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Němcovej 3, 042 00 Kosice, Slovakia
* Correspondence: jan.kacur@tuke.sk; Tel.: +421-55-602-5176

Abstract: Underground coal gasification (UCG) is a clean coal mining technology without significant
environmental impacts. This technology can also be used in deep, hard-to-reach seams or deposits
affected by tectonic disturbances, where conventional mining is impossible. Several techniques and
methods have been investigated worldwide to support the process control of UCG. Global research
focuses on the control of UCG operating parameters to stabilize or to optimize the performance of
the underground reactor during energy conversion. This paper studies recent research in the field of
UCG control and compares individual control techniques and possibilities for practical application.
The paper focuses on advanced control methods that can be implemented in an in situ control
system (e.g., adaptive control, extremum seeking control, and robust control). The study investigates
control methods that ensure desired syngas calorific value or maximization. The review showed that
robust control techniques such as sliding mode control and model predictive control have the most
significant potential, and achieve the best results despite their complexity. In addition, some methods
have been investigated through simulation or experimentally. The paper aims to give the reader an
overview of the given issue and to alert the practice to recent research in the given area.

Keywords: UCG; modeling; advanced control; control algorithm; control methods; optimization;
automation; review

1. Introduction

Underground coal gasification (UCG) is a coal mining technology from deposits that
are inaccessible for extraction via mining mechanisms. This technology is also suitable for
coal deposits with tectonic faults [1]. UCG has the potential to be applied in coal mines at
great depths, where the mining and geological conditions are unfavorable, and where the
risk of explosion is high. In such mines, it is necessary to monitor the concentration of toxic
and flammable gases constantly [2]. Aghalayam [3] performed a comprehensive overview
of UCG field trials and practice. In addition, information about the successful operation
of commercial UCG around the world can be found in various publications and technical
reports (e.g., [4–13]).

Commercial gasification needs a skilled workforce, technology contributors, industry
standards, and an adequate regulatory framework. The main issue for the commercial
UCG operator is the stable production of high-quality syngas. The problem can be the
gradual enlarging of the cavity, the enlarging of the reactor cross-section, the reduction in
the gas velocity in the reactor, the decrease in the Reynolds number, the flow turbulence
criteria, and the decrease in oxidizer efficiency [14]. Nevertheless, the results show that
UCG can extract 52–68% of the chemical exergy of the coal [15]. The energy conversion
efficiency for UCG is a crucial research topic because it directly affects gasification projects’
economic and environmental benefits [16].

UCG technology is implemented by drilling an injection and production well into an
underground coal seam, igniting the coal, and promoting gasification chemical reactions us-
ing gasification agents [12,13,17–19]. UCG processes are supported by injecting gasification
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agents (i.e., air, oxygen, and steam) and extracting the produced syngas. UCG represents
spatially and thermally distributed reaction zones, where the coal oxidation, reduction, and
pyrolysis regions overlap [1,3,13,20–24].

The calorific value of the produced syngas is the most critical operational parameter
of the UCG. However, maintaining the calorific value of syngas during gasification at
the desired values can be a problem. Therefore, the control system should determine the
optimal values of the manipulation variables to track the desired syngas calorific value
or underground temperature and to ensure the course of the chemical reactions. The
composition of the syngas depends on the coal type and the gasification agent injected.
Gases such as H2, CO2, CO, and CH4 represent the essential calorific components of the
syngas [25]. For example, syngas with a low calorific value is produced when air and
water vapor are used (e.g., Chinchilla, 3–5 MJ/m3). On the other hand, oxygen and water
vapor are injected for medium to high calorific values of syngas. Although gasification
with oxygen is more expensive, it brings a higher stability to the produced syngas (e.g.,
Spanish trials yielded 13 MJ/m3 of dry gas after gas clean up) [26,27].

The motivation for writing this review study was to inform the professional public
about recent developments in advanced UCG control. The study focuses on advanced con-
trol methods that ensure a desired syngas calorific value or maximization. Unfortunately,
only a few researchers deal with this issue. The direct control of UCG processes (i.e., a basic
process control system) is provided by essential control elements, e.g., actuators, sensors,
and programmable logic controllers (PLCs), in combination with a supervisory control and
data acquisition system (SCADA) to ensure operation and the automation of production.
In control theory, advanced process control represents a wide range of techniques and
technologies implemented in control systems. The algorithms of UCG advanced control
are developed as an alternative or a higher level to basic control, especially to improve
syngas production performance or economic parameters. This class includes algorithms of
advanced regulatory control (ARC) (e.g., adaptive feedback control), extremum seeking
control (ESC), optimal control (OC), robust control, model-based control, multivariable
model predictive control (MPC), and control based on artificial intelligence (e.g., machine
learning control (MLC)). The benefit of the automatic control of UCG, built on advanced
control algorithms, can be higher control accuracy, reduction in the human decision about
control interventions, and the possibility of more accessible communication with higher
levels of control.

The nature of process information and the possibility of identifying UCG processes
for their modeling determines the options for the design of the control system. The
underground geo-reactor develops during the UCG (e.g., the movement of the combustion
front, groundwater, cavity enlargement, etc.), which complicates the modeling of individual
processes [28]. However, the UCG process is evolving, and underground conditions may
change continuously. For this reason, it is necessary to constantly monitor the underground
environment and to adapt to the operational parameters of the UCG [7].

At the stabilization level of the control, in addition to calorific value and temperature,
it is also necessary to maintain a low concentration of oxygen in the syngas. Control
algorithms are usually tested through simulation and on laboratory ex situ reactors. For
example, the control techniques on stabilization level for UCG based on discrete controllers
were studied in [28]. Another example can be the simple computer feedback control with
the process monitoring of the ex situ UCG reactor presented in [29]. Adaptive control can
adapt the controller properties to changing operating conditions (e.g., a change in operating
mode, most often in the form of a change in the pressure conditions).

Adaptive control techniques are used to adjust the control strategy in response to
changes in the process environment. This type of control can improve the performance
and stability of UCG processes, especially in the presence of unpredictable or time-varying
conditions. Furthermore, this approach makes dealing with uncertainties in the process
possible. Adaptive control can be built on linear or non-linear regulators. Furthermore,
it can be controlled with a model, model-free control (e.g., extremum seeking control), or
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control based on machine learning [30]. The advanced control of UCG based on continuous
extremum seeking was also experimentally tested, where control without a model [31,32]
or with a model, Ref. [33] was applied.

Optimal control refers to mathematical optimization techniques to find the control
inputs that minimize a given cost function, subject to a set of constraints that describes
the system’s dynamics. The goal of optimal control is to find the “optimal” control input
that achieves the desired control objective with minimum cost. These techniques typically
involve mathematical optimization algorithms considering complex interactions between
various process variables and the control inputs. The proposal for optimal coal gasification
control based on Iterative Adaptive Dynamic Programming (ADP) and neural network can
be found in [34,35].

On the other hand, robust control is concerned with designing controllers that can
handle uncertainties and disturbances in the system being controlled. The goal of robust
control is to ensure that the system remains stable and performs well, even in the presence
of model uncertainties, measurement noise, and other types of disturbances. Among the
most well-known robust control techniques applied in UCG to stabilize syngas calorific
value is sliding mode control (SMC) [36–38] and multivariable H∞ robust control [39,40].
The disadvantage of robust control is that it is necessary to spend more effort to build a
mathematical model and to propose an appropriate unmeasured states estimator. While
optimal control can lead to high-performance solutions, it may only sometimes be robust
to uncertainties and disturbances. Robust control, on the other hand, may sacrifice some
performance for the sake of robustness. Therefore, optimal and robust control are comple-
mentary techniques that can be combined to achieve high performance and robustness.
Optimal control and robust control are two distinct control techniques with different goals
and methods, although there is some overlap between them.

One of the main disadvantages of in situ UCG is the need for more process control and
predictability. Predictive control or model predictive control (MPC) is a form of optimal
control in which a dynamic model of the system being controlled is used to predict its
behavior over a finite time horizon. Based on these predictions, an optimization problem
is solved to find the control inputs that minimize a cost function subject to constraints
on the system’s state and input variables. MPC is often used when there are constraints
on the system, such as constraints on the allowable control inputs or the state of the
system. Although MPC algorithms are programmed in many programming languages,
it is necessary to properly design the internal prediction model and to program the state
estimator to estimate the unknown states of the UCG. This type of advanced UCG control
was recently investigated by researchers in [41,42].

Various models have been developed over the years to improve the knowledge of the
UCG process and process control [3,12]. These models solve the calculation of transient
temperature profiles, the determination of gas velocity and coal consumption, the prediction
of cavity formation, the operating pressure, the flow rates of gasification agents, the ratio of
injected oxidizers, and syngas composition and its production rate. Perkins [18,21,43,44]
performed extensive research work focused on UCG modeling. Perkins proposed a UCG
model to quantify the effects of changes in operating conditions and coal properties on the
growth rate of a local cavity. The development of control-oriented mathematical models,
which make predicting various process states and outputs possible, is a trend in UCG
research [45]. In addition, mathematical models or the study of model predictions allow
for a better assessment of the internal processes of the UCG. Understanding brings a
better ability to design, control, and predict performance. For example, in [36–38], a control-
oriented one-dimensional packed bed model of the UCG to estimate the syngas composition
was proposed. This model was connected with the sliding mode controller to stabilize
the syngas heating value. Magnani et al. [46] proposed a two-dimensional mathematical
model that studies the effects of the process variables on the total heat recovery via the
gasification process. The model simulates the UCG stream method using produced gas
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stoichiometry. Other packed bed models to predict the behaviors of the geo-reactor were
developed in [29,47–49].

