first decision strategy is to buy expensive options that generate high profits.
The second decision strategy focuses on less profitable options which, however, are not that
expensive. The main limitation of the proposed method is its high time-complexity. The
computational time of the method grows exponentially with the number of observations
and the number of explanatory factors.

To summarize, we showed that it is advisable to use data mining methods for the
problem of decision support in price risk management. In our future works we plan to
conduct further research on the effectiveness of applying business rules to support buying
decisions, both in the case of oil and other energy resources.
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Appendix A

In this section, we provide the whole set of rules determined to maximize the P, AvgP,
and ROI indicators. The rules (see Tables A1–A3) were selected from among the large
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number of rules according to the following rule: if the ranges of the indicator (included
in the premises of the rule) overlapped, the rule with the higher value of the indicator
was selected.

Table A1. Values of P (left axis) and AvgP and ROI (right axis) indicators obtained using 3 best-rated
rules determined to maximize P indicator.

DTE Parameter Parameter Value P AvgP ROI

[1; 30] Implied Volatility [0.4737; 0.6831] 259.63 0.58 0.23
[1; 30] Implied Volatility [0.3778; 0.441] 134.75 0.29 0.15
[1; 30] Implied Volatility [1.0655; 6.6148] 101.10 1.68 0.63
[31; 60] Implied Volatility [0.4688; 0.694] 526.28 1.21 0.25
[31; 60] Implied Volatility [0.3342; 0.376] 314.19 0.74 0.23
[31; 60] Implied Volatility [0.9674; 2.1715] 113.98 2.85 0.66
[61; 90] Implied Volatility [0.5197; 0.6967] 530.74 2.67 0.42
[61; 90] Implied Volatility [0.3361; 0.381] 493.86 1.02 0.24
[61; 90] Implied Volatility [0.2159; 0.2391] 246.28 1.60 0.48
[1; 90] Implied Volatility [0.5199; 0.6301] 930.30 1.86 0.44
[1; 90] Implied Volatility [0.3452; 0.3609] 483.51 0.97 0.30
[1; 90] Implied Volatility [1.0008; 6.6148] 299.63 2.46 0.71
[1; 30] ∆ [0.5346; 0.7569] 183.03 0.45 0.23
[1; 30] ∆ [0.5281; 0.5317] 182.24 0.73 0.32
[1; 30] ∆ [0.5124; 0.5146] 91.24 0.58 0.28
[31; 60] ∆ [0.5366; 0.5494] 366.47 1.07 0.26
[31; 60] ∆ [0.5281; 0.5302] 160.51 0.74 0.20
[31; 60] ∆ [0.5747; 0.6592] 102.62 3.95 0.87
[61; 90] ∆ [0.5446; 0.5621] 491.29 1.53 0.27
[61; 90] ∆ [0.5357; 0.5416] 206.84 0.43 0.09
[61; 90] ∆ [0.5779; 0.6199] 165.74 7.21 1.38
[1; 90] ∆ [0.5446; 0.5566] 379.14 0.77 0.16
[1; 90] ∆ [0.5746; 0.7569] 323.14 3.99 0.95
[1; 90] ∆ [0.5379; 0.541] 320.02 0.70 0.16
[1; 30] Γ [0.0648; 0.0791] 245.65 0.53 0.24
[1; 30] Γ [0.1399; 0.2093] 122.32 0.25 0.26
[1; 30] Γ [0.0459; 0.0597] 105.66 0.28 0.09
[31; 60] Γ [0.0401; 0.0457] 331.53 0.85 0.23
[31; 60] Γ [0.0472; 0.0554] 215.83 0.49 0.16
[31; 60] Γ [0.0638; 0.0663] 81.07 0.51 0.21
[61; 90] Γ [0.0367; 0.0436] 454.57 0.95 0.24
[61; 90] Γ [0.0296; 0.0338] 375.81 0.87 0.18
[61; 90] Γ [0.0461; 0.0489] 251.05 0.82 0.25
[1; 90] Γ [0.0306; 0.0328] 286.87 0.78 0.16
[1; 90] Γ [0.0464; 0.0489] 284.90 0.59 0.18
[1; 90] Γ [0.0405; 0.0436] 282.72 0.57 0.15
[1; 30] V [0.4139; 2.6585] 265.62 0.55 0.54
[1; 30] V [3.1792; 4.1731] 191.66 0.39 0.25
[1; 30] V [4.2237; 5.1401] 160.95 0.32 0.19
[31; 60] V [2.4251; 6.3798] 524.69 1.08 0.40
[31; 60] V [7.0044; 7.9097] 354.92 0.91 0.33
[31; 60] V [9.7401; 11.1899] 193.74 0.49 0.14
[61; 90] V [3.7138; 8.3791] 966.07 1.95 0.56
[61; 90] V [9.5558; 10.2287] 256.58 1.06 0.31
[61; 90] V [13.4029; 15.3858] 200.18 0.49 0.09
[1; 90] V [4.6466; 5.3279] 462.91 0.93 0.44
[1; 90] V [6.4968; 6.886] 374.27 0.92 0.36
[1; 90] V [2.4251; 3.502] 361.77 0.76 0.53
[1; 30] Θ [−0.051; −0.0418] 306.04 0.62 0.33
[1; 30] Θ [−0.0657; −0.055] 114.37 0.24 0.12
[1; 30] Θ [−0.0952; −0.0877] 64.67 0.50 0.22
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Table A1. Cont.

