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Abstract: The geometrical configuration is one of the main factors that affect the thermoelectric
performance of a device. Research on the trapezoidal thermoelectric generator (TTEG) with varied
cross section is mainly based on finite element simulation and experiment. In this paper, an explicit
analytical solution of the maximum output power of annular thermoelectric generators (ATEG)
is proposed, which has been proved to have high accuracy. Then, the maximum output power
between ATEG and TTEG is compared. Results show that, for the appropriate geometric parameter δ,
the relative error of maximum output power between explicit analytical ATEG and the simulated
solution of TTEG can reach the order of 10−3. When the hot end is at the a side, the high temperature
and θ is 510 K and 10◦, respectively. For Bi2Te3 material and PbTe material, the relative error of
maximum output power between the explicit analytical and simulated solution is 0.0261% and
0.074%, respectively. Under suitable working conditions, the explicit analytical results of ATEG can
provide some reference for the performance optimization of TTEG.

Keywords: trapezoidal thermoelectric generator; annular thermoelectric generator; varied cross
section; explicit analytical solution; output power

1. Introduction

In the early nineteenth century, scientists discovered the thermoelectric effect, which
enables the direct conversion of heat and electricity. With the increasing demand for appli-
cations, such as industrial waste energy and recovery (genetic algorithm optimization [1],
experimental investigation [2], comparative study [3]), automobile exhaust recovery and
treatment (numerical analysis [4], economic optimization [5], experimental investigation [6]),
self-supplied energy in space stations (aircraft power system [7], radioisotope power sys-
tem [8]), self-generation of flexible wearable devices [9], solar photovoltaic system [10],
and other aspects of architecture engineering (integrated energy systems [11], multi-energy
building microgrid [12]), on the basis of the thermoelectric effect, thermoelectric generators
(TEGs) that realize heat and electric energy conversion with a certain temperature difference
structure have received wide attention from researchers. TEGs can not only achieve direct
conversion of energy, but also have the advantages of environmental protection, no pollu-
tion, no noise, no moving parts, good stability, and are maintenance free. Based on the above
reasons, the application of TEGs can effectively alleviate today’s energy shortage problems.
An important index to evaluate the performance of a TEG is the dimensionless thermoelec-
tric figure of merit (ZT) of the thermoelectric material (TEM). Many thermoelectric materials
are also being explored for power generation applications, such as GeTe [13,14], PbTe [15],
and silicides [16]. To improve the ZT value of TEM, researchers have proposed different
optimization methods. At the thermoelectric materials’ level, Mahan [17] introduced a
numerical simulation method to investigate the temperature field distribution and the ZT
value in TEGs with functionally graded materials (FGM), and the theoretical calculations
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results showed that, inhomogeneous doping can improve the energy efficiency of TEGs.
Kuznetsov [18] investigated the power generation of high-performance FGMs and seg-
mented materials by using double doping technology, and the results showed that using
FGMs and layered materials can effectively improve the energy conversion of thermoelectric
generators for low-temperature waste heat recovery. Wallace [19] investigated the efficiency
of a sandwiched TEM and found that the efficiency is influenced by the location and gra-
dation profile of the graded interlayer. Jin [20] studied the energy efficiency of TEGs with
exponentially graded thermoelectric material, and obtained the closed-form solution of the
temperature field distribution of functionally graded TEGs; the results showed that the con-
version efficiency may be increased by about 30% by using appropriate property gradients.
Cao proposed a power series method and power series iterative approximation method to
obtain the temperature field distribution of FGM TEGs with temperature-independent and
temperature-dependent materials, and both the power series solution [21] and the power
series iterative approximate solution [22] have been verified to have high accuracy and
stability. On the basis of the research results on flat TEGs, this research group then studied
the temperature field distribution of an annular thermoelectric generator (ATEG) composed
of FGMs (temperature independent [23] and temperature dependent [24]). In addition to
TEMs, from the device level, the geometry and cross-sectional design of thermoelectric legs
are important for the improvement of the thermoelectric performance. By using ANSYS
software, when the varying inlet temperature, velocity and the connective heat transfer
coefficient are considered, Zhang [25] compared annular and flat-plate TEGs (FTEG) for
cylindrical hot source, and found that the ATEG has obvious advantages over the FTEG.
Dizaji [26] proposed a thin-film flexible solar TEG to identify the effects of all parameters
on thermoelectric performance by using a 3D numerical simulation. The simulated results
showed that the intensity of the output power first increases and then decreases with the
increase in the number of legs, and for output power, the impact of leg thickness was more
effective than the impact of leg length. Fateh [27] proposed a finite difference model to study
the interdependencies between optimization parameters such as TE element leg length, fill
fraction, leg area ratio between n- and p- type legs, and load resistance. The results showed
that a smaller number of shorter legs has a higher potential than a greater number of longer
legs to achieve the same power per unit module area. Shi [28] analyzed the nominal power
density of thermoelectric pins with non-constant cross sections and found that pins with
linear variation in the cross section have higher nominal power density than those with
quadratic and exponential cross-sectional legs. Ali [29] analyzed the influence of pin leg ge-
ometry on energy conversion efficiency and output power of the thermoelectric device and
found that increasing the dimensionless geometric parameter improves the efficiency of the
device under the different temperature ratios and external load resistance ratios. To prove
that the geometrical configuration of thermoelectric legs can improve the thermoelectric
performance of the devices, Fabian-Mijangos [30] designed a proof-of-concept experiment
to confirm that the figure of merit of a thermoelectric device with asymmetrical legs is almost
twofold that of a traditional one with a constant square cross section. Niu [31] introduced
asymmetric configuration to the transport junction, and they found that the figure of merit
of optimized asymmetric thermoelectric devices is five times than that of the ZT value of
symmetric configuration. The results demonstrated that the asymmetry of the transport
junction can enhance the thermoelectric efficiency effectively. In summary, to accomplish
the geometric optimization of the device, the geometry of the legs [32], leg length [33], and
number of legs [34] are taken into account. In sum, most researchers use the explicit analyti-
cal method to solve temperature-independent TEGs to address the temperature field and
energy conversion of TEGs with symmetric cross-sectional legs. Moreover, most researchers
use the finite element simulation method when considering the temperature dependence
of materials.