Some works (e.g., [33,50,51]) only investigated the prediction of output UCG parame-
ters (e.g., syngas calorific value, and syngas composition or temperature in the oxidation
zone) or proposed a thermodynamic model for the model-based optimization of gasifica-
tion agents (e.g., [52–55]). Another approach for syngas composition prediction was based
on partial differential equations [50]. The goal of control is achieved by measuring process
variables with a programmed algorithm that ensures the calculation of control interven-
tions. However, some UCG variables could be more problematic to measure directly (i.e.,
contact sensing). Therefore, indirect methods are used. For example, in the case of deter-
mining the underground temperature in a georeactor, soft-sensors are used based on the
measurement of radon emanation, carbon isotopes in syngas, and the CO/CO + CO2 ratio
in syngas [56,57]. Temperature or temperature field predictions based on mathematical
models are gaining popularity (e.g., [58,59]). The research has also focused on developing
models for predicting underground temperature and the temperature field. Based on the
energy and material balance equations, an axial model was built to calculate the tempera-
ture distribution in the coal seam along the gasification channel [60]. Kostúr [61] proposed
a two-dimensional model of the temperature field of an underground reactor based on
Fourier’s partial equation but expanded via heat exchange between the solid and liquid
phases. Other researchers investigated the modeling of the behavior of the temperature
field using a hybrid supercomputer [62]. The analysis of the results of mathematical mod-
eling showed that the modeling of automatic control systems and forecasting systems,
including robust control, can be significantly extended by using hybrid supercomputers.

In recent years, UCG models based on machine learning have come to the attention of
researchers. Machine learning models can support the UCG process control, where they can
be used as soft-sensors for temperature in the georeactor, for calorific value, or in syngas
composition [63]. Applying neural networks to temperature prediction was investigated by
Ji and Shi [64], and syngas composition prediction by Guo et al. [65]. Neural networks (NN),
support vector algorithms (SVM), and multivariate adaptive regression splines (MARS)
were well compared in [51]. Other proposals of the machine learning models of coal
gasification were presented in [34,35].

In the following section, a more detailed overview of the main principles of advanced
UCG control, which have been researched in recent years, will be provided. The principles
and results of adaptive control at the stabilization level of UCG, extremum seeking control,
robust control, and model-predictive control will be presented. These dilution techniques
were tested through simulation on models, ex situ reactors, and others applied to in situ
gasification. Individual approaches to advanced UCG control will be compared in the
discussion, and their advantages and disadvantages will be pointed out.

2. Overview of UCG Advanced Control Techniques
2.1. Adaptive Feedback Control

In UCG, stabilizing and optimizing gasification agent flows is needed to stabilize
underground temperature and syngas production. The increasing oxygenation of coal
results in increased temperatures in the oxidation zone so that reduction can occur. This
results in an increase in the calorific value of the syngas. An increase in operating pressure
can positively affect methane and hydrogen production [66]. The ideal temperature in the
oxidation zone is above 1000 ◦C. The following three main principles of UCG management
are used in practice (see Figure 1) [28]:

• Over-pressure control—the flow of the injected oxidizer is adjusted to stabilize under-
ground temperature, syngas composition, or its calorific value. Increasing the amount
of gasification agent can increase the calorific value of the syngas. The disadvantage
of this type of control is a possible gas leak to the surrounding strata or cooling of the
reduction zone with too much gasification agent [28,67,68].
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• Under-pressure control (also called burning control)—the exhaust ventilator adjusts
under pressure. Air enters the georeactor under negative pressure (i.e., through an
injection well or various cracks) and supports the smoldering of the coal. There are no
syngas leaks into the surrounding strata. At the same time, the ventilator sucks the
syngas to the surface for further processing [28,69,70].

• Combined control—those as mentioned above are used.

Figure 1. Basic control approaches on stabilization level [28].

The geo-reactor changes over time, and there is a need to continually improve the
control and to adapt the controller to changes in the system. Kačur et al. [28,71] proposed
an adaptive control system for the stabilization of temperature and oxygen concentration
in syngas based on a discrete PID controller (see Figure 2). The proposed control system
can also be used to stabilize the syngas calorific value.

The gasification in the ex situ reactor was supported by air injection or was controlled
under pressure at the outlet. The modified Ziegler-Nichols method adopted from [72]
performed the initial controller setup. Figure 3 shows the temperature stabilization by
the discrete controller that adjusts airflow. The controller parameters were adapted to
between 1300–1400 min from the beginning. The maximal effect of CO2 consumption is at
temperatures of above 1000 ◦C. These are the ideal theoretical conditions for reacting the
entire amount of CO2 to CO, assuming the presence of coal [28].

On the same principle, a regulation for reducing the oxygen in the produced syngas
was also proposed. In this case, the regulated negative pressure from the ex situ reactor
was used as the manipulated variable. The pressure was varied, utilizing the speed of the
exhaust ventilator (i.e., the frequency of the asynchronous motor inverter was adjusted).
Figure 4 shows the stabilization of oxygen concentration in syngas via controlled sucking
pressure, which is adjusted by the exhaust fan motor power frequency (Hz).

In this case, the discrete controller was adapted based on the new identification of the
controlled system at 4800 min.

Another example shows the reduction in oxygen concentration using a controlled
airflow (see Figure 5). The tuned controller continually decreases airflow to ensure the
desired oxygen concentration value in the syngas. This oxygen reduction should have an
increased syngas calorific value during the experiment.
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Figure 2. Internal algorithmic structure of adaptive control for stabilization level of UCG.

Figure 3. Temperature stabilization with controller adaptation [28].
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Figure 4. Oxygen concentration stabilization with controller adaptation [28].

Figure 5. Oxygen stabilization via regulated airflow [28].

Figure 6 shows the course of continuously reduced oxygen concentration in syngas by
the adaptive controller, and the corresponding syngas calorific value for a long time. From
the point of view of the control goal, it is necessary to maintain the oxygen concentration at
close to zero.
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Figure 6. The effect of reducing oxygen in syngas on its calorific value [68].

2.2. Extremum Seeking Control

Extremum seeking control (ESC) is a subclass of adaptive control aimed at optimizing
the process in a steady state. This control technique has been successfully applied to control
biochemical processes using the model [73] or without the model [74]. Another well-known
approach to extremum seeking control is based on perturbations [75,76].

2.2.1. Model-Free ESC

Kostúr and Kačur [32] suggested an alternative method for controlling UCG using
extremum seeking control. This technique, first introduced by Leblanc in the 1920s [77],
is a clever way to drive a system towards the optimal value of a measured variable of
interest [78,79].

In the proposed ESC algorithm, the concentration of CO in syngas was maximized as
an indicator of syngas quality. The objective function was expressed as follows [67,68]:

y(k) =
1
n

n

∑
i=1

ϕCO(i) (1)

where the optimized variable at step k is denoted by y(k) (%). The measured CO concen-
tration in the syngas is represented by ϕCO (%). k is the index of the optimized period for
the extremum seeking control (τ0,opt), while i represents the index of the sampling period
(τ0,stab) at the stabilization level. The variable n corresponds to the number of sampling
periods (τ0,stab) that occur during τ0,opt.

CO concentration enters the ESC algorithm as the average concentration over time,
τ0,opt. ESC is based on continuously optimizing the airflow as the leading gasification
agent. If the UCG process is under steady-state conditions, the ESC algorithm seeks a new
optimum as a new desired flow rate. The PI controller uses this desired value to stabilize
the airflow. The optimized setpoint (i.e., desired airflow) is calculated as the following [67]:

w(k + 1) = u(k) + sgn(∆w(k + 1)) · ∆V/m, (2)

where u(k) represents the average value of the manipulation variable in the step k (m3/h),
calculated as u(k) = 1

n ∑n
i=1 ui t.j. as the average air flow elapses during τ0,opt. Furthermore,

it is true that ∆u(k) = u(k)− u(k− 1) a ∆y(k) = y(k)− y(k− 1). Parameter w(k + 1) is
the desired variable of ESC in the step k + 1 (i.e., the new desired airflow) that enters the PI
controller as a new setpoint (m3/h) (see Figure 7). Parameter k is the time step, and ∆V/m
is the increment of the desired value w. When initializing the algorithm, constant ∆V is
empirically determined by the flow stabilization quality and m = 1.
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Figure 7. Implementation of two-level extremum seeking control.

If sgn(∆w(k + 1)) changes from (+) to (–) or from (–) to (+), it is then needed to modify
the parameter m (i.e., m = m + 1) and to continue the algorithm from the beginning. For
the calculation of Equation (2), the Table 1 can be used.

