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Abstract: One major cost of improving the automotive fuel economy while simultaneously reducing
tailpipe emissions is increased powertrain complexity. This complexity has consequently increased
the resources (both time and money) needed to develop such powertrains. Powertrain performance is
heavily influenced by the quality of the controller/calibration. Since traditional control development
processes are becoming resource-intensive, better alternate methods are worth pursuing. Recently,
reinforcement learning (RL), a machine learning technique, has proven capable of creating optimal
controllers for complex systems. The model-free nature of RL has the potential to streamline the
control development process, possibly reducing the time and money required. This article reviews
the impact of choices in two areas on the performance of RL-based powertrain controllers to provide a
better awareness of their benefits and consequences. First, we examine how RL algorithm action con-
tinuities and control–actuator continuities are matched, via native operation or conversion. Secondly,
we discuss the formulation of the reward function. RL is able to optimize control policies defined
by a wide spectrum of reward functions, including some functions that are difficult to implement
with other techniques. RL action and control–actuator continuity matching affects the ability of the
RL-based controller to understand and operate the powertrain while the reward function defines
optimal behavior. Finally, opportunities for future RL-based powertrain control development are
identified and discussed.

Keywords: reinforcement learning; powertrain control; review

1. Introduction

Over the years, rising fuel economy standards and required reductions in greenhouse
gas emissions have necessitated increases in powertrain complexity. Increases in power-
train complexity come in the form of additional actuators and control systems within the
internal combustion engines (ICE) and/or the addition of various electrification methods
within the powertrain. Recently, powertrain electrification has been a popular choice
to tackle the increase in vehicle operating standards. Powertrain electrification allows
for capturing otherwise waste energy within the powertrain and the ability to improve
vehicle performance using technologies such as four-wheel independent drive (4WID).
The exact amount of electrification varies vehicle to vehicle, and includes solutions such
as battery electric vehicles (BEVs), fuel cell vehicles (FCVs), and hybrid electric vehicles
(HEVs). Similarly to ICE powertrains, BEVs and FCVs are powered by a single power
source, a battery, and a fuel cell, respectively. Hybrid vehicles include any powertrain that
contains multiple energy storage mechanisms. These sources can be any combination of
batteries, ultracapicators, ICEs, fuel cells, and/or waste energy recovery systems with the
exact combination varying application to application. The added powertrain complexity
significantly increases the effort needed to calibrate control systems. Many recent studies
utilize reinforcement learning (RL) for powertrain control applications, seeking to improve
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vehicle performance or reduce calibration efforts. This manuscript summarizes the existing
literature and provides a review of two critical aspects of RL-based powertrain control:
agent selection and reward function formulation.

Control techniques used within the automotive industry can be broken down into
rule-based and optimization-based categories, a selection of which are shown in Figure 1.
Optimization-based control techniques are rooted in optimal control theory and utilize an
optimizer to exploit information about the controlled system to schedule control actions
that minimize/maximize expected returns as defined by a cost/reward function.

Figure 1. A selection of control techniques and how they fit into the overall landscape of options.

Classically, powertrain controllers have been developed using rule-based techniques.
Rule-based techniques are well-suited for control of actuators with mixed continuities
as rules can be written in discrete and continuous domains. Furthermore, rules can be
written case by case to ensure adherence to regulatory requirements while maintaining
high performance. However, rule-based methods are poorly equipped to handle the non-
linear complexity increases associated with emerging powertrain configurations. Adding
any technology to a powertrain exponentially increases the calibration effort needed to
obtain the reductions in fuel economy each technology promises [1]. Beyond a specific
complexity level, rule-based techniques driven by calibrated tables [2,3] break down.
The exponential increase in computing requirements from the growth of the design space
is called the curse of dimensionality [4]. This curse is an active limitation in powertrain
development and is especially present as the powertrain is hybridized [5]. Intelligent
design of experiment processes [6,7] and machine learning [8] have been used to reduce the
calibration burden of rule-based control techniques, but these only temporarily mitigate
the curse of dimensionality rather than eliminate it. The challenge to produce a standards-
compliant powertrain subject to the time and financial pressures within the automotive
industry has resulted in the investigation of optimization-based control techniques.

Optimal control of modern powertrains is challenging for several reasons, as powertrains:

1. Are highly complex nonlinear systems. This makes representative powertrain models
difficult to derive and computationally heavy.

2. Contain a mixture of continuous and discrete actuators. Simultaneous operation in
both continuity domains is difficult for many techniques.

3. Have dynamics with timescales orders of magnitudes apart. Controlling a system
with mixed timescales requires a small time step and long optimization horizon.

4. Performance goals often conflict with regulatory requirements. Defining the control
problem mathematically can be difficult.
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Optimization-based control covers a wide breadth of techniques and can be split into
global and real-time categories, with their ability to address the challenges of modern
powertrain control differing by technique. Global techniques attempt to optimize the
performance of a system over scenarios of finite length. Real-time techniques are methods
that can run online, optimizing performance over a single time step or receding horizon.
Dynamic programming is a constrained model-based optimization technique guaranteed
to find the global optimal policy over a finite deterministic trajectory. This allows DP to
address the challenges of optimizing the performance of systems with a mixture of fast and
slow dynamics. However, the curse of dimensionality requires DP to use reduced-order
models with a small number of states and control actions. Consequently, insight gained
from DP studies must consider the implications of simplifying dynamics to levels tractable
by DP as oversimplification can produce subpar real-world performance [9].

ECMS and MPC are real-time optimization techniques capable of functioning in
deployed systems. Both techniques rely on a control-oriented model (COM) to derive
the optimal control policy which allows them to control systems with higher complexity
than DP. ECMS optimizes performance over the next time step while MPC optimizes
performance over a receding horizon. As MPC must use the COM during operation, the
COM’s computational tractability limits the length of MPC’s receding horizon [10]. This is
undesirable because using a complex model to capture all relevant dynamics can restrict
the length of the receding horizon to a point where MPC may not be able to optimize all of
the desired dynamics directly. While methods to increase the computational tractability of
COMs used by MPC have been proposed [11–13], they do not address the need of MPC to
model system performance at every time step in the receding horizon. Thus, MPC can be
formulated to address control of complex systems over short receding horizons or simple
systems over long horizons, but not both at once.

Reinforcement learning [14] is an emerging technique that can address the identified
challenges in powertrain control. Figure 2 illustrates the development process of a RL-
based powertrain control system. RL operates forward in time using trial and error and
past experiences to improve their understanding of the value of a given state and/or
action [15]. Learning from experiences bypasses the need for RL agents to understand the
underlying dynamics of the environment. This allows the environment to have unlimited
complexity. Thus, the environment can be a physical system, a virtual prototype/digital
twin, or a reduced-order model which directly addresses the challenge of powertrain
complexity.Some papers utilize higher-fidelity simulation models as the virtual “vehicle”
to capture complex component behaviors such as battery degradation [16–18] Since RL has
this model-independent nature, this literature review does not focus on exact vehicle and
powertrain plant models.

Figure 2. Example configuration of how an RL-based powertrain controller may exist within its
environment. The environment can provide the RL-based controller information from a drive cycle,
driver, and/or vehicle. Information can come directly from sensor measurements or an estimator.

Because RL uses the same underlying principles as DP, it can optimize the performance
of systems containing fast and slow dynamics. Prioritization between future rewards and
immediate rewards is controlled using a discount factor, {γ | 0 ≤ γ ≤ 1}. Selecting γ = 1
equally distributes emphasis between the present reward and every reward from all future
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steps. This is akin to the reward formulation used within dynamic programming. Similarly
to dynamic programming, when using γ = 1, the number of steps that are optimized
over must be finite to allow for a solution to exist. Typically, the optimization goal for
a powertrain controller is over the vehicle’s entire lifetime so γ must be set to a number
less than one. Setting γ < 1 also allows RL to handle stochastic environments which is
necessary for online control as real-world operation is not deterministic. To take advantage
of RL’s ability to consider long-term dynamics, γ is typically selected to be close to one,
γ ≈ 0.99, which allows RL to address the second identified challenge of powertrain
control development.