A thermoelectric device composed of trapezoidal thermoelectric legs (legs with non-
constant cross sections) cannot obtain an explicit analytical solution. When the dependence
of the temperature of thermoelectric materials is considered, the thermoelectric coupled
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field is nonlinear. For the analysis of nonlinear coupled fields, the existing research mostly
uses numerical methods to solve the field governing equation, and the analytical solutions
have irreplaceable advantages. Especially for muti-parameter coupling problems, the ex-
plicit analytical solution is convenient to clarify the influence of each parameter on the
field quantity to be solved in the structure. Thus, in this work, we propose an idea that
enables the explicit analytical solution of the ATEG to approximate the solution of the TTEG
under suitable operating conditions, which can provide some guidance for improving the
performance of variable cross-section thermoelectric devices.

2. Basic Thermoelectric Models

The basic model of TEGs with an external resistance (RL) is shown in Figures 1 and 2.
Figures 1 and 2a show a schematic illustration of an annular TEG (ATEG) and trapezoid
TEG (TTEG), respectively. Depending on the shape of the thermoelectric legs of the TEGs,
the two TEGs are composed of p-type and n-type legs that are identical, except that they are
oppositely doped. We focus on the lower leg, which is composed of temperature-dependent
TEM. To simplify the calculation, we assume that the annular thermoelectric model is an
approximate axisymmetric model. In Figure 1, a and b are the inner and outer diameter of
the ring, respectively.
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2.1. Mathematical Models of ATEG

In 2D cylindrical coordinate system, the basic equations are as follows:

J = −∇ϕ

ρ
− S

ρ
∇T (1)

q = STJ− k∇T (2)

∇ · q = J · E (3)

∇ · J = 0 (4)



Energies 2023, 16, 3463 4 of 12

where J, q, and E are the current density vector, heat flux vector, and electric field vector,
respectively. S, k, ρ are the Seebeck coefficient, thermal conductivity, and electrical resistivity,
respectively. ϕ is the electric potential. T is the absolute temperature.

On the basis of Equation (4), it can be rewritten as

d(rJr)

rdr
= 0 (5)

where Jr is the current density along the r direction. Hereafter, subscript r represents the
component of the variable along the r direction.

The solution to Equation (5) is

Jr =
H0

r
(6)

where H0 is the relative current density, which is an uncertain constant, and the unit is
A/m.

With Equations (1) and (2) substituted into Equation (3), the governing equation of the
temperature field is

kr2 d2T
dr2 + r2 dk

dr
dT
dr
− H0r

dS
dr

T + kr
dT
dr

+ ρH0
2 = 0 (7)

The boundary conditions of the temperature field are

T(a) = Ta, T(b) = Tb (8)

when the cold end is located at side a, that is, Ta = TC, Tb = TH. (TC and TH represent the
cold and high temperature, respectively).