Table 1. Logic table for evaluation of ESC [67].

sgn(∆u(k)) sgn(∆y(k)) sgn(∆w(k + 1))

+ − −
+ + +
− − +
− + −

Increasing the desired airflow at the start of ESC was gradually adapted, and CO con-
centration has been maximized in syngas (see Figure 8). The optimized air flow maximized
the coal conversion to CO, an endothermic reaction at higher temperatures of above 800 ◦C.
The increased concentration of CO in the syngas was also reflected in the increased calorific
value of the syngas.

Figure 8. Maximization of CO through optimization of airflow by ESC [67].



Energies 2023, 16, 3458 10 of 36

The gases CO and CO2 are products of the gasification process. Increasing the tem-
perature increases the production of CO, and the effective activation energy decreases.
Therefore, the CO/(CO + CO2) ratio is also an important indicator during gasification. Con-
sidering the Boudouard reaction, carbon monoxide (CO) dominates in high temperatures
(see Figure 9).

Figure 9. Equilibrium of the Boudoard reaction at different temperatures.

The ratio CO/(CO + CO2) is increased with an increasing concentration of CO and
decreases with an increased concentration of CO2. At a higher operating pressure, the
production of CO is reduced.

Figure 10 shows the behavior of the highest measured temperature, and the calculated
calorific value from the gas composition. The behavior that is shown is from the whole
experiment. The figure shows that the lower calorific value (1–9 MJ/m3) dominates at
lower temperatures (700–1000 ◦C). However, the higher calorific value (9–14 MJ/m3) also
occurs at a higher temperature (i.e., 1000–1400 ◦C).

Figure 10. Calorific value and the highest temperature during gasification [68].

Figure 11 shows the behavior of the measured concentration and the ratio of
CO/(CO + CO2). The duration of the experiment is the same as in Figure 10. It can
be said that the ratio value is higher at higher temperatures by comparing the two images.
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The figure shows that the lower value of the ratio (0 to 0.25) is dominant at lower tempera-
tures (700–1000 ◦C). At a higher temperature (i.e., 1000–1400 ◦C), the value of the ratio is
higher (i.e., 0.25–60).

Figure 11. Measured concentrations and calculated ratio of CO/(CO + CO2) [68].

An example of a decreased ratio and calorific value is at the time of 135 h from ignition.
At this time, it significantly reduces the maximum temperature. Research has shown
that the CO/(CO + CO2) ratio decreases with the increasing pressure of the oxidizer, and
increases with increasing temperature. When searching for an extreme of this ratio, the
aim is to find the maximum. Theoretically, the maximum value of the ratio is equal to the
number 1. The increased value of this ratio represents a higher concentration of CO, and
ultimately, a higher calorific value.

An alternative task of the extremal controller can be to control the airflow to achieve
and to maintain the maximum value of the CO/(CO + CO2) ratio. Figure 12 shows the
CO/(CO + CO2) ratio maximization behavior during the experiment with gasification. The
extremal controller was tested during an experiment with gasification on the laboratory
gasifier. The extreme was reached after 70 min from the start of the controller. Then, the
controller increased the ratio to 0.125, and 120 min was maintained.

Figure 12. Maximization of the ratio of CO/(CO + CO2) with extremal controller [68].
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Figure 13 shows the behavior of the calorific value and the maximized ratio. While
maximizing the mentioned ratio, the calorific value was increased to 0.85 and 1.2 MJ/m3.

Figure 13. Behavior of calorific value and maximized ratio CO/(CO + CO2) [68].

A model-free extremum seeking control based on perturbations was experimentally
tested to optimize several manipulation variables [31]. A perturbation signal at the system
input and observing its effect on the output can be used to estimate the objective function.
In the case of the optimization of three UCG manipulation variables, the following vector
was defined [80]:

ū =
(

u1 u2 u3
)T, (3)

where u1 refers to the desired airflow (m3/h) or the servo valve opening that can be adjusted
using a PI controller or directly via digital pulses; similarly, u2 corresponds to the desired
flow rate of oxygen injected to the oxidation mixture (m3/h). Finally, the third control
variable u3 represents the regulated under-pressure on the outlet (Pa), equivalent to the
frequency of the asynchronous motor power (Hz). Altering the motor power frequency
causes changes in the ventilator’s speed, affecting the outlets under pressure (Pa).

Figure 14 shows the connection scheme of ESC with three manipulation variables.
The ESC was applied to maximize syngas calorific value during experiments on an ex
situ reactor.

Figure 14. Connection scheme of ESC [31].
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The objective function, which expresses the maximum calorific value, can be defined
as follows [31]:

Jk(ū) ≈
1
n

n

∑
i=1

Hj · ∆τj → MAX, (4)

where the objective function Jk(ū) is calculated as the average value of the heating values
from the buffer, denoted by Hj (MJ/m3), which represents the j-th heating value of the
syngas recorded in the buffer with the size of n. Parameter k represents the index of the
control period. The manipulation variables in vector ū are optimized with sampling period
τ0,opt, and sampling on the stabilization level ∆τj is given by step j.

Alternatively, the optimality criterion can also express the maximum concentration of
the i-th syngas component (e.g., CO, CH4, or H2), the maximum CO/(CO + CO2) ratio in
the syngas, the maximum gain of chemically bound energy, the maximum volume of the
produced syngas, or the maximal temperature in the oxidation zone [25].

The optimization problem was solved using the Gradient method with constraints.
The control law is as follows [81,82].

ūi+1 = ūi + h · ∇J(ūi) = ūi + h ·
(

∂J
∂ui

1
,

∂J
∂ui

2
,

∂J
∂ui

3

)T

, (5)

where in each new control step i, a new set of optimized manipulation variables, denoted
as ūi+1, is calculated based on the previous set of optimized variables, represented as ūi.
The value of iterative constant h is chosen to ensure that the values in ūi+1 will lead to the
existence of the objective function and its continual maximization (i.e., J(ūi+1) > J(ūi)). The
gradient∇J(ūi) consists of partial differentials of the cost function concerning the variables
in vector ūi. This vector can be calculated using loading perturbations on individual
manipulation variables during UCG.

In each optimization step τ0,opt, the ESC algorithm calculates a new vector of gradients
∇J(ūi) based on the introduced perturbations on individual manipulation variables. Sub-
sequently, a new action intervention is calculated according to Equation (5) and the current
value of the objective function (4), i.e., Jk(ūi+1) is determined, which is compared with the
value of the objective function from the previous step Jk(ūi) to evaluate convergence to
the extreme. In addition, the algorithm considers the set limit values of the manipulation
variables (3) and the limitation that applies to the concentration of oxygen in the syngas. All
calculations (i.e., the calculation of gradients and objective functions, as well as new action
interventions) are performed only in the steady state of the objective function (4). This
state is determined by the standard deviation, which is compared with an experimentally
determined threshold value. The principle of model-free extremum seeking control is
shown in Figure 15.

Figure 15. Principle of syngas calorific value maximization.
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Figure 16 shows the result of ESC with three manipulation variables during 10 h,
where the increasing heating value of syngas from 4.4 to 8 MJ/m3 can be observed. This
behavior was obtained by decreasing airflow, increasing oxygen added to the mixture, and
reducing the power of the exhaust ventilator [25,31,67,68,80].

Figure 16. Maximization of syngas calorific value via optimization of three manipulation variables of
UCG [31].

Another example (see Figure 17) shows the result of ESC with two manipulation
variables. Optimizing the injected air flow and outlet pressure from the ex situ reactor
increased the calorific value from 2.17 to 7.4 MJ/m3.

Figure 17. Maximization of syngas calorific value via optimization of two manipulation variables of
UCG [31].



Energies 2023, 16, 3458 15 of 36

2.2.2. Model-Based ESC

An important goal in UCG is to maintain syngas production with the highest possible
calorific value. Since syngas production occurs at higher temperatures, ensuring these tem-
peratures in the georeactor is necessary. For this reason, we can divide the coal gasification
process into two phases from the point of view of management:

• Reaching high temperatures—circa 1000 ◦C,
• The production of syngas with the highest possible calorific value—i.e., an almost

zero concentration of O2 and the highest possible concentration of CO, CH4, and H2
in the syngas.

A simple ESC algorithm based on a continuous adaptation of regression models was
proposed in [25,33,83]. The algorithm consisted of two parts:

• Recording measured data to the dataset according to the selected criteria or the stage
of the gasification process,

• Estimation of new model parameters for manipulation variables (i.e., adaptation).

The proposed control system continuously stores the measured data from the UCG
with the selected sampling period τ0 into four separate datasets. Each dataset (i.e., buffer
with shift) was created for a fixed number of n historical records.

Figure 18 shows the principle of the proposed control system. Each buffer recorded
data for when a specific gasification quality criterion was reached. Then, the updated
datasets were used to calculate the regression parameters of the models (i.e., the models of
the manipulated variables). The criteria for the various type of control are as follows:

• The calorific value of syngas (Hsyngas: 1 < Hsyngas < 3 MJ/m3,
• The calorific value of syngas (Hsyngas): 3 < Hsyngas < 6 MJ/m3,
• The calorific value of syngas (Hsyngas): Hsyngas > 6 MJ/m3,
• The maximum temperature in the coal channel (Tmax): Tmax > 900 ◦C.