DTE Parameter Parameter Value P AvgP ROI

[31; 60] Θ [−0.0372; −0.0319] 465.24 0.97 0.31
[31; 60] Θ [−0.0445; −0.038] 259.58 0.55 0.15
[31; 60] Θ [−0.0199; −0.0172] 98.37 0.87 0.45
[61; 90] Θ [−0.0306; −0.0255] 612.49 1.23 0.29
[61; 90] Θ [−0.0442; −0.0405] 284.86 1.94 0.31
[61; 90] Θ [−0.016; −0.0117] 182.78 1.65 0.68
[1; 90] Θ [−0.0442; −0.0411] 395.96 0.83 0.22
[1; 90] Θ [−0.0272; −0.0252] 394.09 0.84 0.28
[1; 90] Θ [−0.0306; −0.0289] 222.74 0.48 0.15

Table A2. Wartości wskaźników P, AvgP i ROI dla najlepszych reguł uzyskanych ze względu na
maksymalizację wskaźnika AvgP.

DTE Parameter Parameter Value P AvgP ROI

[1; 30] Implied Volatility [1.792; 6.6148] 79.88 7.26 1.76
[1; 30] Implied Volatility [0.4393; 0.441] 34.62 3.46 1.68
[1; 30] Implied Volatility [0.3869; 0.3878] 34.84 2.90 1.31
[31; 60] Implied Volatility [1.2468; 2.1715] 74.58 6.78 1.37
[31; 60] Implied Volatility [0.5735; 0.5792] 64.32 6.43 1.48
[31; 60] Implied Volatility [0.5905; 0.5986] 64.10 6.41 1.69
[61; 90] Implied Volatility [0.9679; 1.2842] 118.71 9.89 1.92
[61; 90] Implied Volatility [0.6207; 0.6355] 73.58 7.36 0.95
[61; 90] Implied Volatility [0.602; 0.6129] 86.68 7.22 1.04
[1; 90] Implied Volatility [1.792; 3.7777] 80.08 8.01 2.10
[1; 90] Implied Volatility [1.2097; 1.2491] 71.70 7.17 1.89
[1; 90] Implied Volatility [0.5641; 0.5657] 61.98 6.20 1.96
[1; 30] ∆ [0.5944; 0.7569] 61.10 5.55 1.79
[1; 30] ∆ [0.5292; 0.5293] 41.93 4.19 2.07
[1; 30] ∆ [0.5438; 0.5447] 27.07 2.71 1.43
[31; 60] ∆ [0.5889; 0.6592] 91.43 8.31 1.71
[31; 60] ∆ [0.5423; 0.5427] 58.99 5.90 1.43
[31; 60] ∆ [0.53; 0.5302] 55.69 5.57 1.31
[61; 90] ∆ [0.5876; 0.6133] 101.91 10.19 2.06
[61; 90] ∆ [0.5519; 0.5526] 92.04 8.37 1.62
[61; 90] ∆ [0.5409; 0.541] 91.47 8.32 1.43
[1; 90] ∆ [0.6121; 0.6592] 125.99 11.45 2.64
[1; 90] ∆ [0.5873; 0.5937] 81.75 8.18 2.08
[1; 90] ∆ [0.541; 0.541] 73.33 7.33 1.54
[1; 30] Γ [0.0716; 0.0718] 37.73 3.77 1.71
[1; 30] Γ [0.0693; 0.0696] 40.09 3.34 1.45
[1; 30] Γ [0.0481; 0.0483] 33.29 3.33 1.01
[31; 60] Γ [0.0324; 0.0326] 48.90 4.89 1.02
[31; 60] Γ [0.0441; 0.0441] 47.33 4.73 1.31
[31; 60] Γ [0.0305; 0.0308] 44.33 4.43 0.86
[61; 90] Γ [0.0245; 0.0247] 93.56 9.36 1.47
[61; 90] Γ [0.0321; 0.0322] 88.68 8.87 1.81
[61; 90] Γ [0.0312; 0.0313] 81.89 8.19 1.64
[1; 90] Γ [0.0321; 0.0321] 78.67 7.87 1.60
[1; 90] Γ [0.0313; 0.0313] 68.54 6.85 1.36
[1; 90] Γ [0.0381; 0.0382] 59.86 5.99 1.46
[1; 30] V [13.4901; 13.5011] 83.82 8.38 1.86
[1; 30] V [13.4079; 13.422] 57.54 5.75 1.31
[1; 30] V [13.742; 13.7611] 56.37 5.64 1.21
[31; 60] V [9.7062; 9.7704] 45.13 3.22 1.14
[31; 60] V [0.4139; 0.7881] 28.12 2.81 2.11
[31; 60] V [7.2653; 7.3058] 30.38 2.76 1.08
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Table A2. Cont.