When the initial temperature field is given as follows:

T∗ =
TC + TH

2
+

(TH − TC)r
δ

(9)

where

r =
r
a
− 1− b− a

2a
, δ =

b
a
− 1, r ∈

[
− δ

2
,

δ

2

]
(10)

Based on Equations (9) and (10), Equation (7) can be written as

r2 d
dr

(
k

dT
dr

)
+ rk

dT
dr

+

(
ρ∗H0

2 − H0r
dS∗

dr
T∗
)
= 0 (11)

where S*, ρ* are the Seebeck coefficient and electrical resistivity under the initial temperature
field, respectively.

Let

y = r
(

k
dT
dr

)
, g(r) = ρ∗H0

2 − H0r
dS∗

dr
T∗ (12)

Equation (11) can be written as

r
dy
dr

+ g(r) = 0 (13)

By solving Equation (13), we can obtain

y(r) = −
∫ r

r1

g(r)
r

dr + C1 (14)

where C1 is an uncertain constant, which can be determined by boundary conditions.
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When Equations (2) and (6) are combined, the component of heat flux along the r
direction is

qr = −k
dT
dr

+ ST
H0

r
(15)

When side a is the cold side, let

Y= bq(b)− aq(a) (16)

By solving Equation (16), we can obtain the following:

Y = y(a)− y(b) + (STH0|r=b−STH0|r=a)

=
∫ b

a
ρ∗H0

2

r dr−
∫ b

a H0
dS∗
dr T∗dr+(ST|r=b−ST|r=a)H0

(17)

Let
dY

dH0
= 0 (18)

By solving Equation (18), we can obtain Ỹ and H̃0 as follows:

H̃0 =

∫ b
a

dS∗
dr T∗dr + ST|r=a−ST|r=b∫ b

a
2ρ∗

r dr
=
− (Tb−Ta)

b−a

∫ b
a S∗dr∫ b

a
2ρ∗

r dr
(19)

Ỹ ==
∫ b

a

ρ∗H̃0
2

r
dr−

∫ b

a
H̃0

dS∗

dr
T∗dr+(ST|r=b−ST|r=a)H̃0 (20)

The thickness of the module selected in this analysis is the unit thickness; thus, the
maximum output power can be expressed as follows:

Pout max= 4πỸ× 10−3 (21)

When side a is the hot side, we can obtain

H̃0 =

∫ a
b

dS∗
dr T∗dr + ST|r=b−ST|r=a∫ a

b
2ρ∗

r dr
=
− (Tb−Ta)

a−b

∫ a
b S∗dr∫ a

b
2ρ∗

r dr
(22)

Ỹ =
∫ a

b

ρ∗H̃0
2

r
dr−

∫ a

b
H̃0

dS∗

dr
T∗dr+(ST|r=a−ST|r=b)H̃0 (23)

2.2. Numerical Models of TTEG

The numerically analyzed thermoelectric modules in this work have trapezoid legs
composed of Bi2Te3 materials, as shown in Figure 2. To obtain the absorbed heat energy
Qin at the hot end and the output power of the TTEG, the finite element method based on a
COMSOL thermoelectric module is applied to solve the governing equations that describe
temperature and potential distribution and thermoelectric coupling effects, as shown in
Equations (24) and (25). After the calculation of the software, the output power P̃out and
conversion efficiency η are obtained by

∇(k∇T)− T
→
J
[(

∂S
∂T

)
∇T + (∇S)T

]
= −ρ

→
J

2
(24)

∇
(
∇E

ρ
+

S∇T
ρ

)
= 0 (25)

P̃out = I2RL
360

◦

θ
=

S2(TH − TC)
2RL

(RL + R)2
360

◦

θ
, η =

P̃out

Qin
(26)
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where R is the resistance of the thermoelectric generator.

3. Results and Discussion

The explicit analytical solution of the governing equations of the TTEG cannot be
obtained. Thus, we aim to optimize and design the performance of the TTEG based on the
explicit analytical solution of the ATEG.

Let
b = a(1 + δ), L1 = l1

θ

180◦
π, L2 = l2

θ

180◦
π (27)

where a and b are the inner and outer diameter of the ring, respectively. δ is a small quantity,
a = l1 = 5 mm, and b = l2.