The subroutine performs repeated calculations of the control model parameters ac-
cording to the set adaptation period τ0,calc.

Figure 18. Control system based on regression models.
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Regression models were designed in three variants according to the proposed criteria.
For example, the first model type could continuously calculate the optimal injected airflow
and the oxygen flow based on five measured parameters. Therefore, the model equations
for the first control type have the following form [25]:

u1 ≡Vair (k) = a0 + a1 ·Vair (k− 1) + a2 · ϕCO(k− 1)

+ a3 · ϕCO2(k− 1) + a4 · ϕCH4(k− 1) + a5 · T(k− 1),
(6)

u2 ≡Vo2(k) = a0 + a1 ·VO2(k− 1) + a2 · ϕCO(k− 1)

+ a3 · ϕCO2(k− 1) + a4 · ϕCH4(k− 1) + a5 · T(k− 1),
(7)

where k represents the control step of the sampling period τ0; Vair and VO2 represent the
flow rates of injected air and oxygen to the mixture (m3/h); ϕi is the concentration of CO,
CO2, and CH4 in the syngas (%); and T represents the coal temperature in the gasification
channel (◦C).

The second type of model refers to the ratio of the flow rates of gasification agents and
the highest temperature in the gasification channel Tmax. The structure of this model is the
following [25]:

u1 ≡Vair (k) = a0 +
a1 ·Vair (k− 1)

VO2(k− 1)

+ a2 · ϕCO(k− 1) + a3 · ϕCO2(k− 1)

+ a4 · ϕCH4(k− 1) + a5 · Tmax(k− 1),

(8)

u2 ≡VO2(k) = a0 +
a1 ·Vair (k− 1)

VO2(k− 1)

+ a2 · ϕCO(k− 1) + a3 · ϕCO2(k− 1)

+ a4 · ϕCH4(k− 1) + a5 · Tmax(k− 1).

(9)

The third model type aims to achieve the necessary temperature for syngas production.
The models regarding the ratio of gasification agents and the maximum temperature Tmax
in the channel are in the linear and quadratic form. The structure of the model is as the
following [25]:

u1 ≡Vair (k) = a0 +
a1 ·Vair (k− 1)

VO2(k− 1)

+ a2 · Tmax(k− 1) + a3T2
max(k− 1),

(10)

u2 ≡VO2(k) = a0 +
a1 ·Vair (k− 1)

VO2(k− 1)

+ a2 · Tmax(k− 1) + a3T2
max(k− 1).

(11)

For a better illustration, Figures 19 and 20 show the simulation (i.e., offline) verification
of the first model. It is evident from Figures 19 and 20 that the discrepancies between the
actual and the modeled flow rates are minimal. The measured airflow and oxygen flow
are represented in red and modeled in green. The online control using the first model
type during the UCG experiment on the ex situ reactor is depicted in Figure 21, where the
heating value of the syngas was achieved to be 10 MJ/m3 by regulating the airflow.
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Figure 19. Simulated and measured airflow [25].

Figure 20. Simulated and measured oxygen flow [25].

Figure 21. Control with continual identification during the UCG trial [25].
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2.3. Robust Control

Robust control has potential applications in UCG processes. For example, a feedback
control system is robust if it maintains basic qualitative properties such as stability, quality
of regulation, etc., under the influence of various disturbances, including changes in the
parameters of the controlled system. In recent years, research on UCG control possibil-
ities has been intensively directed to robust control techniques that have brought about
significant progress in implementing advanced control. Model-based robust control uses a
mathematical model of the UCG process being controlled to design a controller robust to
uncertainties and variations in the system. In the following subsections, an overview of the
investigated robust control techniques for UCG will be made.

2.3.1. Sliding Mode Control

For UCG systems with nonlinearities, in situ disturbances, and parametric uncer-
tainties, a control technique is required which can keep a constant desired heating value
of syngas, even though the design procedure is performed based on an approximate
model [38]. Uppal et al. [36,37] proposed a one-dimensional (1-D) packed bed model
of UCG that was used in closed-loop with robust sliding mode control (SMC) [84]. The
proposed SMC could maintain a syngas calorific value at the desired value by manipulating
the injected gas mixture in the presence of disturbances and model uncertainties [84].

The model could forecast various UCG parameters such as solid temperature, syngas
composition, and the rates of different chemical reactions. However, most of these param-
eters are difficult to measure, although they make it possible to analyze the dynamics of
UCG. Therefore, the stoichiometric coefficients for the coal pyrolysis reaction entering the
model were optimized to compensate for the uncertainty in some coal properties. The
optimization was performed using sequential quadratic programming (SQP) [37].

Sliding mode control is a nonlinear control technique that achieves robustness against
uncertainties and disturbances by forcing the system trajectory to converge to a prescribed
sliding surface in a finite time.

The basic idea behind sliding mode control is to design a control law that drives the
system trajectory onto a sliding surface, a hyperplane in the state space. Once the system
trajectory reaches the sliding surface, it is constrained to stay on it, which makes the system
behavior insensitive to uncertainties and disturbances that affect the dynamics outside the
sliding surface [85].

The sliding mode control law consists of the control signal and the sliding function.
The control signal is designed to force the system trajectory to converge to the sliding
surface. In contrast, the sliding function is a scalar function of the state variables that takes
a constant value on the sliding surface, and changes sign when the system trajectory crosses
the sliding surface. The sliding function is used to construct the control signal to drive the
system trajectory onto the sliding surface and maintain it there.

The principle of sliding mode control can be summarized as follows: if a system can be
transformed into a special form called the sliding mode, then it can be controlled robustly
by designing a control law that forces the system to remain on the sliding surface [86].

Figure 22 shows a sliding mode control block diagram applied to syngas calorific
value stabilization. The control signal in the SMC consists of two parts: the reaching mode
and the sliding mode. The reaching mode brings the system’s state to a sliding surface (see
Figure 23); switching control (usw) is required [87]. Furthermore, in the sliding mode state,
there is an equivalent control (ueq) to keep the state system stable.
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Figure 22. Block diagram of sliding mode control (SMC).

Figure 23. Phase plane under SMC.

The authors in [37] have used the time model of the UCG reactor and the following
first-order controller:

U = ueq + usw, (12)

where U is the vector of the control variables ui (i.e., control effort), i = 1, 2, 3, u1 is the
molar flow rate (moles/cm2·s) of H2O; u2 is the molar flow rate of O2, and u3 is the molar
flow rate of N2 of a mixture pumped into the injection well (i.e., the input to the plant).

The equivalent and switching control can be expressed as follows [37]:

ueq = L[CTγ1 − γ2], (13)

usw = K · sgn(s), s = s(x, t) = e, (14)

where K · sgn(s) represents the so-called switching part (i.e., the discontinuous part) of the
control that provides resistance to changes in parameters and external disturbances while
also causing chattering. ueq is a continuous part of the controller output that takes system
trajectories to the sliding manifold; s represents the sliding function. The positive constant
K > 0 determines the speed of the trajectory converging to the sliding surface, parameter x
represents the state vector (i.e., if the state model presents), t is the time (s), e = y− yd is the
control error, yd is desired value of the calorific value (kJ/mol), y is the measured calorific
value (kJ/mol), and L is the length of the UCG reactor or physical model (cm). Parameter
CT represents the sum of the syngas component concentration and γ1, γ2 depends on rates
of chemical reactions. If s> 0 then sgn(s)= +1, otherwise if s< 0 then sgn(s)= −1 [37].

The sliding mode control (SMC) principle involves bringing the system’s state to the
sliding surface and the central point. The sliding surface represents a state where the
switching function (s) is zero. The upper and lower bounds of the sliding surface are
determined by a limiting switching value, ∆. When the state x(t) is greater than ∆, the
switching is turned off; conversely, if x(t) <= ∆, the switching is turned on. The system
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transitions between stable and unstable trajectories to reach the sliding surface, ultimately
leading to error convergence to zero.

In the subsequent research, Uppal et al. [88] optimized a 1-D packed bed model
to compensate for the uncertainty in coal and char ultimate analysis, and in the steam-
to-oxygen (O2) ratio. The optimization problem was solved using sequential quadratic
programming (SQP) to minimize the error between the simulated and the measured calorific
values. The model was validated with a twisting controller and a second-order sliding mode
control (SOSMC) algorithm to stabilize the calorific value. Uppal et al. [89] also proposed a
robust dynamic integral sliding mode control (DISMC) where unknown states required
for the model-based control were reconstructed using a gain-scheduled modified Utkin
observer (GSMUO). The results show the increased performance of DISMC in tracking
the desired calorific value when compared with the integral sliding mode control (ISMC)
presented in [90] and a classical proportional-integral (PI) controller.

Recently, Khattak et al. [91] proposed a robust neuro-adaptive sliding mode control
(NASMC) for the UCG process, which estimates the unknown model parameters using
a feed-forward neural network (NN). This approach provides less sensitivity to input
disturbance and model uncertainties when stabilizing the syngas calorific value. In ad-
dition, a comparison of NASMC and conventional SMC shows that NASMC exhibits
better performance.