Some existing literature provides a general review of utilizing RL for automotive
powertrain control [19,20]. While these works demonstrate that it is relatively straight-
forward to address the first two challenges identified in powertrain control development,
addressing the challenges of controlling actuators with a mixture of continuities and reward
function formulation is less straightforward and must be handled on a problem-by-problem
basis. Making informed decisions in these areas is important as they influence the derived
control policy’s optimality. Critically, the magnitude of their influence depends on how
sensitive the system being studied is to these decisions in these areas. Presently, there is
no powertrain-relevant benchmark commonly used to understand how decisions made
compare to decisions made by others across the field. Instead, comparisons made within
studies use reference controllers that the authors also develop. The lack of a consistent
baseline across studies prevents the relative benefit of a decision from being understood,
inhibiting the progress of RL-based powertrain control solutions. The next best option is to
review prior RL-based powertrain control studies and examine them holistically to form
conclusions. This review is focused on RL-based controllers used within the powertrain to
optimize its local performance.

This area of investigation is chosen as local powertrain control has extensive prior
research devoted to addressing the third and forth challenges across a full spectrum of
control techniques. Critically, decisions to address these challenges influence performance
as they define the structure of the optimization problem an agent is tasked to solve. Conse-
quently, examining an algorithm’s ability to learn and how it compares to other algorithms
is outside the scope of this review but has been examined by others [14,21–24]. Additionally,
RL is actively being investigated for use in areas of vehicle development such as connected
vehicles [25] and fog computing [26]. These new technologies enable functionalities such as
transfer learning [27–30], distributed computation [31], and previewed traffic conditions [32,33].
These topics are beyond the scope of this study. However, the conclusion of this paper
regarding the agent selection and reward function formulation can be transferred to the
powertrain control of connected vehicles.

The research methodology for this review is outlined as follows: first, RL-based
powertrain control studies are identified and divided based on how they address the
mixed-continuity control and reward function formulation challenges. The matches be-
tween actuator and action continuity we have identified and examined are the control
of continuous actuator(s) with discrete action(s), control of continuous actuator(s) with
continuous output(s), and the combined control of continuous and discrete actuators. This
matching is rarely the primary subject of the study, and thus must be identified during
reading. However, studies that compare RL algorithms with differing continuities of-
ten mention discrete or continuous continuity in the study’s title. Next, the studies are
reorganized to focus on how powertrain optimization goals and constraints have been
expressed as reward functions. Goals are identified as single- or multi-objective and further
grouped by their specific objectives. The exact objective often appears in the title of the
study of single-objective studies while multi-objective studies will either label themselves
as such or state all their objectives in the title. Single objectives include the minimization of
fuel consumption, power consumption, energy losses, operation cost, tracking error, and
maximization of extracted power. Multi-objective approaches can be identified when the
author acknowledges there is more than one goal to be considered and that final trade-offs
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in performance are subject to the designer’s performance. By examining the identified
studies using these two lenses, a holistic understanding of decisions being made and their
influence on controller performance is formed, and recommendations for future research
are provided.

2. Reinforcement Learning Algorithm Selection

Reinforcement learning is an umbrella that covers many algorithms, each with its
own advantages and disadvantages. The purpose of this section is to examine factors
beyond an algorithm’s ability to learn that influence achieved performance. In particular,
consideration must go into pairing an RL algorithm with the associated control challenge.
One of the key characteristics of an RL algorithm is the continuity of the actions it takes.
Some algorithms can only make discrete actions, others are limited to continuous actions,
while some can operate in a combined continuous–discrete action space. A selection of
RL algorithms and their action continuities are shown in Table 1. Powertrain control can
require the scheduling of continuous and discrete signals, examples of which are shown in
Table 2. A summary of RL algorithms, systems they are applied to, and continuities of both
the RL algorithm and system being controlled for the studies identified in this review are
shown in Table 3.

Table 1. Action space domains of selected RL algorithms †.

Algorithm/Agent Action Space Continuity

Q-learning (table-based) [34] discrete
Deep Q-network (DQN) [35] discrete

SARSA [36] discrete
Policy gradient [37] discrete or continuous

Proximal policy optimization (PPO) [38] discrete or continuous
Deep deterministic policy gradient (DDPG) [39] continuous

Twin delayed DDPG (TD3) [40] continuous
Maximum a posteriori policy optimization (MPO) [41] discrete, continuous, or both

Constrained policy optimization (CPO) [42] discrete, continuous
† The algorithms above do not form an exhaustive list as many variations on each technique exist and new RL
algorithms are actively being proposed.

Table 2. Example signals that a powertrain controller could be expected to schedule.

Continuous Powertrain Actuators Discrete Powertrain Actuators

position gearnumber
velocity clutchon/o f f
power engineon/o f f
power ∆signaldiscrete
torque
f low

current
∆signalcontinuous

Table 3. Reward functions used in single objective RL-based powertrain control studies.

Optimization Goal Instantaneous Reward Function Constraint(s) in
Reward Function † System Controlled

minimize fuel
consumption

−ṁ f uel
parallel [43–45],

power-split [46] HEV
ṁ f uel,engine only − ṁ f uel,actual − TC parallel HEV [47,48]

−ṁ f uel − ṁe. f uel,electrical
parallel [49–51], series [52],

power-split [53] HEV
−ṁ f uel − w1 ˙SoC parallel HEV [54]
−ṁ f uel − w1|δSoC| series HEV [55]
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Table 3. Cont.

Optimization Goal Instantaneous Reward Function Constraint(s) in
Reward Function † System Controlled

−ṁ f uel − w1δSoC2 series [56–62],
power-split [63–65] HEV

−ṁ f uel − w1δSoC2 SoC power-split [66],
series [67] HEV

−ṁ f uel − w1δSoC2 action f easibility power-split HEV [68]

−ṁ f uel + w1
[
δSoC2]− series [69], parallel [70],

power-split [71] HEV
−ṁ f uel − w1δSoC2·
(SoC < SoClow ∪ SoChigh < SoC)

parallel [72], power-split [73]
HEV

−ṁ f uel − ṁe. f uel,electrical − w1|δSOC| parallel HEV [74,75]
−ṁ f uel − ṁe. f uel,electrical + w1

[
δSoC2]− parallel HEV [76,77]

1− (w1ṁ f uel + w2ṁe. f uel,electrical) series HEV [78]
−tanh(w1ṁ f uel + w2|δSoC|) series HEV [79]
−(ṁ f uel + w1δSoC2) + w2ηengine ωtransmission parallel HEV [80]

−ṁ f uel − w1δSoC2 − w2∆engineon/o f f SoC parallel HEV [81,82]

minimize power
consumption

SoC 8 × 8 EV [83]
−Pbat − TC EV with UC and battery [84]

1
Pengine

, if Pengine 6= 0
2

MinPengine
, otherwise.

SoC power-split PHEV
[85–88]

−Ė f uel − Ėelectrical parallel HEV [89,90]
c1 − (Pengine/ηengine − PORC/ηengine

+ Pbatηbat
sign(Pbat))

− w1∆engineon/o f f

SoC parallel HEV with
ORC-WHR [91]

minimize losses c1 − Lossengine − Lossbat + w1[δSoC]− series HEV [92,93]

−Lossbat − LossUC − LossDC/DC
EV with UC and
battery [94,95]

maximize
extracted power

−Pturbine + Ppump ORC-WHR [96]

minimize cost to
operate vehicle

−ṁ f uel · price f uel − ˙SoC · priceelectricity
power-split PHEV

[97–99]

−ṁ f uel · price f uel − ˙SoC · priceelectricity

− w1|δSoC|
series PHEV [100]

−Pcharge/discharge · priceelectricity SoC · (t ≡ tdisconnect) EV [101]
−Pcharge/discharge · priceelectricity

− costdegradation,bat

− w1δSoC2 · (t ≡ tdisconnect)

EV [102]

−ṁ f uel − w1costdegradation,bat parallel HEV [18]

minimize
tracking error

−kδT, k := f (δT) δT ORC-WHR [103]

−δv δv bicycle with electric
motor [104]

† Constraints are only listed if they are explicitly listed in the reward function formulation by the author.
TC indicates the existence of a terminal reward within the reward function. δX := (X − Xuser de f ined target),
X+ := max(0, X), X− := min(0, X) .