DTE Parameter Parameter Value P AvgP ROI

[61; 90] V [2.4251; 3.131] 126.09 12.61 3.08
[61; 90] V [7.462; 7.4785] 52.79 5.28 1.83
[61; 90] V [7.8068; 7.8368] 51.14 5.11 1.80
[1; 90] V [3.7138; 4.4474] 129.46 12.95 3.02
[1; 90] V [13.4806; 13.5011] 96.75 9.68 2.00
[1; 90] V [4.4858; 4.8867] 92.79 7.73 1.94
[1; 30] Θ [−0.0481; −0.048] 30.42 3.04 1.67
[1; 30] Θ [−0.0458; −0.0455] 29.15 2.92 1.62
[1; 30] Θ [−0.0464; −0.0462] 28.51 2.85 1.39
[31; 60] Θ [−0.0367; −0.0366] 52.77 5.28 1.56
[31; 60] Θ [−0.0556; −0.0553] 47.19 4.72 1.00
[31; 60] Θ [−0.0462; −0.046] 45.44 4.54 1.21
[61; 90] Θ [−0.029; −0.0289] 70.17 7.02 1.59
[61; 90] Θ [−0.0367; −0.0367] 69.16 6.92 1.23
[61; 90] Θ [−0.0423; −0.0419] 70.67 6.42 1.00
[1; 90] Θ [−0.0367; −0.0367] 85.98 6.61 1.44
[1; 90] Θ [−0.0338; −0.0337] 68.70 6.25 1.25
[1; 90] Θ [−0.039; −0.039] 60.89 6.09 1.64

Table A3. Wartości wskaźników P, AvgP i ROI dla najlepszych reguł uzyskanych ze względu na
maksymalizację wskaźnika ROI.