3.1. Verification of the Explicit Analytical Solution of ATEG

For verification, we compare the explicit analytical solution and the power series itera-
tion approximate (PSIA) solution in Ref. [20], which has been proven to have high accuracy.
One kind of TE material, namely, regular Bi2Te3, is introduced. Thermal conductivity k,
the Seebeck coefficient S, and electrical resistivity ρ satisfy the following:

k = k0

[
1 + α1

k
(

T−T0
T0

)
+ α2

k
(

T−T0
T0

)2
+ α3

k
(

T−T0
T0

)3
]

S = S0

[
1 + α1

S
(

T−T0
T0

)
+ α2

S
(

T−T0
T0

)2
+ α3

S
(

T−T0
T0

)3
]

ρ = ρ0

[
1 + α1

ρ
(

T−T0
T0

)
+ α2

ρ
(

T−T0
T0

)2
+ α3

ρ
(

T−T0
T0

)3
] (28)

where T0 = 300 K. For regular Bi2Te3,

k0 = 0.9658 W/mK, α1
k = 0.4452, α2

k = −2.2547, α3
k = 2.9601,

S0 = 174.1 µV/K, α1
S = 0.9386, α2

S = −1.3375, α3
S = 0.2693,

ρ0 = 0.934 × 10−5 Ωm, α1
ρ = 1.0494, α2

ρ = 5.5779, α3
ρ = −5.8316.

Figure 3a shows that the output power of the explicit analytical solution and PSIA
solution under different current densities. From the figure, it can be seen that the explicit
analytical solution of the annular TEG is highly consistent with the PSIA solution. The cal-
culation indicates that the relative error of Ỹ first increases and then decreases with the
increase in the high temperature. The maximum ER of Ỹ between analytical solution and
PSIA solution is 0.93%, as shown in Figure 3b.
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3.2. Thermoelectric Performance of TTEG
3.2.1. Numerical Simulation Results of TTEG

In this section, the performance of the TTEG is studied through finite element simula-
tion on 3D geometries by using COMSOL software, when the high temperature is 530 K,
and the low temperature is 300 K. As shown in Figure 4, when the load resistance remains
constant, as the θ value increases, the current, terminal voltage, and output power also
increase. It can be seen that, in Figure 4a, the current in the circuit monotonically decreases
as the load resistance increases. When the load resistance researches 0.4 Ω, the current
values reach the same level (0.21 A), at different θ values. From Figure 4b, contrary to the
trend of current variation, we can see that the terminal voltage monotonically increases as
the load resistance increases. When the load resistance reaches 1 Ω, the terminal voltage in
the circuit of thermoelectric devices at different θ values can reach 0.087 V. Unlike the mono-
tonic variation trend of current and voltage, as shown in Figure 4c, the output power of
thermoelectric generator first increases and then decreases as the load resistance increases.
This phenomenon can also be explained from Equation (26), where when the load resistance
(RL) matches the resistance of the generator itself (R), that is RL/R = 1, the load can obtain
the maximum output power from the generator. When the output power reaches a peak at
various values of θ, the load resistance is between 0.02 Ω and 0.04 Ω.
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3.2.2. Comparison of Thermoelectric Performance between TTEG and ATEG

A module with a pair of annular legs is introduced and used as the reference module
to compare the thermoelectric performance. Figure 5 shows the temperature distribution of
the TTEG, indicating that the temperature shows an approximate linear change trend with
the coordinate position, which is similar to the trend of temperature field distribution of the
ATEG in Ref. [24] (where the dimensionless position z is the ratio of the coordinate value of
a certain point of the thermoelectric leg to the total length during the modeling process).
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To make the explicit analytical solution of the ATEG more approximate to the simulated
solution of the TTEG, we seek the best value of δ to minimize the relative error between the
explicit analytical solution and the simulated solution, and verify that the explicit analytical
solution of the ATEG can replace the simulated solution of the TTEG approximately, thus
providing a reference for the optimization and design of the TTEG.

ER is defined as follows:

ER =

∣∣∣Pout − P̃out

∣∣∣
P̃out

(29)

where Pout is the explicit analytical solution of output power of the ATEG, P̃out is the
simulated solution of output power of the TTEG, and ER is the relative error between the
ATEG and TTEG.