If the continuity of the RL algorithm and the signals it is scheduling do not match,
a continuity conversion must be performed. Examples of how continuity conversions
can be implemented are shown in Figure 3. Performing a continuity conversion reduces
the RL-based controller’s performance as it no longer interacts with the environment
in its native form. Using a continuous signal to control a discrete actuator results in
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approximation error as the continuous signal must approximate a discontinuous function,
see Figure 4a. Likewise, using a discrete signal to control a continuous actuator is prone to
resolution issues as the discrete signal cannot schedule action values finer than the level of
discretization implemented, resulting in suboptimal scheduling of the continuous actuator,
see Figure 4b.

(a)

(b) (c)

(d) (e)

Figure 3. Various ways RL-based controllers can interact with systems containing a mix of continuous
and discrete actuators. Implementations include: (a) using an RL agent with discrete action outputs
and a continuity conversion on some outputs for continuous actuators, (b) using an RL agent with
continuous action outputs and a continuity conversion on some outputs for discrete actuators, (c) using
an RL agent with continuous action outputs and a separate rule-based controller for discrete decision
making, (d) using two RL agents, one with discrete action outputs and the other with continuous
action outputs, and (e) using a RL agent that has both continuous and discrete action outputs.

(a) (b)

Figure 4. Illustrated example of the error created when attempting to approximate an optimal signal
with differing continuity signals. Attempting to use a continuous approximation of a discrete signal,
(a) results in rounding errors near the discrete step. Attempting to use a discrete approximation of a
continuous signal, (b) results in errors as the target signal cannot be followed exactly.
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2.1. Control of Continuous Actuator(s) with Discrete Action Output(s)

When a discrete output is used to control a continuous signal, a discrete-to-continuous
conversion must be performed. This conversion is commonly known as discretization,
and can be performed in various ways. Two different methods to perform this continuity
conversion are used by the studies identified in Table 4. The first method, Figure 5a, is to
discretize the range of the continuous action directly and is the most common approach
used by the RL-based powertrain control studies identified. The second method, Figure 5b,
defines the RL agent output as the desired change (∆) of the continuous signal from the
previous time step to the current. When using the second method, the number of outputs
for the RL agent has to be at least three: increase, decrease, and hold. Reddy et al. [105] used
the minimum quantity when developing a Q-learning-based energy management strategy
(EMS) for a fuel cell hybrid vehicle, though more than three outputs are commonly used
as it gives the RL agent greater control authority. For action spaces with more than three
outputs, it can be beneficial to use non-uniform steps. Wu et al. [63] controlled the engine
power of a power-split HEV with outputs of ∆Pengine = {−1, 0,+1,+20,+40, set 0} for
their DQN-based EMS. Neither discretization method is better than the other, as both have
limitations. The first method is limited by the level of resolution used for discretization as
too fine a resolution will result in a computationally infeasible number of discrete output
values. As stated previously, the second method can operate using as few as three discrete
outputs. However, the second method requires that the previous value of the controlled
signal is passed to the agent as a state. For RL algorithms that must discretize the state
space of the environment, the second method does not guarantee a decrease in the number
of values being tracked. In addition, a RL agent using the second method is not guaranteed
in its ability to reach any continuous action output from any previous value, which reduces
the control authority of the RL agent.

(a) (b)

Figure 5. Two ways to control continuous action signals, c ε [a, b], using an RL agent with n discrete
output steps.

Table 4. RL-based powertrain control studies, the action continuity of their chosen RL algorithm(s),
and the native continuity of the actuator(s) being controlled.

RL Algorithm(s) Study System Controlled Control Action(s) Action
Continuity

Actuator
Continuity

Value estimation [106] parallel PHEV τengine, ngear discrete combined

SARSA [107] FC PHEV PFC, weight of
penalty on Pbat

discrete continuous

Q-learning
(table-based)

[49–51,70,76,77,81,82] parallel HEV Px (x = EM or engine) discrete continuous
[46,71,85,86,108,109] power-split HEV Pbat

[66] power-split HEV τengine, ωengine
[52,56–59,67,69,78,92] series HEV Pengine

[84,94,95] battery-UC EV ibat



Energies 2023, 16, 3450 9 of 31

Table 4. Cont.

RL Algorithm(s) Study System Controlled Control Action(s) Action
Continuity

Actuator
Continuity

[17] battery-UC EV Pbat
[105] FC HEV ∆Pbat
[110] FC-battery-UC HEV Pbat, PFC
[111] FC HEV SoCmin, SoCmax
[112] EV τEM
[96] ORC-WHR ṁworking f luid

[18,43] parallel HEV ibat, ngear discrete combined

Dyna-Q [52,59,60] series HEV Pengine discrete continuous
[53] power-split PHEV noperating mode

Q-learning
(approximate)

[54] parallel HEV τEM discrete continuous
[113] EV ∆SoC overnight

Q-learning
vs. DQN

[114] EV with two
batteries Psplit discrete continuous

DQN [72,91,115,116] parallel HEV τengine discrete continuous
[63,73,87] power-split HEV ∆Pengine

[117] power-split PHEV τengine, ωengine
[61,100] series HEV posthrottle

[102] EV icharge/discharge

[118] EV thermal
management ω f an, ωcompressor

[44,45] parallel HEV PEM, ngear discrete combined

Double-DQN [55,62,93,119] FC series HEV ∆PFC discrete continuous
[120] vehicle pospedal

Dueling-DQN [88] power-split PHEV Pengine discrete continuous

Double-DQN
and DDPG

[80] parallel HEV posthrottle, ngear combined combined

DDPG [72,75,89,121] parallel HEV PEM continuous continuous
[47,48,90] parallel HEV PEM, coolbattery

[79] series HEV ∆Pengine
[65] power-split HEV Pengine

[103] ORC-WHR ωpump
[83] 8 × 8 EV τwheel,x

[73,97] power-split HEV τengine, ωengine, τEM

[64] power-split HEV noperating mode, τengine,
ωengine

continuous combined

TD3 [72,74,75] parallel HEV Psplit continuous continuous
[122] parallel HEV τengine

actor-critic [99] power-split PHEV τengine, ωengine, Psplit continuous continuous
[123] vehicle v̇
[124] SI engine ṁair

[98] power-split PHEV τengine, ωengine,
τEM, clutchon/o f f

combined combined

actor-critic
(two actors)

[125] series hydraulic
hybrid τengine, ωengine continuous continuous

[126] vehicle ∆gear (discrete),
Ptraction (continuous)

combined combined

PPO [127] parallel HEV τengine, ωengine, τtraction continuous continuous

CPO [101] EV icharge/discharge discrete continuous

A3C [68] power-split HEV τengine, ωengine, either continuous
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A benefit of using discrete action outputs to control continuous actuators is that the
designer has more control over the action space. Biswas et al. [68] demonstrated that
the intelligent design of the discrete action space increased beneficial exploration of the
operating space compared to using a continuous action space. Their RL agent controlled
engine speed and torque for a power–split hybrid.With this powertrain, these two actions
cannot be selected independently as engine torque cannot be greater than zero if the engine
is not rotating. They pruned the discrete action space only to contain feasible combinations
of these two actions. They found that using the pruned discrete action space led to more
reliable convergence and higher performance policies than using continuous action outputs
where the infeasible set of control action combinations was not removed.

The penalty of using a discrete-to-continuous continuity conversion has been well
documented in both RL and non-RL literature. While studying the use of Q-learning as
a parallel HEV EMS, Xu et al. [49] showed that the optimality of the RL agent depends
on the resolution of the discretization used, Figure 6. The performance of the Q-learning
agent examined by Xu et al. asymptotically approaches a limit as the level of discretization
increases. This indicates that the higher the discretization level, the more the output
behaves like a continuous output, and the better the agent performs. In addition to the
optimality loss induced by performing a discrete-to-continuous continuity conversion, its
existence also increases the resources needed since an additional hyperparameter, the level
of discretization per signal, must be tuned by the designer. Always using high levels of
discretization to avoid a penalty for using a continuity conversion is not a practical solution.
Each additional actuator controlled increases the number of discrete action combinations
exponentially exposing the approach to the curse of dimensionality. Therefore, like DP,
there is a limit to the number of actuators RL algorithms with discrete outputs can control.
Of the studies identified in this review, no RL agent that utilizes a discrete-to-continuous
continuity conversion controls more than two actions.