Most UCG control designs are based on nonlinear process models, resulting in a
complex control system requiring significant computational resources and costs. In addition,
many control algorithms focus only on stabilizing one UCG output quantity, most often
the calorific value of syngas, using one input quantity (e.g., the amount of the gasification
agent). Javed et al. [92] proposed a data-driven UCG model and a multivariable dynamic
sliding mode control (DSMC) for the cavity simulation model (CAVSIM), parameterized
with the operating parameters and coal properties in UCG. The DSMC controller was
implemented on CAVSIM and compared with conventional SMC. It was found to use
less control energy to achieve the desired objectives while being robust against model
inaccuracy and input disturbance.

2.3.2. Multivariable H∞ Robust Control

Javed et al. [39] proposed a multivariable H∞ robust control for UCG using the non-
linear cavity simulator (CAVSIM). The proposed controller showed robust stability and
performance in the presence of modeling inaccuracies and external disturbances when
syngas calorific value and flow rate were stabilized.

An output-based robust multi-objective H2/H∞ control law integrated with pole
placement was another robust control technique proposed for UCG [40]. The proposed
linear model of the UCG preserves the dynamics of the nonlinear model around the
operating point of interest, and a robust Multi-Objective H2/H∞ controller takes to account
external interference and modeling inaccuracies. The simulation results indicated that the
proposed controller performs better than the standard PI controller, even in the presence of
modeling inaccuracies and external disturbances.

2.4. Model Predictive Control

The use of model predictive control (MPC) has been suggested as an effective method
for controlling multivariable linear and nonlinear processes, including the UCG process.
This control technique is suitable for the control of multiple-input and multiple-output
(MIMO) systems. The goal of UCG control is to maintain the desired calorific value of
syngas by optimizing manipulation variables. While there are numerous applications
of MPC in the gasification industry (e.g., [93–97]), there is limited evidence of its use
in UCG (i.e., [41,42]). MPC relies on dynamic models of the process, typically obtained
through system identification, and it can optimize the current timeslot while accounting
for future timeslots.
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The MPC approach involves iterations and the finite horizon optimization of a plant
model. At each time step k, the current plant state is sampled, and a cost-minimizing
control strategy is computed for a short time horizon in the future (see Figure 24). It is
performed via a numerical minimization algorithm, and only the first step of the control
strategy is implemented. The plant state is then sampled again, and the process is repeated,
yielding a new control and predicted state path. This approach is not optimal, but it has
yielded promising results in practice.

Figure 24. Principle of MPC [41].

MPC responds to the predicted output from the controlled system, while the PID
controller responds only to current and past control errors. In each step of the call, the
manipulated variables in the vector u are optimized for the set control horizon Nu.

u(k | k), u(k + 1 | k), u(k + 2 | k), . . . , u(k + Nu − 1 | k) (15)

The method for calculating the manipulated variable involves minimizing the differ-
ence between the predicted values of the controlled variable and the vector of future desired
values (w(k + p | k)) within the prediction horizon, denoted as N, where p = 1, ..., N. The
reference trajectory r is obtained from the desired values w for each time step k. Only
the calculated values of the manipulation variables in the current step k (i.e., u(k | k)) are
used for system control, while the rest are ignored. The manipulated variable sequence
(15) is recalculated at each control step. The prediction horizon N is typically smaller than
the control horizon Nu, i.e., N ≤ Nu. The internal MPC prediction model predicts the
behavior of the controlled system, with future plant outputs (i.e., y(k + p) for p = 1, ..., N)
calculated based on the current plant states x(k) and future values of manipulated variables
u(k + p) for p = 1, ..., Nu.

Interesting results from the application of the UCG model predictive control were
achieved in work [41]. The authors verified the so-called adaptive model-predictive control
(AMPC), which involves continuously adjusting the internal predictive model of the process.
For UCG process imitation, the authors utilized a machine learning model in conjunction
with MPC, as shown in Figure 25.

A piecewise-linear multivariate adaptive regression splines (MARS) model for calorific
value and temperature was created to imitate UCG. The proposed MPC optimized three
manipulation variables (i.e., u1 = injected airflow (m3/h), u2 = injected oxygen flow, and
u3 = outlet relative pressure (Pa)) given by the vector u = (u1, u2, u3). In each control step,
this model was linearized to an autoregressive-exogenous (ARX) model and transformed
into a state space model to adapt the MPC internal prediction model.
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Figure 25. Structure of an adaptive MPC [41].

To account for the changing parameters of the prediction model at run-time, the AMPC
utilizes a linear-time-varying Kalman filter to estimate the states of the prediction model.
The AMPC updates the internal prediction model and nominal conditions at each sampling
period. The model and nominal conditions remain constant over the prediction horizon.
The controlled system is linearized at the nominal operating point, and in the case of AMPC,
the nominal operating points are updated to align with the updated plant model. The
UCG plant model was expressed, considering deviations from the nominal conditions.
The general state-space form of the linearized prediction model of UCG with p inputs, q
outputs, and n states has the following form [41]:

x(k + 1) = x + A(x(k)− x) + B(ut(k)− ut) + ∆x

y(k) = y + C(x(k)− x) + D(ut(k)− ut),
(16)

where x is the state vector, y is the output vector, u is the vector of manipulation variables,
A is the state matrix with dimension (n× n), B is the input matrix with dimension (n× p),
C is the output matrix with dimension (q× n), and D is the feedthrough (or feedforward)
matrix with dimension (q× p).

In AMPC, the matrices A, B, C, and D are updated continually. The vector ut rep-
resents a combination of plant input variables, including measured and unmeasured
disturbances. The variables x, ∆x, ūt, and ȳ represent nx nominal states, nx nominal state
increments, nut nominal manipulation variables, and ny nominal measured outputs, which
are also updated.

The solution to the optimization problem involves using quadratic programming (QP)
to determine the optimal manipulated variables for each control interval. The cost function
is minimized and takes the following form:

J(zk) =
p−1

∑
i=1

{[
eT

y (k + i)Qey(k + i)
]
+[

eT
u (k + i)Rueu(k + 1)

]
+[

∆uT(k + i)R∆u∆u(k + i]
}
+ ρεε

2
k,

(17)

where zk expressed as zT
k =

[
u(k | k)T u(k + 1 | k)T . . . u(k + p− 1 | k)T εk

]
) repre-

sents the decision about the manipulation variables adjustment; Q, Ru, and R∆u are positive
semi-definite weight matrices; ey(k + i) and eu(i + k) represents vectors of control errors;
∆u(k + i) is the vector of control variables increments; k is the current control interval; p is
the number of prediction horizon intervals; εk represents a dimensionless scalar quadratic
programming slack variable at control interval k used for constraint softening, and ρε is the
constraint violation penalty weight.
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The simulation model (shown in Figure 26) was designed in MATLAB/Simulink®.
The measured plant output was used to track the setpoint during the simulation. The
prediction horizon was set to 10 s, while the control horizon was set to 2 s. The linearized
MARS model was used to obtain discrete-state space matrices for the internal prediction
model of MPC. The linearized plant model was linked with the MPC block. An initial
plant model was used to initialize online polynomial estimation, and the Kalman filter was
used for recursive online estimation of the ARX model. This model was converted into a
discrete state space form corresponding to the internal prediction model of MPC. The MPC
in each k step solves the optimization problem and minimizes the cost function (17) based
on output predictions over the prediction horizon of p steps. Via minimization, we obtain a
sequence of current and future control moves while only the first one is implemented, i.e.,
u(k). During the simulation with MPC, no disturbance was introduced, and the only noise
was added to the manipulated and output variables to simulate the actual conditions.

Figure 26. Simulation model of MPC [41].

The results show that the setpoint was successfully tracked with the measured plant
output. Furthermore, the stabilization of syngas calorific value by MPC performs better
than the discrete PI controller regarding the sum of control errors (see Figure 27). In the
simulation, the PI controller calculated only one manipulation variable (i.e., airflow) to
track the reference calorific value.

Figure 27. Syngas stabilization by the PI controller and MPC [41].

Figure 28 shows a comparison of the performance of the PI controller and the adaptive
MPC with a single manipulation variable when the calorific value is stabilized to only
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one setpoint. The simulation results showed that the MPC controller achieves better
stabilization (i.e., without overshoot and with a shorter settlement time) than the classical
PI controller.

Figure 28. Comparison of calorific value stabilization by the PI controller and MPC for one setpoint.

Figure 29 shows the behavior of three optimized manipulation variables during
MPC. The behavior of simulated temperature at optimized manipulation variables is
demonstrated in Figure 30. The algorithm used constraints on manipulation variables that
result from technological limitations [41].

Figure 29. Optimized manipulation variables during MPC [41].

Figure 30. Effect of MPC on temperature [41].
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The findings indicate that the optimization of manipulation variables can serve as a
substitute for manual control in UCG. Furthermore, the quality of syngas is closely tied to
the reference value, optimized manipulation variables, and constraints applied in MPC.

Achieving an effective control of oxygen concentration in oxygen-enriched air during
gasification is challenging due to nonlinearity and unknown disturbances, making it
complex to obtain an accurate dynamic model complex. To overcome this control challenge,
Hou et al. [97] proposed an adaptive predictive control approach, a data-driven control
method. This approach is based on model-free dynamic linearization combined with local
learning, and involves prediction mechanism, utilizing only input-measured data. The
researchers applied this control approach to the united gas improvement (UGI) gasification
process for syngas production in the industry.