For Bi2Te3 material, when the high temperature is 530 K and the low temperature is
300 K, Table 1 gives the explicit analytical solution of the ATEG and simulated solution of
the TTEG under different δ to achieve the Pout max. Figure 6 shows the relationship between
the explicit analytical solution of the ATEG and simulated solution of the TTEG at different
angles of θ when the value of δ reaches the optimal value. According to Table 1 and Figure 6,
under different geometric dimensions, the explicit analytical solution of the ATEG is in
good agreement with the simulated solution of the TTEG when the coefficient of δ reaches
the optimal value. When TC = 300 K, θ = 10, the high temperature varies from 450 K to 530 K,
the variation curve of Pout max and voltage with current is shown in Figure 7 (I and V in the
figure represent the corresponding current and voltage at Pout max, respectively). In Figure 7,
we can know that when TH = 490 K, the relative error of Pout max, I and V are 0.226%,
0.80% and 0.58%, respectively. As shown in Figure 8, for Ta = TH, the maximum relative
error between the explicit analytical solution and simulated solution is 0.18%; for Ta = TC,
the maximum relative error is 0.17%. For Ta = TH, when 12◦ ≤ θ ≤ 18◦, the relative error
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between them reaches the order of 10−3. For Ta = TC, when θ ∈
[
12
◦
, 14

◦]
,
[
20
◦
, 22

◦]
,

the relative error can also reach the order of 10−3.

Table 1. Optimal value of δ under different angles of θ. (Ta = TH/Ta = TC).

θ (◦) δ Pout max (W) P̃out max (W)

10 0.211/0.218 1.921849/1.923000 1.925166/1.925009
12 0.211/0.218 1.921849/1.923000 1.921849/1.921200
14 0.212/0.219 1.913479/1.915156 1.914718/1.914305
16 0.212/0.219 1.913479/1.915156 1.912410/1.911969
18 0.211/0.218 1.921849/1.923000 1.920569/1.920007
20 0.213/0.220 1.905187/1.907383 1.907013/1.906528
22 0.213/0.221 1.905187/1.899680 1.901673/1.901009
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Finally, for a low temperature equal to 300 K and a high temperature at the a sides
(450 K–530 K), when θ = 10◦, we calculate the maximum output power versus high tem-
perature with different thermoelectric materials, as shown in Figure 9. As the temperature
at the hot end increases, the output power peak increases. When the δ reaches the optimal
value, the explicit analytical solution is highly consistent with the simulated solution
regardless of Bi2Te3 material or PbTe material. When the temperature at the hot end is
450 K, 470 K, 490 K, 510 K, and 530 K, for the maximum output power of Bi2Te3 material,
the explicit analytical solution of the ATEG is 1.9218, 1.6782, 1.4432, 1.2108, and 0.9890 W,
and the simulated solution of TTEG is 1.9252, 1.6786, 1.4401, 1.2126, and 0.9910 W. For the
maximum output of PbTe material, the explicit analytical solution of the ATEG is 2.7235,
1.9799, 1.3884, 0.9302, and 0.5990 W, and the simulated solution of the TTEG is 2.7206,
1.9814, 1.3870, 0.9316, and 0.5991 W. A low temperature at the hot end can lead to a low
maximum output power.

Based on the above content, we can know that the explicit analytical solution of the
ATEG can clarify the influence of various material parameters on the performance of
the device and avoid traversal calculations, but the solving process is relatively complex.
The simulated solution of the TTEG avoids the complexity of solving a nonlinear differential
equation, but it cannot intuitively clarify the impact of various material parameters on
performance of the device. By solving the relative errors of Pout max, I and V between
the ATEG and TTEG, it can be seen that under appropriate temperature gradients and
geometric dimensions, the analytical solution of the ATEG can provide some guidance for
further optimization design of the TTEG.
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4. Conclusions

In this work, an explicit analytical method for an ATEG that has symmetrical legs and
a numerical simulation method for a TTEG that has varied cross sections was proposed
to study the thermoelectric performance of thermoelectric devices. The explicit analytical
solution has a high accuracy when the ATEG is composed of homogeneous materials.
A comparison between the explicit analytical solution of the ATEG with the numerical
solution of the TTEG shows that when the hot temperature is at the a side and is varied
from 450 K to 530 K, for the relative error between the explicit analytical solution of the
ATEG and the simulated solution of the TTEG, the maximum relative error of Bi2Te3 and
PbTe is 0.21% and 0.15%, respectively. Thus, the results prove that the explicit analytical
solution of the ATEG could provide guidance for the solution of the TTEG, thus opening a
new route to the development and optimization of the TTEG.
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Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

RL load resistance, (Ω)
Jr electric current density along r direction, (Am−2)
H0 relative electric current density, (Am−1)
E electric field, (Vm−1)
k thermal conductivity, (Wm−1 K−1)
S Seebeck coefficient, (VK−1)
ρ electrical resistivity, (Ωm)
T absolute temperature, (K)
Pout analytical solution of output power of ATEG
P̃out simulated solution of output power of TTEG
Subscript
C cold end of the TE leg
H hot end of the TE leg
r variables along the r direction
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