Figure 6. Results from Xu et al. show that the fuel economy of a Q-learning-based parallel HEV EMS
depends on the level of action discretization used. The RL-based EMS controls a continuous actuator,
τEM, using a discrete action output. Adapted from [49].

Despite the limitations, many RL agents with discrete-to-continuous continuity conver-
sions have been developed as RL-based powertrain controllers. Just under three-quarters
of the RL-based powertrain studies identified in Table 4 control a continuous actuator via a
discrete action output. Of these studies, the majority focus on RL-based EMS for hybrid
vehicles, while others examine eco-focused velocity control [112,120], grid-to-EV charg-
ing [102,113], and control of an organic Rankine cycle-waste heat-recovery system [96].

RL-based EMS is a popular topic of study as its challenges are well-matched to RL’s
strengths. The primary job of an EMS is to govern how the vehicle’s power demand is split
among multiple power sources. At any given time, an EMS must decide how much of the
vehicle power request is met by each power source. Meeting the vehicle power request
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mostly with one power source can improve instantaneous efficiency. However, doing so
reduces the amount of energy available from the power source that can be used to meet
future demands. When a battery is used as a power source it can have charging dynamics
that are orders of magnitude slower than the timescale power split decisions must be made.
The uncertainty in future power demands and slow battery dynamics make EMS control a
long-term optimization problem, which RL is well-suited to handle. The model-free nature
of many RL algorithms further strengthens RL’s appeal as vehicle efficiency is the product
of the interactions of many sub-systems and components.

Despite power-split being a continuous control action, many researchers have suc-
cessfully trained RL-based EMS using agents with discrete action outputs to determine
power-split. While reported performance improvement is highly dependent on the quality
of the baseline controller RL is compared to, RL has compared favorably to ECMS [74],
MPC [76], SDP [81], and rule-based EMS [78] despite the optimality loss associated with a
discrete-to-continuous continuity conversion. However, as RL-based powertrain control
matures it will be tasked with governing systems with greater control complexity, increas-
ing the risk that the curse of dimensionality will prohibit the use of RL algorithms limited
to discrete action outputs.

2.2. Control of Continuous Actuator(s) with Continuous Action Output(s)

One way to eliminate the curse of dimensionality is to eliminate the use of discrete-to-
continuous continuity conversions by selecting a RL algorithm that outputs continuous
action signals. Several studies have demonstrated that removing discrete-to-continuous
continuity conversions also removes the optimality penalty accompanying their inclusion.
Lian et al. [73] showed that using (continuous) DDPG to control a hybrid vehicle’s power
split improved fuel efficiency by 9% compared to (discrete) DQN. Zhou et al. [72] obtained
outcomes consistent with Lian’s findings; over a broader range of agents they found that
TD3 and DDPG outperformed DQN, double-DQN, and dueling-DQN for a power-split
controller of a hybrid vehicle. Zhou et al. also found that the continuous agents needed an
order of magnitude fewer episodes to converge to the optimal policy than the discrete DQN-
based algorithms. Beyond intra-RL comparisons, Tang et al. [80] found that a continuous
RL-based EMS achieved 0.5% better fuel economy than dynamic programming. Tang et al.
state that the RL-based EMS’ better performance came from its ability to interact with the
environment in its native action continuity. In contrast, DP required discrete-to-continuous
continuity conversions of the state and action spaces.

Using RL algorithms with continuous action spaces has also allowed researchers
to study RL-based powertrain controllers that govern more than two control actions.
Wu et al. [97] proposed a DDPG-based EMS that minimized total operating cost for a
plug-in power-split HEV. The DDPG-based controller governed the engine speed, engine
torque, and electric motor torque. Wu et al. also trained a Q-learning agent similar to the
DDPG agent for comparisons. They found that the DDPG agent achieved a 33% reduction
in vehicle operating cost compared to the Q-learning agent. Wu et al. state that the curse
of dimensionality limited the level of discretization with the Q-learning agent and that
a DQN agent could not be created due to the prohibitive size of the discretized action
space. Zhu et al. [127] designed a PPO-based eco-driving controller for a parallel HEV that
controlled engine speed and torque in addition to the traction torque at the wheels. The eco-
driving controller utilized information from the vehicle and traffic light conditions to jointly
optimize fuel economy and travel time. Their PPO-based controller outperformed the
reference MPC controller in both optimization metrics, reducing trip time and increasing
fuel economy.

2.3. Combined Control of Continuous and Discrete Actuators

Continuous action output RL-based powertrain controllers are not without their
disadvantages. Discrete decision-making is an integral component of powertrain control.
The ability of RL algorithms with continuous action outputs to make discrete decisions is
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limited, either in the optimality of RL agent or in the discrete action spaces it can act in.
Some studies avoid the complication of a continuous-to-discrete continuity conversion by
pairing their continuous RL agent with a separate controller to handle discrete decisions,
similar to the configuration shown in Figure 3c. Fechert et al. [121] paired a (continuous)
RL-based controller with a (discrete) rule-based controller. They showed that the RL-based
controller could optimize performance in situations where it is not given full authority
over the powertrain’s operation. Fechert et al. jointly optimized the fuel economy and
tailpipe emissions of a parallel HEV using a DDPG agent to control the electric motor’s
power while a rule-based controller handled shift scheduling. Compared to their reference
vehicle the RL-based controller decreased fuel consumption and NOx emissions.

Tang et al. [80] split the formulation of a parallel HEV EMS into continuous and
discrete sub-controllers and examined the influence of algorithm selection for the discrete
controller on the powertrain’s overall performance. Tang et al. created an EMS that paired a
(continuous) DDPG RL agent with two discrete rule-based controllers and one that swapped
one of the rule-based controllers with a (discrete) DQN agent (e.g., the configuration shown
in Figure 3d. The DDPG agent controlled engine torque while discrete controllers handled
engine on/off selection and shift scheduling. The rule-based controller chooses which of
six operating states to be in, using information about the electric motor power limits, the
current battery state of charge (SoC), and the demanded power. In the DDPG-DQN EMS,
the DQN governed shift scheduling with a rule-based controller whilst still handling engine
on/off operation. The combined DDPG-DQN EMS achieved a 2.5% fuel consumption
reduction compared to the DDPG and rule-based shifting EMS. Their results show that
utilizing RL to optimize continuous and discrete decisions can improve performance.
However, they used two separate RL agents such that the optimal policy was split in two.
This makes the policies independent of each other, which may limit overall performance as
the influence of each policy on the other cannot be optimized during each agent’s training.
To avoid this issue, the entire policy should exist within a single RL agent that governs all
control actions, discrete and continuous.

Controlling a combined discrete-continuous action space with an RL agent limited
to one action output continuity requires the trainer to utilize a continuity conversion
within the controller formulation. Researchers have tackled controlling combined discrete-
continuous action spaces from both continuity directions. Lin et al. [18,43], Sun et al. [44],
and Zhao et al. [45] used RL agents with discrete outputs to govern the combined action
space, Figure 3a, while Li et al. [64] utilized a RL agent with continuous action outputs,
Figure 3b. Lin et al. developed a Q-learning-based EMS for a parallel HEV that controlled
shift scheduling and battery current. Sun et al. and Zhao et al. developed EMSs similar to
Lin et al. but utilized DQN instead of Q-learning. These studies maintain computational
tractability as the discrete shift-scheduling action has three options: hold, shift up, and
shift down. Li et al. used a DDPG agent to control engine torque, speed, and which of
the four operating modes to run in for a power-split HEV. Engine torque and speed are
continuous selections handled natively by the DDPG agent. A continuous-to-discrete
continuity conversion handles the selection of the powertrain’s operating mode. The DDPG
has six outputs in total: two outputs represent the continuous actions while the other four
are defined as the value of each operating mode. To perform the continuous-to-discrete
continuity conversion and select the operating mode, an argmax command is performed
on the actor’s four operating mode value outputs. The actor network used by Li et al. is
shown in Figure 7. The argmax operation performed by Li et al. is a continuous-to-discrete
continuity conversion as the actor is tasked with representing the value of each discrete
state and not the probability that each operating state is selected. During training an
ε-greedy policy is used on top of the actor to explore discrete actions.