DTE Parameter Parameter Value P AvgP ROI

[1; 30] Implied Volatility [1.783; 3.7777] 71.9 7.19 2.08
[1; 30] Implied Volatility [0.4393; 0.441] 34.62 3.46 1.68
[1; 30] Implied Volatility [0.3593; 0.3602] 22.16 2.22 1.34
[31; 60] Implied Volatility [0.5861; 0.5986] 76.79 6.4 1.73
[31; 60] Implied Volatility [0.2678; 0.2688] 55.94 4.3 1.54
[31; 60] Implied Volatility [0.5735; 0.5792] 69.56 6.32 1.5
[61; 90] Implied Volatility [0.9679; 1.2281] 98.6 9.86 1.96
[61; 90] Implied Volatility [0.2222; 0.2258] 64.96 5.41 1.82
[61; 90] Implied Volatility [0.3532; 0.3544] 63.93 6.39 1.59
[1; 90] Implied Volatility [1.792; 3.7777] 80.08 8.01 2.1
[1; 90] Implied Volatility [0.5641; 0.5657] 61.98 6.2 1.96
[1; 90] Implied Volatility [0.4872; 0.488] 59.77 5.98 1.95
[1; 30] ∆ [0.5292; 0.5293] 41.93 4.19 2.07
[1; 30] ∆ [0.5927; 0.6392] 60.34 5.03 1.94
[1; 30] ∆ [0.4588; 0.4615] 10.05 1.01 1.76
[31; 60] ∆ [0.5138; 0.514] 50.46 5.05 1.77
[31; 60] ∆ [0.5889; 0.6592] 91.43 8.31 1.71
[31; 60] ∆ [0.5423; 0.5427] 58.99 5.9 1.43
[61; 90] ∆ [0.5853; 0.6059] 99.37 9.94 2.07
[61; 90] ∆ [0.5519; 0.5526] 92.04 8.37 1.62
[61; 90] ∆ [0.5379; 0.538] 61.32 6.13 1.61
[1; 90] ∆ [0.6121; 0.6392] 112.49 11.25 2.71
[1; 90] ∆ [0.5889; 0.5972] 80.91 8.09 2.31
[1; 90] ∆ [0.4588; 0.4615] 10.05 1.01 1.76
[1; 30] Γ [0.306; 0.3211] 16.36 1.49 3.04
[1; 30] Γ [0.0716; 0.0718] 37.73 3.77 1.71
[1; 30] Γ [0.2246; 0.2285] 11.5 1.15 1.65
[31; 60] Γ [0.0576; 0.0577] 40.73 4.07 1.47
[31; 60] Γ [0.0805; 0.0809] 25.81 2.58 1.34
[31; 60] Γ [0.0441; 0.0441] 47.33 4.73 1.31
[61; 90] Γ [0.0321; 0.0322] 88.68 8.87 1.81
[61; 90] Γ [0.0673; 0.0677] 39.11 3.91 1.66
[61; 90] Γ [0.0312; 0.0313] 81.89 8.19 1.64
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Table A3. Cont.

DTE Parameter Parameter Value P AvgP ROI

[1; 90] Γ [0.306; 0.3211] 16.36 1.49 3.04
[1; 90] Γ [0.0717; 0.0718] 37.19 3.72 1.67
[1; 90] Γ [0.0658; 0.0659] 40.11 4.01 1.67
[1; 30] V [0.4139; 0.7881] 28.12 2.81 2.11
[1; 30] V [1.315; 1.3583] 16.45 1.65 2.11
[1; 30] V [0.9284; 1.0249] 29.46 1.84 1.94
[31; 60] V [2.4251; 3.131] 126.09 12.61 3.08
[31; 60] V [7.462; 7.4785] 52.79 5.28 1.83
[31; 60] V [7.8068; 7.8368] 51.14 5.11 1.8
[61; 90] V [3.9195; 4.5307] 121.77 12.18 3.04
[61; 90] V [13.4806; 13.5011] 96.75 9.68 2
[61; 90] V [6.7133; 6.7597] 64.98 6.5 1.99
[1; 90] V [0.4139; 0.7881] 28.12 2.81 2.11
[1; 90] V [1.315; 1.3583] 16.45 1.65 2.11
[1; 90] V [3.1866; 3.2061] 32.51 3.25 2.06
[1; 30] Θ [−0.4815; −0.4531] 11.69 1.17 2.44
[1; 30] Θ [−0.0241; −0.0182] 29.25 2.66 2.3
[1; 30] Θ [−0.0481; −0.048] 30.42 3.04 1.67
[31; 60] Θ [−0.0323; −0.0322] 41.94 4.19 1.58
[31; 60] Θ [−0.0367; −0.0366] 52.77 5.28 1.56
[31; 60] Θ [−0.0185; −0.0182] 24.62 2.46 1.38
[61; 90] Θ [−0.0151; −0.0149] 53.61 4.87 2.01
[61; 90] Θ [−0.029; −0.0289] 70.17 7.02 1.59
[61; 90] Θ [−0.0148; −0.0146] 38.44 3.84 1.54
[1; 90] Θ [−0.4815; −0.4531] 11.69 1.17 2.44
[1; 90] Θ [−0.0151; −0.0149] 53.61 4.87 2.01
[1; 90] Θ [−0.039; −0.039] 60.89 6.09 1.64
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