Due to its nonlinearity, controlling the UCG process is challenging, and traditional
nonlinear control methods can be complex and inefficient. Chaudry et al. [42] proposed a
constrained linear model for the model predictive control (MPC) of the UCG process to
address this issue. This control method aims to track the desired calorific value of the syngas
while satisfying relevant constraints. The unknown states of the MPC internal predictive
model were estimated using a linear adaptive Kalman filter (AKF) and an unscented
Kalman filter (UKF). The proposed MPC control was compared with other control methods,
such as an unscented Kalman filter predictor, MPC based on gain scheduled modified Utkin
observer, and sliding mode control (SMC). The results indicated that MPC with a linear
adaptive Kalman filter outperformed other control methods regarding the absolute relative
root-mean-squared error. Moreover, the proposed MPC was more robust to changes in
initial measurement values and process covariances [42].

The proposed nonlinear control-oriented model of UCG in nonlinear form has the
following statement [37,42]:

ẋ = f (x) + g1u + g2δ (18)

where x is the column state vector, u is the manipulated variable that represents the molar
flux of injected gases (mol/cm2/s), and δ is input disturbance in terms of the flow rate of
steam (moles/cm2/s). The function f (x) depends on stoichiometric coefficients pR (i.e.,
for CO, CO2, H2, CH4, H2O, O2, and tar) and the approximation of the spatial derivative.
The stoichiometric coefficients indicate the relative number of moles of each reactant and
product involved in a chemical reaction. The function also depends on the specific heat
capacity of solids, the heat transfer coefficient, the temperature of solid and gas, i.e., Ts and
T (K), molecular weights, and the heats of i-th chemical reactions, i.e., char oxidation and
steam gasification. Parameter g1 depends on the percentages of H2O, O2, and N2 in u. The
parameter g2 depends on the length of the reactor L (cm). The chemical reactions that play a
significant role in kinetics are coal pyrolysis, char oxidation, and steam gasification [39,89].

The state vector has 11 elements (i.e., UCG states) and is formulated as the following [42]:

x =
[
ρcoal ρchar Ts CCO CCO2 CH2 CCH4 Ctar CH2O CO2 CN2

]T, (19)

where Ts represents the temperature of solid coal (K), Ci are the concentrations of gases
(mol/cm3), and ρi are the densities of solid and char.

The calorific value Hv of the syngas (kJ/mol) is calculated from the measured con-
centration of CO, H2, and CH4. The proposed model and MPC consider that the analyzer
measures the gas components designated in the following vector [42]:

ym =
[
CCO CCO2 CH2 CCH4 Ctar CO2 CN2

]T. (20)
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For MPC purposes, the model (18) is discretized using the Euler method and is
subsequently decomposed using a quasi-linear approach. The result is a model of the
system in the state space [42]:

x(k+1)︷ ︸︸ ︷[
∆x(k + 1)
y(k + 1)

]
=

A︷ ︸︸ ︷[
A OT

CA 1

] x(k)︷ ︸︸ ︷[
∆x(k)
y(k)

]
+

∆︷ ︸︸ ︷[
B

CB

]
∆u(k)

y(k) =

C︷ ︸︸ ︷[
O 1

][ ∆x(k)
y(k)

] (21)

where A, B, C, are system matrices, and O ∈ R1×11 is the vector containing all zeros to
formulate the augmented form for the UCG system.

MPC aims to ensure that the calorific value Hv from the UCG follows the setpoint
ri. The control algorithm also restricts the control inputs u(k), which are given by the
hardware limitations. The proposal loads the constraints on the manipulation variable u
and its increment ∆u.

At the initial state of the system x(ki), where ki is the time index, the MPC finds a
sequence of control inputs ∆U = {∆u(ki), ∆u(ki + 1), . . . , ∆u(ki + Nc − 1)}, where Nc is
the so-called control horizon. This goal is achieved by minimizing the cost function over a
finite time prediction horizon Np in the following form [42]:

J = (RS − Y)T(RS − Y) + ∆UR∆U (22)

where column vector Rs represents the setpoints for Hv. The diagonal matrix R takes the
form R = rw INc×Nc(rW > 0), where rW is a tuning parameter that limits the rate of change
of the control input ∆U.

The prediction over horizon Np can be calculated as the following:

Y = Fx(ki) + φ∆U (23)

where matrices F and φ are computed using the augmented form (21) over specified
horizons (i.e., Np and Nc), which can be of equal length [42].

The MPC’s optimization problem aims to find the optimal control parameter vector
(∆U) that satisfies the constraints for u and ∆u while minimizing the objective function
presented in Equation (22). The internal prediction model of the proposed MPC consists of
eight measured states represented by the vector ym (20). The remaining four states, which
are ρcoal , ρchar , Ts, and CH2O, are unmeasured and require estimation by a state estimator.
To estimate these unknown states, the adaptive Kalman filter (AKF), unscented Kalman
filter (UKF), or gain-scheduled modified Utkin observer (GSMUO) [90] can be utilized [42].
The schematic representation of the MPC implementation for UCG is illustrated in Figure 31.

Figure 31. Scheme of MPC implementation for UCG [42].



Energies 2023, 16, 3458 27 of 36

The effectiveness of the designed control is demonstrated in Figure 32a, where the MPC
with various state estimators, dynamic integral sliding mode control, and GSMUO (DISMC-
GSMUO) [89] are compared in terms of calorific value stabilization. Figure 32b shows the
corresponding manipulation variable behavior for the different control techniques.

Figure 32. Simulation of MPC: (a) syngas tracking by MPC with various state estimators and with
sliding mode control, (b) behavior of manipulation variable of MPC with various state estimators
and with sliding mode control [42].

The simulation was carried out in two modes: open-loop and closed-loop. In the
open-loop mode, the molar flux of the injected gas mixture was kept constant to ensure that
Hv reaches its desired setpoint [37,89]. The operations of the estimators in open-loop mode
help to overcome the errors in initial state estimation. On the other hand, in the closed-loop
mode, MPC starts tracking the reference trajectory of the calorific value [42].

3. Discussion

Presented approaches have been investigated in recent years and tested via simulation
or experimentally. The methods differ mainly in the complexity of the design and program
implementation. Most of the researched advanced control methods have focused on
maximizing or stabilizing the calorific value in the produced syngas. Table A1 in the
Appendix A section show the summarized general advantages and disadvantages of the
investigated advanced control techniques and refer to known applications in UCG.

A potential application of adaptive control in UCG is to control the injection of air
or oxygen into the underground coal seam to optimize gas production while maintaining
safe operational conditions. Another potential application of adaptive control in UCG is to
control the flow of water or other fluids used to maximize gas production and to prevent
blockages or other operational problems. The adaptive control system can adjust the
injection rate based on online measurements of gas production and other process variables,
such as temperature and pressure, to maintain optimal performance and to prevent the
formation of hot spots or other safety hazards. It has been shown that the adapted controller
can improve temperature stabilization in the oxidation zone and the oxygen concentration
in the syngas. These process indicators impact on the chemical reactions, and ultimately,
the calorific value of the syngas. The adaptive control system can adjust the flow rate
based on online fluid pressure measurements, flow rate, and other process variables. It can
adapt its behavior in real-time to compensate for changes or disturbances in the system.
Overall, adaptive control can provide a powerful and flexible control strategy for UCG.
However, it is essential to carefully evaluate the suitability of adaptive control for a given
UCG process, and to design and optimize the adaptive control system carefully to ensure
stability, accuracy, and robustness.
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The extremum seeking control (ESC) of UCG can optimize a system’s performance by
iteratively adjusting its input until it reaches the optimal value of a chosen performance
metric.

Model-based ESC uses a mathematical model of the UCG processes being controlled
to optimize its performance. For example, model-based ESC can optimize the air or oxygen
injection rate to maximize the syngas production or its calorific value while minimizing
energy consumption and controlling the temperature and pressure to within safe limits.
Optimal control can be achieved by developing a mathematical model of the UCG process
that captures its dynamics, using it to design an optimization algorithm to maximize gas
production while satisfying the operational constraints. Model-based ESC can also improve
the control of UCG processes in the presence of uncertainties and disturbances, such as
changes in coal properties or geological conditions. By updating the model parameters and
the optimization algorithm based on online measurements, model-based ESC can adapt to
these changes and maintain optimal performance. Model-based ESC represents a subclass
of adaptive control. The model can be continuously adapted based on measured data (e.g.,
a regression model).

A model-free ESC of UCG does not require a mathematical model of the controlled
system. This control approach can provide a simple, flexible strategy that offers improved
robustness and reduced design effort. Model-free ESC can adjust the air or oxygen injection
rate in UCG processes to optimize gas production while maintaining safe operational
conditions. This can be achieved by adjusting the injection rate based on online gas
production measurements and other process variables. In addition, more manipulation
variables of UCG can be optimized directly. This can be achieved by using heuristics or
empirical data to adjust the injection rate and to seek the optimal value that maximizes
syngas production. In model-free ESC, the optimal control is obtained directly in an
experimental way. Perturbations are artificially introduced into the process using control
variables, for example, to calculate gradients, and an objective function is calculated from
the measurements of the output process variables.