Tan et al. [98] formulated a RL-based EMS that can operate natively in a combined
discrete–continuous action space, Figure 3e. Tan et al. designed an actor–critic network to
make continuous selections of engine torque, engine speed, and electric motor torque, and
discrete selection of the clutch state for a power-split PHEV. Tan et al. bounded a single
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output of the actor network with a tanh function and used that output to represent the dis-
crete clutch state selection natively. The actor–critic EMS developed outperformed dynamic
programming over several drive cycles. The results of Tan et al. show the performance po-
tential of RL-based powertrain control when given authority over the entire system. Tan’s
results also indicate that DP does not necessarily represent the true upper-performance limit
if DP problem formulation requires discretization of continuous states/actions. However,
utilizing a single tanh output to represent the discrete action policy limits this approach to
binary decision-making, such as clutch state selection. The continuity conversion cannot be
applied to control powertrains containing discrete actions with more than two selections.
This includes shift scheduling (e.g., [18,43–45]) and operating mode selection (e.g., [53,64]),
limiting the broader applicability of this approach in future RL-based powertrain control
development.

Figure 7. An illustration of the actor in the DDPG-based EMS used by Li et al. [64]. The DDPG agent
uses six outputs to form three actions. Two of the actions are continuous, Te and ωe. The third action
is the discrete selection of the operating mode with is found by performing an argmax command.
Adapted from [64].

2.4. Comparisons between Reinforcement Learning Algorithms

The algorithm performance can be measured in several ways: evaluation performance,
sample efficiency, and training stability. Figure 8 shows a standard way that an RL agent’s
performance is quantified. This graph is generated by performing the same training process
ten times, each instance using a different random number seed. The mean performance
across the ten instances is plotted, and a region representing the 25th and 75th percentile
of performance is shaded. Improvements in algorithm performance can be seen using
this plot. An algorithm that achieves superior evaluation performance will have a mean
performance line that is higher on the graph. A more sample-efficient algorithm will find
higher returns in fewer steps. And increases in training stability will result in a smaller
shaded area.

Figure 8. Sample performance plot of an RL algorithm.

Comparisons in each performance category can be made directly. However, it is
possible for an algorithm’s performance to be superior in one metric but worse in another
when comparing algorithms. When this occurs, it is up to the designer to determine which
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performance metric is more important for their study. For example, if computational power
is limited, it may be beneficial to prioritize sample efficiency, but if computation power is
not a concern, evaluation performance may be prioritized.

3. Reinforcement Learning Reward Formulation

The reward or cost function used in an optimization-based control technique defines
the magnitude of the scalar metric to optimize. The reward must be represented as a scalar
value, no matter how many metrics are considered. Studies with a goal to optimize one
metric, such as fuel consumption, are considered single-objective optimization problems.
If multiple goals must be jointly optimized, the problem is defined as a multi-objective
optimization problem. Solving multi-objective problems requires an extra step compared
to single-objective problems as their optimal solution exists on a Pareto front, Figure 9,
with the exact location determined by the relative weight of each objective in the reward
function. How constraints and rewards are defined is unique to the control problem and
the optimization technique selected.

Figure 9. Example Pareto front for a two-objective optimization problem. Solutions along the Pareto
front cannot improve one objective without harming the performance of the other.

One influence on reward function formulation is the length of the optimization hori-
zon. With RL the optimization horizon length is varied by selecting the discount factor, γ.
RL operates as a single-step optimization algorithm when γ = 0, and is similar to DP when
γ = 1. Setting γ just less than one allows the RL agent to consider long optimization hori-
zons. The ability to vary optimization horizon length gives designers increased flexibility in
reward function formulation compared to formulations used with other optimization-based
techniques such as DP and MPC. This increased flexibility allows the designer to reward
desired outcomes (even when they occur infrequently) directly.

Robust control of constraints and rewards requires an optimization horizon that is
longer than the dynamics governing them while operating at a time-step small enough such
that all relevant dynamics are not aliased [128]. This is a challenge for many powertrain
controllers as the time constants associated with powertrain dynamics vary greatly; see
Figure 10. For example, within HEV EMS, the dynamics of the power sources are several
orders of magnitude faster than the dynamics of the battery SoC. A typical goal for a HEV
EMS is to maximize fuel efficiency while adhering to battery SoC constraints. Battery SoC
is maintained by controlling the engine and/or electric motor; however, their dynamics
can have time constants that are orders of magnitude apart from battery SoC dynamics.
The small time constants associated with controlling the power sources necessitate a
small time step for the controller; however, slow battery SoC dynamics demand a long
optimization horizon. The result is an optimization horizon that can be thousands of
steps long. Solving this problem directly with global optimization techniques such as
DP or evolutionary algorithms is possible, but they require optimization to occur off-line.
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Solving this problem is beyond the real-time computationally feasibility of optimization
techniques limited to short optimization horizons such as MPC. RL is unique among real-
time optimization-based control techniques in that it can consider long-term dynamics
while operating at an acceptably small time step. RL’s suitability in solving this problem is
why many RL-based powertrain control studies are focused on HEV EMS.

Figure 10. Characteristic times of various powertrain systems and components.

The freedom to define the reward for an RL agent has allowed RL-based powertrain
control studies to use reward formulations similar to those used within other optimization-
based techniques such as ECMS, MPC, and DP. This section contains a discussion of the
reward formulations used in RL-based powertrain control studies, and has two parts.
The first will focus on the reward function formulations used in single-objective studies
while the second will discuss the formulations used in multi-objective studies.

3.1. Single Objective Optimization Studies

Discussion of the single objective optimization studies can be organized by objective.
A summary of the reward functions used in single-objective RL-based powertrain control
studies is shown in Table 3.

3.1.1. Minimize Fuel Consumption

The most common objective of the identified RL-based powertrain control studies
is to minimize the fuel consumption of a HEV while maintaining an admissible battery
SoC. There are a large number of reward functions researchers have formulated to achieve
this goal. The simplest form of a cost function to achieve this goal can be defined as the
negative value of the fuel consumption of the vehicle, Equation (1).

r = −ṁ f uel (1)

The negative value is needed as RL is a maximization technique and the goal is
to minimize fuel consumption. Studies by Sun [44] and Chen [46] utilized this reward-
function formulation and found reductions in fuel consumption compared to rule-based
control. This reward function formulation relies on the RL agent’s ability to understand the
long-term influence of changes in battery SoC on fuel consumption as there is no direct
feedback in the reward function to give the RL agent this knowledge.

Liessner et al. [47,48] developed a modification to Equation (1) that is the difference
in fuel flow rate between the vehicle as controlled by the RL agent and the fuel-flow rate
of an identical vehicle at the same point in time using only the engine to meet the vehicle
power demand, Equation (2). Equation (2) also includes a terminal cost at the last time step.
The terminal cost is necessary because Liessner et al. use a discount factor of one during
training. Not discounting future rewards also indicates that Liessner et al. have optimized
their RL-based controller to operate over scenarios of finite length rather than an infinite
(lifetime) horizon.

r = ṁ f uel,engine only − ṁ f uel,actual − TC (2)
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The modification used by Liessner et al. in their reward function is akin to an ad-
vantage function, see [129], as it provides the agent with information about how well it is
performing relative to a baseline. This formulation provides the agent with more immediate
feedback than just using ṁ f uel,actual .

A second way to provide more immediate feedback about the effects of using the
battery is to include a term in the reward function that converts the power consumption of
the electrical system into an equivalent fuel consumption, Equation (3).

r = −ṁ f uel − ṁe. f uel,electrical (3)

Charging the battery makes the equivalent fuel consumption of the electrical system,
ṁe. f uel,electrical , negative, directly informing the agent that energy used to charge the battery
is not lost but instead stored in a different form. This reward function is similar to the cost
function used in ECMS. Like ECMS, the equivalency factor converts electrical power into
fuel flow while capturing any losses associated with the electrical system. Some RL-based
studies have found success using constant values for the equivalency factor [51,52]. In other
studies the equivalency factor is functionally dependent on various system states [53] though
the influence of this selection has not been studied for RL-based EMS. Fang et al. [54] pro-
posed an equivalent form to Equation (3) but used the term wn ˙SoC instead of ṁe. f uel,electrical.
The weighting term, wn, serves the same purpose as the fuel consumption equivalency term
used to calculate ṁe. f uel,electrical as ˙SoC can be expanded as a power term. These representa-
tions differ from modern ECMS literature [130] as they are not adjusted in real-time operation
to measure SoC constraint adherence/charge-sustaining operation.

Another reward term authors use when minimizing HEV fuel consumption is a
measure of the deviation between the battery’s current SoC and a user-defined reference
SoC value, SoCtarget Equation (4). The difference between these two values is written as
δSoC in this review.

δSoC = SoCtarget − SoC (4)

In fuel-consumption minimization, RL reward function δSoC is multiplied by a weight-
ing factor, wn, and summed with the other terms of the reward function Equation (5).

−ṁ f uel − w1 f (δSoC) (5)

SoCtarget is also known as the “charge sustaining” SoC target as the EMS will attempt
to keep the battery SoC near this target to minimize the penalty (negative reward) for
deviating from it. δSoC is a term commonly found in MPC-based EMS cost functions
(ex. [131]) as it provides immediate feedback about the risk of large SoC deviations. This
allows MPC to understand the influence of its actions on the battery which has dynamics
that are too slow to be optimized over MPC’s short-preview horizon. Without f (δSoC) in
the cost function, MPC would schedule actions to meet the power demand with the battery
as much as possible because that will minimize fuel consumption in the short term. MPC
would only turn the engine on to adhere to SoC constraints when violations can potentially
occur within its short preview horizon. In MPC-based EMS studies the standard choice is
to define f (δSoC) as a quadratic, i.e.,

f (δSoC) = δSoC2,

to fit within the structure of quadratic programming. While RL-based EMS studies have
used this formulation, RL is not restricted to using a quadratic form for f (δSoC). RL-
based EMS studies have used the magnitude of δSoC [55] while others only penalize
deviations in SoC when the SoC is beyond some bounds. Zhou et al. [72] and Lian et al. [73]
penalize δSoC2 when it is outside either lower or upper bounds (values within the stated
SoC constraints) while Liu et al. [69,70] and Chen et al. [71] only penalize δSoC2 when
SoC < SoCtarget. These studies all successfully generated RL-based EMS that outperformed
baseline EMS.
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Which f (δSoC) formulation to use depends on the study’s goal. However, no con-
sensus exists on the best formulation for a given goal. Multiple formulations have been
used to meet similar goals among the studies identified in this review, and no study has
been identified that compares formulations. For many of these studies f (δSoC) serves the
dual purpose of maintaining charge-sustaining performance and ensuring SoC constraint
adherence. Unlike MPC, RL does not have a mechanism to guarantee constraint satisfac-
tion explicitly. When a constraint is violated while training an RL agent, a large negative
reward is passed to the agent and the training episode terminates. When an agent has
converged to the optimal policy, it will implicitly avoid selecting actions from states that
lead to large negative rewards (i.e., violates a constraint) as the trajectory that maximizes
returns will not pass through states with such poor rewards. It is possible, via the mag-
nitude of the δSoC weighting term, to make the penalty for SoC deviations so large that
the optimal policy never violates constraints. However, this approach does not explicitly
inform the agent where or what the constraints are. The only way to inform the RL agent
directly of a constraint violation is to include a unique reward component for its violation.
Some RL-based fuel minimization studies explicitly include a penalty for violating SoC
constraints [66,67,81,82] which is the reason why SoC is listed in the “constraint(s) in reward
function” column in Table 3. These studies include a SoC constraint violation penalty and a
penalty on δSoC2 each time step showing that they are not mutually exclusive.

Without an explicit penalty for SoC, constraint-violation studies utilizing f (δSoC)
must tune its weight to obtain optimal performance. Lian et al. [73] studied the influence
of the weight term on a power-split PHEV’s fuel consumption.The SoC constraints used in
this study are 0.4 ≤ SoC ≤ 0.85 and the reward function is

r = −ṁ f uel − w1(SoC− 0.6)2 · (SoC < 0.6 or 0.85 < SoC) (6)

which does not contain any explicit constraint penalties. They found when w1 is at its lowest
value, the RL-based EMS violates the SoC constraints, demonstrating that the inclusion
of f (δSoC) is not enough to guarantee SoC constraint adherence. As w1 increases, the
RL-based EMS decreases battery use, with the largest value producing a RL agent that
rarely lets SoC dip below the SoC target of 0.6. This shows that f (δSoC) governs how
conservative a RL agent is rather than informing it about battery SoC constraints. How
conservative the RL agent is with battery usage influences fuel economy, as shown in
Figure 11. Lian et al. compared each agent’s fuel consumption to that found using DP.
Lian et al. found that optimal fuel consumption occurred when w1 was in the middle of the
examined range and that fuel economy decreased if the magnitude of w1 was decreased or
increased away from the optimal value. This indicates that training a RL agent with the goal
of minimizing fuel consumption while including a f (δSoC) reward term is a multi-term
optimization problem. In turn, this adds an additional step to the development process as
the weight of each term in the reward function must be optimized.

Depending on the study’s goal, reward function formulations to minimize fuel con-
sumption can use additional terms and transformations. Mittal et al. [78] proposed making
the reward function positive by offsetting the negative fuel consumption reward with a
positive constant, stating that this shift eases computation. However, this point was not
expanded upon further. Li et al. [79] defined the reward as

r = −tanh(w1ṁ f uel + w2|δSoC|)

and noted that coefficients w1 and w2 were found after repeated tuning. Finally, studies
by Lee [81,82] include a component that penalizes switching the engine on and off. An
engine-switching penalty is commonly used to make the optimal policy physically practical.
Otherwise, rapid engine on/off switches may be present in the optimal policy derived from
a reward function lacking this term.
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Figure 11. Fuel economy performance of a set of RL-based power-split PHEV EMS from a study by
Lian et al. [73]. Each RL-based EMS uses a unique value of w1 in the reward function, Equation (6).
Fuel economies are all measured over the same drive cycle and compared to the DP solution.

3.1.2. Minimize Power Consumption

The minimization of power consumption is akin to the minimization of fuel consump-
tion, but offers a broader range of powertrain applications. It can be used on fully electric
vehicles and electric vehicles with two power sources while still being compatible with
vehicles that use an ICE as the primary power source. Shifting the reward function to the
power domain allows for direct penalization of electrical power consumption with fuel
consumption (if applicable) being the term undergoing a unit conversion. Yue et al. [84]
optimized the performance of an EV-containing battery and ultra-capacitor power sources
by instantaneously rewarding the battery’s power and including a terminal cost. This is
analogous to minimizing fuel consumption in a traditional HEV by only penalizing the
engine’s fuel consumption. The battery in this study, similarly to the ICE in HEVs, is the
primary power source, and the RL-based EMS must learn how to use the secondary power
source to supplement the primary source throughout operation. Liessner et al. [89,90]
rewarded their RL-based EMS with the negative sum of the battery power and the chemical
power of the fuel entering the engine.

Qi et al. developed several [85–88] RL-based EMSs for a power-split HEV using a
reward function that minimizes engine power delivered. The RL agent scheduled engine
power, which is then passed to a lower-level controller that determines the speed and torque
to meet the power request while minimizing fuel consumption. The reward function used
by Qi et al. is the inverse of the power requested by the RL agent. When the power request
is zero, the reward is twice the inverse of the minimum power the engine can deliver.