On the second side, model-free ESC may have some limitations compared to model-
based ESC. For example, model-free ESC may be more sensitive to measurement noise and
other disturbances than model-based ESC, which can affect the accuracy of the optimization
results. Additionally, model-free ESC may not provide the same level of insight into the
underlying behavior of the UCG process as model-based ESC.

Model-free ESC offers a more straightforward and flexible control strategy for UCG
processes, which can be helpful when developing a mathematical model of the process
is difficult or not feasible. However, it is essential to carefully evaluate its suitability for
a given UCG process and to weigh the potential advantages and disadvantages before
implementing it. While ESC can be a robust control strategy of UCG, it is essential to
carefully evaluate its suitability for a given system or process, and to weigh the potential
advantages and disadvantages before implementing it.

Model-based robust control has potential applications in UCG processes. UCG in-
volves the conversion of coal to a gas product using in situ combustion, which can create
significant process uncertainties due to variations in the coal quality and the heterogeneity
of the coal seam. These uncertainties make it challenging to maintain optimal gasification
conditions and to control the quality of the gas product. Model-based robust control uses
a mathematical model of the UCG process being controlled to design a controller that is
robust to uncertainties and variations in the system. The controller can adapt to varia-
tions in the coal quality and maintain optimal gasification conditions. The controller can
be designed to be robust to uncertainties such as changes in the coal seam composition,
temperature, and pressure, as well as other external factors such as air or water ingress. A
robust model-based control algorithm can help to improve the efficiency and productivity
of UCG operations by maintaining optimal gasification conditions and improving the
quality of the gas product. It can also help to reduce the environmental impact of UCG
by minimizing waste and emissions. However, developing an accurate model of the UCG
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process can be challenging due to the complex physics involved in the process, making
model validation and calibration critical for the success of the control system.

In UCG, the sliding mode control (SMC) application was the most highly researched
type of robust control with a model. Model-based sliding mode control (SMC) has excellent
potential to be applied in UCG processes. The designed SMC control with a 1-D packed
bed model of UCG brought perfect results in stabilizing the calorific value of syngas. In
general, sliding mode control is a control method that can address these challenges by
creating a robust control system that is insensitive to uncertainties and disturbances. It does
this by creating a sliding surface that the system trajectory is forced to converge to, which
can improve the stability and robustness of the system. In the context of UCG, model-
based SMC can be used to control critical process variables such as temperature, pressure,
and airflow rate to maintain optimal gasification conditions and to improve the quality
of the gas product. However, developing an accurate model of the UCG process can be
challenging due to the complex physics involved in the process, making model validation
and calibration critical for the success of the control system. In addition, some system
states are immeasurable and must be estimated by a state estimator (e.g., a Kalman filter or
an Utkin observer). The controller can be designed to be robust to uncertainties such as
changes in the coal seam composition, temperature, and pressure, as well as other external
factors such as air or water ingress. SMC can handle uncertainties and disturbances in the
gasification process, providing robust and accurate control of gasification agents’ flow rates.
Pressure control is another critical parameter in UCG, and SMC can be used to control
the pressure in the system. SMC can control the temperature of the gasification reaction
and provide a fast response and high accuracy, minimizing temperature fluctuations and
ensuring that the process operates at the desired temperature. Overall, sliding mode
control is a powerful technique. Its robustness, fast response, and high accuracy make it
particularly useful for controlling complex and uncertain systems such as UCG. As a result,
the advantages of SMC often outweigh the disadvantages, and it remains a popular choice
for controlling complex and uncertain systems.

Overall, model-based robust control can provide a powerful and flexible control strat-
egy that can improve the performance, stability, and efficiency of UCG operations. However,
developing an accurate model and designing a robust controller requires high expertise and
computational resources, making it more complex and challenging than some control strate-
gies. Additionally, it may only be suitable for some applications or system configurations
and may have limited flexibility in handling unexpected or extreme conditions.

The last investigated technique for advanced UCG control was model predictive
control (MPC). MPC offers significant advantages for systems with constraints, nonlinear
dynamics, and time-varying parameters. In addition, its predictive ability and optimization
capabilities make it a powerful control technique that can achieve a desired performance
while maintaining safety and feasibility constraints.

MPC can be applied to UCG to improve process control and efficiency. One application
of MPC for UCG is controlling the UCG syngas calorific value and reactor temperature.
Syngas caloric value is the essential indicator of the UCG operation. MPC can be used to
optimize the ratio of air, oxygen, and steam fed to the UCG reactor to maximize syngas
production while minimizing the production of unwanted byproducts. On the other hand,
maintaining the UCG reactor temperature to within a specific range is crucial to ensure an
efficient and safe UCG process. MPC can be used to predict and control the operational
parameter by adjusting the flow rates of the gasification agents and outlet under pressure.
MPC can stabilize the selected output variable of the UCG process (i.e., various quality
indicators of UCG) by optimizing the manipulation variables that affect the UCG process.
This optimization is usually performed in specified constraints on manipulation variables.
However, the disadvantage may be the need to spend more effort to create an internal
prediction model of MPC. In addition, the MPC prediction model expressed in the state
space requires solving of the optimization using quadratic programming (QP) methods
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and continuously estimating the system states using state estimators (e.g., a Kalman filter),
which can complicate the program solution due to complex matrix calculations.

Overall, MPC has several potential applications for UCG process control and opti-
mization, which can help to improve the process’s efficiency and safety.

This study showed the great potential of advanced UCG control methods. The most
promising is robust control based on the sliding mode, and model predictive control in
stabilizing the calorific value to the desired value. However, these approaches require
prediction models and state estimators. Furthermore, applications to regulatory hardware
can also be problematic. On the other hand, simulation results and experimental field
trials brought about outstanding results, confirming the application’s suitability. However,
it should be noted that only long-term technical experience for in situ gasification will
show which advanced control methods are more suitable for investment in terms of the
complexity of design, practical implementation, and achieved results.

4. Conclusions

Several approaches to the advanced control of UCG were presented in this review
study. All of the control methods shown have the potential to be applied to in situ UCG
practice. The study pointed out the existence of simple solutions based on discrete con-
trollers with continuous adaptation or algorithms for the search of the extremum of the
monitored quantity in UCG. Simple control algorithms based on extremum seeking can be
helpful if designing the mathematical model of the UCG is costly. Equally beneficial can be
the feedback adaptive control at the stabilization level. These algorithms can be quickly
implemented on industrial automation hardware. However, advanced control research has
shown the great potential of advanced control methods that use a mathematical model.
Robust control based on a sliding mode controller and a 1-D control-oriented packed bed
model proved to be a promising solution for stabilizing the calorific value of syngas. An-
other excellent potential for the stabilization of calorific value or underground temperature
is model predictive control with a prediction model in the state space. Although these meth-
ods require more effort in model design and control law calculation, their benefits outweigh
their disadvantages. The development follows the path of modeling UCG as a process
with multiple inputs and outputs. This review showed that the future belongs to robust
control methods where algorithms can withstand various uncertainties and disturbances in
the process UCG uncertainties, and disturbances in the process environment. This type of
control can improve the reliability and stability of UCG processes, even in the presence of
system uncertainty or measurement noise. Overall, advanced control techniques have the
potential to improve the performance and safety of UCG processes significantly. However,
these techniques also require a high level of technical expertise and specialized software
tools, and their implementation can be complex and time-consuming. It is essential to
consider the benefits and limitations of advanced control in UCG processes before making
any decisions about their use.
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Appendix A

Table A1. Comparison of advantages and disadvantages of advanced control methods.

Method Advantages Disadvantages UCG Applications

Adaptive Control
(AC)

Improved performance: Adaptive control can improve the per-
formance of a system by adjusting its parameters in real-time to
compensate for changes or disturbances in the system or distur-
bances.
Robustness: Adaptive control can be more robust to changes in
the system and disturbances than non-adaptive control, as it can
adjust its behavior to compensate for these changes.
Reduced reliance on accurate models: Adaptive control can work
effectively even if the system being controlled has uncertain or
unknown parameters, as it can adapt to changes in the system
without relying on a detailed model.
Increased flexibility: Adaptive control can be applied to many
systems and processes, including those with highly nonlinear and
dynamic behaviors.
Improved efficiency: Adaptive control can improve a system’s
energy efficiency by adjusting its behavior to minimize energy
consumption and waste.

Complexity: Adaptive control systems can be more complex than
non-adaptive control systems, as they may require additional
sensors, algorithms, and controllers to adjust their behavior in
real-time.
Tuning difficulties: Adaptive control systems can be difficult to
tune and optimize, as they require a careful selection of control
parameters and adaptation algorithms to achieve optimal perfor-
mance.
Computational requirements: Adaptive control systems may have
higher computational requirements than non-adaptive control sys-
tems, requiring real-time sensor data processing and adaptation
algorithms.
Stability issues: Adaptive control systems may be prone to stabil-
ity issues, such as oscillations or instability, if not designed and
implemented correctly.
Sensitivity to noise: Adaptive control systems may be sensitive to
measurement noise and other disturbances, affecting their accu-
racy and stability.