Using a reward function formulated in the power domain allows for any power source
within the vehicle to be considered. Wang et al. [91] used RL to develop an EMS for a
parallel HEV with an integrated organic Rankine cycle (ORC) waste-heat-recovery system
(WHR). Wang used a reward function of

r =c1 − (Pengine/ηengine − PORC/ηengine + Pbattery · ηbattery
sign(Pbattery))

− w1∆engineon/o f f − constraintSoC.
(7)

This reward function contains five instantaneous reward terms and an SoC constraint
term. Using a reward in the power domain eliminates the need for weight values to
properly relate the powers of the engine, ORC system, and battery. This minimizes the
amount of tuning effort needed to produce a RL agent with satisfactory performance.
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3.1.3. Minimize Losses/Maximize Extracted Power

When power/fuel is consumed within a system, it is either turned into useful energy
or wasted energy. Thus consumed energy can be written as a sum of useful work and
wasted energy, Equation (8).

Econsumed = Eloss + Euse f ul (8)

If the split between useful and lost energy can be modeled, it is possible to minimize
energy consumption by maximizing useful energy or by minimizing wasted energy. Both
methods require that all relevant efficiencies are known to the designer so that a useful
reward function can be written. Studies by Xiong et al. [94,95] minimize losses of an EV
with dual power sources while Shuai et al. [93] and Zhou et al. [92] minimized losses within
series HEVs.

This reward function formulation is useful when the amount of energy consumed is
fixed. Xu and Li [96] examined such a situation when developing a RL-based ORC-WHR
controller. The amount of energy entering the ORC-WHR is outside the influence of the
RL-based controller; the only way to maximize system performance is to maximize useful
energy or minimize wasted energy. Xu and Li chose to maximize the power extracted
by the ORC-WHR and found that the RL-based solution performed better than an online
proportional-integral-derivative (PID) controller.

3.1.4. Minimize Cost to Operate Vehicle

While minimizing energy (fuel or power) consumption will result in an energy-efficient
powertrain, the policy may not be cost efficient. The total cost of ownership is one of the
primary factors consumers consider when purchasing a vehicle. The ability to externally
charge modern plug-in HEVs and electric vehicles has created new opportunities to lower
the cost of their operation. PHEVs have two energy sources, electricity and fuel, that can be
replenished externally and differ in cost from each other. This means the cost of delivering
torque to the road differs depending on which power source it is coming from. Changing
the reward function to account for cost can be done by multiplying the consumption of
each power source by its replenishment cost, i.e.,

r = −ṁ f uel · price f uel − ˙SoC · priceelectricity. (9)

However, this requires setting a consumption cost for each power source, the cost of
which varies by location and over time, which can harm applicability. Equation (9) is used
in [97–99] for power-split PHEV EMS. Zou et al. [100] proposed an extension to Equation (9)
by including a penalty on δSoC in order to maintain admissible SoC.

Cost minimization has also been studied on EVs with a single battery. End-users
sometimes have the opportunity to receive payment when their vehicle is used to power
the electric grid, opening a potential avenue to reduce operating costs. This has led to the
creation of new “charging” controllers that operate when the vehicle is plugged in, taking
advantage of daily fluctuations in electricity prices to generate money for the end user.
The primary challenge in developing these controllers is that discharging the battery to
sell electricity when prices are high directly conflicts with the primary goal of extended
charging, i.e., ensuring that the battery is optimally charged when the user needs to use
the vehicle. To minimize overall charging cost, Li et al. [101] proposed using constrained
policy optimization (CPO) to ensure the vehicle is charged when removed from its charger.
Wan et al. [102] reasoned that the money-saving potential of intelligently discharging the
battery must be weighed against the cost of any additional battery degradation incurred.
Wan et al. derived a cost factor for battery degradation based on the cost to replace the
battery of the EV used in their study. The battery degradation cost was minimized in
conjunction with the cost to charge/discharge the EV Equation (10).

r = −Pcharge/discharge · priceelectricity − costdegradation,battery − w1δSoC2 · (t ≡ tdisconnect) (10)
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The cost of battery degradation has also been examined on a parallel HEV powertrain
by Lin et al. [18] as battery degradation is an important cost consideration on any powertrain
with a high-voltage battery. Lin et al. use a reward function that includes fuel consumption
and battery degradation penalties as their HEV’s battery cannot be charged from an
external source.

3.1.5. Minimize Tracking Error

RL-based control has also been used to minimize tracking error. The reward functions
used in these studies are similar to the cost functions used in classic control formulations.
An early study by Hsu et al. [104] used an RL-based controller to assist the rider of a
bicycle in maintaining a target velocity. Wang et al. [103] used a RL-based controller to
maintain a target outlet temperature of an ORC-WHR system’s boiler. Wang et al. varied
the weight of the tracking error using a non-linear discontinuous function dependent on
the tracking error. Their RL-based controller outperformed a baseline PID controller. This
result highlights designers’ freedom and flexibility when formulating reward functions for
use with RL.

3.2. Multi-Objective Optimization Studies

RL-based powertrain research has also been conducted on multi-objective problems.
A summary of the studies identified is shown in Table 5. The optimal policy in multi-
objective optimization exists on a Pareto front. A Pareto front is formed from the set of
solutions to a multi-objective optimization problem as the relative weights of the terms
in the reward (cost) function are varied. Figure 9 illustrates this. A key characteristic of a
Pareto front is that the only way to improve one objective is to harm the performance of the
other objective(s). It is up to the designer to determine the ideal values of the weights as
all the policies are equally optimal with respect to their unique reward function. Selecting
the ideal weight values necessitates an extra development step, which is subject to the
designer’s preference. These studies differ from single objective optimization studies as
their authors explicitly state multiple optimization goals.

Table 5. Reward functions used in multi-objective RL-based powertrain control studies.

Optimization Goals Instantaneous Reward Function Constraint(s) in
Reward Function System Controlled

(1) maintain desired velocity
(2) minimize acceleration −δv− w1v̇ vehicle [123]

(1) minimize fuel consumption
(2) maintain distance to

lead vehicle
−δx− w1δv− w2ṁ f uel

vehicle with geared
transmission [126]

(1) maintain distance to
lead vehicle

(2) minimize acceleration
− f (δx)− f (δv̇) ICE vehicle or

EV [120]

(1) minimize fuel consumption
(2) minimize emissions

−ṁ f uel − w1NOx− w2PM + w3
[
δSoC2]− series hydraulic

hybrid [125]
w1(ṁ f uel,engine only − ṁ f uel,actual)

+ w2(NOxengine only − NOxactual)− TC
parallel HEV [121]

(1) minimize energy loss
(2) maximize electrical and

thermal safety

Qbat,1 + Qbat,2 + QDC/DC

+ sign(Pbat,2) · Pbat,2
2

Tbat,1, Tbat,2,

ibat,1, ibat,2

EV with two
batteries [114]

(1) improve battery lifetime
(2) maximize system efficiency c1 + k

(
0.5−

∣∣∣ SoC−0.7
0.3

∣∣∣), k := f (SoC) FC HEV [105]

(1) minimize fuel consumption
(2) minimize travel time

−ṁ f uel − c1 − [v− vlim]
+ − v̈ + |δSoC|−

− f (x, v, in f otra f f ic light)
SoC parallel HEV [127]
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Table 5. Cont.

Optimization Goals Instantaneous Reward Function Constraint(s) in
Reward Function System Controlled

(1) minimize charge time
(2) minimize charge cost −Pcharge · priceelectricity − ec1 |δSoC|c2 EV [132]

(1) minimize energy
consumption

(2) minimize travel time
− ˙SoC− ctime v EV [112]

(1) maximize FC lifetime
(2) maximize battery lifetime

w1(iFC − iFC,basic controller),

w1 := f (iFC)
iFC, ibattery FC HEV [111]

(1) minimize fuel and
battery degradation cost

(2) maintain charge margin

−
[
ṁ f uelSoC + (1− SoC)(δSoC)2

]
· (1− SoH)

parallel HEV [122]

(1) minimize energy
consumption

(2) minimize cabin
temperature error

− f (δT2
cabin) + f (Tevap) + f (Pcondenser)

+ w1[−Pcomp − PPTC − P̂f an

+ wT
2 (−abs(at))]

EV thermal
management [118]

(1) minimize energy
consumption

(2) minimize battery
degradation

−w1(Pbat + PUC)− (1− w1) ˙SoH + c1
battery UC

EV [17]

(1) minimize fuel consumption
(2) minimize battery

degradation
−w1ṁ f uel − (1− w1)ibatσbat − w2δSoC2 power-split

HEV [16]

TC indicates the existence of a terminal reward within the reward function. δX := (X − Xprede f ined target),
X+ := max(0, X), X− := min(0, X).