[28,68,71]

Model-free
extremum seeking
control

Simplicity: Model-free ESC is generally simpler to implement
than model-based ESC, as it does not require the development
and validation of a mathematical model of the system.
Robustness: Model-free ESC can be more robust to model un-
certainties and discrepancies between the model and the actual
system behavior, as it does not rely on an optimization model.
Flexibility: Model-free ESC can be applied to many systems and
processes, including those with highly nonlinear and dynamic
behaviors.
Reduced computational requirements: Model-free ESC may re-
quire less computational power than model-based ESC, as it does
not require the computation of model-based optimization algo-
rithms.
Reduced design effort: Model-free ESC can require less design
effort than model-based ESC, particularly for complex systems
where developing an accurate model may be challenging.

Reduced accuracy: Model-free ESC may not achieve the same
level of accuracy as model-based ESC, as it does not use a mathe-
matical model of the system to optimize performance.
Sensitivity to noise: Model-free ESC may be more sensitive to
measurement noise and other disturbances in the system, which
can affect the accuracy of the optimization results.
Difficulty in tuning: Model-free ESC may require more effort in
tuning its parameters than model-based ESC, as it relies on heuris-
tics and empirical data to optimize performance.
Limited insight: Model-free ESC may not provide the same level
of insight into the underlying behavior of the system as model-
based ESC, as it does not use a mathematical model to capture the
system dynamics.
Limited applicability: Model-free ESC may not be suitable for all
systems and processes, particularly those with highly complex
and nonlinear dynamics.

[25,31,32,67,68,80,83]

Model-based
extremum seeking
control (ESC)

Improved accuracy: By using a model of the system, model-based
ESC can achieve higher accuracy in finding the optimal control
input, leading to better performance.
Better adaptability: Model-based ESC can adapt to changes in
the system or process being controlled by updating the model
parameters, leading to more robust control.
Reduced complexity: Model-based ESC can simplify the control
design by using a mathematical model of the system to capture
its behavior rather than relying on empirical data.
Increased flexibility: Model-based ESC can be applied to various
systems and processes, including those with nonlinear and time-
varying dynamics.
Increased insight: By using a model of the system, model-based
ESC can provide insights into the underlying dynamics and be-
haviors of the system, which can inform future design and opti-
mization efforts.

Model uncertainty: The accuracy of the optimization results in
model-based ESC depends on the accuracy of the mathematical
model of the system, which may not always be completely accu-
rate. Model uncertainty can lead to suboptimal performance or
even instability in the control system.
Model complexity: Developing a mathematical model of the sys-
tem can be a complex task, particularly for systems with highly
nonlinear and dynamic behaviors. Model complexity can lead
to increased computational requirements and increased design
effort.
Model validation: The accuracy of the model used for optimiza-
tion must be validated through experimentation or other means.
Model validation can be time-consuming and costly.
Model mismatch: Even with accurate models, there may be dis-
crepancies between the model and the system’s actual behavior,
which can lead to suboptimal performance.
Implementation challenges: Implementing model-based ESC may
require specialized hardware or software, leading to increased
costs or design effort.

[25,33,83]
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Table A1. Cont.

Method Advantages Disadvantages UCG Applications

Sliding mode
control (SMC)

Robustness: SMC is a robust control technique that can handle
uncertainties and disturbances in the system. This means that it
can maintain control even when there are changes in the system
or external factors affecting the process.
Fast response: SMC has a fast response time due to the sliding
mode motion, which allows it to track reference signals quickly
and accurately.
High accuracy: SMC has high accuracy because it eliminates the
steady-state error that is common in other control techniques. This
means that it can achieve a high level of precision in controlling
the system.
Low sensitivity: SMC is insensitive to modeling errors and un-
certainties in the system. This makes it a suitable technique for
controlling systems with significant uncertainties or disturbances.
Simple implementation: SMC can be implemented easily and
with a relatively simple design, making it a practical choice for
many applications.
Energy efficiency: SMC can reduce energy consumption by mini-
mizing overshoots and improving the transient response of the
system.

Chattering: One of the most significant drawbacks of SMC is the
possibility of chattering, which is a high-frequency oscillation
that can occur around the sliding surface. Chattering can cause
excessive wear and tear on the system and can be audible, making
it unsuitable for certain applications.
High control effort: SMC can require a high control effort, which
can lead to increased energy consumption and wear on the system
components.
Dependence on model accuracy: SMC is dependent on an accu-
rate model of the system, and any modeling errors can lead to
poor performance or instability. This means that modeling and
identification are critical for the success of SMC.
Parameter tuning: The design of the sliding mode controller re-
quires the selection of appropriate control parameters, which can
be challenging and time-consuming. Additionally, the parame-
ters may need to be adjusted based on changes in the system or
operating conditions.
Implementation complexity: SMC requires the implementation
of a sliding mode motion, which can be more complex than other
control techniques. This can require additional hardware and
software components, increasing the overall complexity of the
system.
Sensitivity to noise: SMC can be sensitive to noise in the system,
which can lead to instability or poor performance. This means that
noise filtering and signal conditioning are critical for the success
of SMC in noisy environments.

[36,37,39,84,88–92]

Model predictive
control (MPC)

Handling of constraints: MPC can handle input and output con-
straints in a natural way. This means that the controller can take
into account physical and safety constraints when generating con-
trol inputs, ensuring that the system operates within safe and
feasible limits.
Predictive ability: MPC uses a model of the system to predict
future behavior and optimize the control input accordingly. This
means that the controller can anticipate future changes in the sys-
tem and take appropriate action to maintain desired performance.
Optimization: MPC optimizes a performance criterion over a fi-
nite time horizon. This means that the controller can generate
control inputs that not only maintain stability but also optimize a
desired performance criterion, such as energy efficiency or pro-
duction rate.
Flexibility: MPC can handle multivariable systems with complex
dynamics, making it a flexible control technique. It can also handle
systems with time-varying parameters and nonlinear dynamics.
Adaptability: MPC can be adapted to handle changing operating
conditions or to account for model uncertainty. This means that
the controller can be updated or re-tuned as needed to maintain
performance.

Computational complexity: MPC requires the solution of an opti-
mization problem at each time step, which can be computationally
intensive. This means that the controller may require significant
computational resources and may not be suitable for real-time
control applications.
Model accuracy: MPC relies on an accurate model of the system,
which can be challenging to develop and maintain. If the model is
inaccurate, the controller may generate suboptimal control inputs
or even destabilize the system.
Sensitivity to model errors: MPC is sensitive to errors in the sys-
tem model. Small errors in the model can result in significant
differences between predicted and actual system behavior, lead-
ing to suboptimal control inputs or even instability.
Need for tuning: MPC requires the tuning of several parameters,
including the prediction horizon, control horizon, and weighting
factors. Tuning these parameters can be time-consuming and re-
quires expertise.
Limited disturbance rejection: MPC is designed to optimize the
system’s behavior over a finite time horizon. This means that
it may not be able to handle unforeseen disturbances that occur
outside the prediction horizon.
Lack of transparency: MPC is a black-box control technique,
which means that it may be difficult to understand how the con-
troller is generating control inputs or why it is making certain
decisions.

[41,42] in UCG
and [93–97] in gasi-
fication industry.
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51. Kačur, J.; Durdán, M.; Laciak, M.; Flegner, P. A Comparative Study of Data-Driven Modeling Methods for Soft-Sensing in
Underground Coal Gasification. Acta Polytech. 2019, 59, 322–351. [CrossRef]

52. Laciak, M.; Kačur, J.; Kostúr, K. Simulation Analysis for UCG with Thermodynamical Model. In Proceedings of the 9th
International Carpathian Control Conference ICCC’2008, Sinaia, Romania, 25–28 May 2008; University of Craiova, Faculty of
Automation, Computers and Electronics: Craiova, Romania, 2008; pp. 358–361.
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72. Bobál, V.; Böhm, J.; Fessl, J.; Macháček, J. Process Modelling and Identification for Use in Self-tuning Controllers. In Digital
Self-tuning Controllers: Algorithms, Implementation and Applications (Advanced Textbooks in Control and Signal Processing); Springer:
Berlin/Heidelberg, Germany, 2005; pp. 21–52. [CrossRef]

73. Trollberg, O.; Jacobsen, E.W. Greedy Extremum Seeking Control with Applications to Biochemical Processes. IFAC-PapersOnLine
2016, 49, 109–114. [CrossRef]

74. Dewasme, L.; Wouwer, A.V. Model-Free Extremum Seeking Control of Bioprocesses: A Review with a Worked Example. Processes
2020, 8, 120. [CrossRef]
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76. Krstić, M.; Wang, H.H. Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 2000,
36, 595–601. [CrossRef]

77. Leblanc, M. Sur l'électrification des chemins de fer au moyen de courants alternatifs de fréquence élevée. Rev. Générale L'Électricité
1922, 12, 275–277.

78. Zhang, C.; Ordóñez, R. Robust and adaptive design of numerical optimization-based extremum seeking control. Automatica 2009,
45, 634–646. [CrossRef]

79. Zhang, C.; Ordóñez, R. Design of Extremum Seeking Control. In Extremum-Seeking Control and Applications; Springer: London,
UK, 2012; pp. 47–66. [CrossRef]
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