Often, the goals in multi-objective optimization problems conflict directly with each
other. Li and Görges [126] designed a RL-based vehicle-following strategy that aims to
maintain a set distance to the lead vehicle while minimizing fuel consumption. Reducing
fuel consumption comes at the cost of not maintaining the desired following distance and
vice versa. Similarly, Chang et al. [132] designed an EV charging strategy that attempts to
minimize charging time and cost. Decreasing charging time increases the charging current,
increasing the amount of energy lost and the cost to charge.

Studies by Johri et al. [125] and Fechert et al. [121] attempt to minimize fuel consump-
tion and emissions in hybrid powertrains. Because government agencies regulate tailpipe
emissions, the Pareto front of optimal policies found when sweeping reward weights can
be narrowed down by eliminating policies that violate emissions regulations. Fechert
minimized the reward function shown in Equation (11).

r = κw1 + (ṁ f uel,engine only − ṁ f uel,actual)

+ w2(1− κ)(NOxengine only − NOxactual)− TC
(11)

In their study, Fechert identified the Patero front by training a number of agents while
sweeping κ between 0 and 1.

When controlling vehicles with batteries it can be valuable to account for battery
degradation. Heavy utilization of the battery may be beneficial for vehicle efficiency but
will cause the battery’s lifetime to reduce below periods acceptable to the customer. Battery
degradation can be managed by including a penalty term for it in the reward function.
Tang et al. [16] proposed a battery-health-aware RL-based EMS for an HEV. They found
that including a battery-health penalty increased fuel consumption but deemed that the
increased fuel consumption was worth the decrease in battery capacity obtained by the
EMS. With this study, the trade-off between fuel consumption and battery health must
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be decided by the designer; however, Lin et al. [18] converted battery degradation into
a monetary cost, allowing trade-off between the cost of fuel consumption and battery
degradation to be viewed as a single objective optimization goal. Battery degradation has
been difficult to include when optimizing powertrain performance as modeling battery
degradation is dependent on many factors, such as charging voltage, battery composition,
depth of discharge, and current density. These dynamics can be simplified into empirical
fits [133], but RL-based approaches provide the opportunity to consider physics-based
battery degradation models [134].

It is possible to remove the existence of a Pareto front in a multi-objective optimization
problem by removing tunable weights from within the reward function. Yan et al. pro-
posed a way to define the objectives of fuel consumption and battery degradation costs
while maintaining a specified charge margin as a function without any tunable weights.
Removing weight terms removes the need to tune them, providing a time-savings benefit.

3.3. Comparisons between Reward Functions

The reward function is a representation of the optimization goal in functional form.
Comparisons between reward function formulations require using the same optimization
goal, environment, and RL algorithm for each formulation examined. Presently, each of
the identified studies uses a unique vehicle model and only examines one reward function
formulation. This makes cross-study comparisons infeasible as the influence of the reward
function cannot be isolated.

4. Conclusions and Future Research Directions
4.1. RL Algorithm Selection and Action Continuity

The studies identified in this review show that there are many possible use cases for
RL-based controllers within powertrain systems and that there are ways to represent that
action space to RL agents that allow them to optimize the performance of systems with
actuators of mixed continuity. Addressing the challenge of optimizing mixed-continuity
action spaces can be performed by altering how the action space is represented to the agent
or by selecting a RL algorithm that can represent the mixed-continuity action space natively.

Using a continuity conversion is the common approach for studies in this review to
alter the action space’s representation so an RL algorithm with action outputs in a single
continuity domain can be used. However, there are other ways to alter the action space’s
representation that have been proposed by the greater RL community. One approach is to
parameterize the action space [135]. This approach converts an action space with mixed
continuity into a hierarchical form for manipulation by a RL algorithm with continuous
action outputs, see Figure 12. Parameterized action spaces allow the designer to structure
action flows to guarantee feasible actions. This approach has been applied to represent
complex action spaces in video games [136]. Representing the action space in a hierarchical
form has the disadvantage that it requires a large number of action outputs from the RL
agent, as every continuous action that can be made requires its own output from the RL
agent. This means parameterized action space representations suffer from scalability limi-
tations as the number of action outputs they require can grow exponentially. Addressing
the limitations of parameterized action spaces is a topic of ongoing research. Recently,
Li et al. [137] proposed the hybrid action representation (HyAR) which utilizes a variational
auto-encoder that learns a decodable latent representation of the action space to address
scalability limitations of classic parameterized action space representations.

Native representation of a mixed continuity action space is advantageous as it allows
the action space to be represented in its true form. Three studies identified in this review
have developed RL-based controllers that operate natively in a combined continuous–
discrete action-continuity domain. Each study has limitations on its RL-based controller.
The first [98] uses a continuous action output to represent the probability of the clutch
state. This approach is limited to control of discrete decisions that are binary. This limits
the approach’s applicability as it cannot govern discrete decisions with three or more
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options such as gear selection. The other two studies [80,126] propose RL-based controllers
compromised of two separate RL agents: one handling discrete actions and the other
continuous. This approach can handle any set of actions, but the choice to split the
controller in two splits the optimization problem into two independent problems, leaving
the agents with no way of optimizing their decisions with respect to the other.

Figure 12. Diagram of the hierarchical structure of a parameterized action space. There is a layer
for each discrete decision being made with the final layer containing the values of the continuous
action(s) desired by the agent. The number of continuous action outputs can vary depending on the
discrete decision made.

The other approach research has taken to improve RL performance in combined
continuity action spaces is to develop new RL algorithms. Recently, Neunert et al. [138]
proposed a variation to the maximum a posteriori policy optimization (MPO) [41] RL
algorithm which allows MPO to output discrete and continuous actions natively. This
approach eliminates the need for any continuity conversion/parameterization of the action
space. At the time of writing, the only other RL algorithms capable of natively operating in
combined continuity action spaces exist in the derivative-free category of RL algorithms.
However, these algorithms are not as data-efficient as gradient-based RL algorithms, which
becomes a concern as the fidelity of powertrains models increases.

4.2. Reward Function Formulation Studies

RL-based powertrain controllers, even in table-based forms, compare favorably to
other real-time control techniques (rule-based, ECMS, MPC, and SDP), showing their
potential as a control option in the mobility industry. To create fair comparisons between
optimization-based algorithms, researchers have commonly used cost/reward functions
that work within the limitations of the non-RL algorithm(s). For example, in HEV EMS
control, a δSoC and/or ṁ f uel,electrical term is necessary in the cost function of MPC but
is not strictly necessary in the reward function used by RL. RL’s capability to consider
the long-term future opens the possibility to define SoC limits as constraints and only
reward fuel consumption at every step, similar to cost function formulations used with DP.
Currently, research that instantaneously rewards fuel consumption only [43–46] does not
include a constraint violation term in their reward function, which prevents the agent from
understanding the constraints of the environment it is operating in. As RL-based powertrain
control matures, examining reward function formulations unique to RL and understanding
how they compare to formulations used by other optimization-based algorithms will
be necessary.

One way to avoid challenges associated with translating an optimization objective
into a reward function is to avoid explicitly defining the reward function altogether. Re-
inforcement learning from human preferences [139] allows for RL to solve complex tasks
without access to the reward function. Instead, throughout training, a human evaluator
is given small clips of agent behavior and is asked to decide which behavior is better at
achieving the desired goal. This approach allows a human expert to shape the RL agent’s
behavior using their own intuition, effectively offloading part of the learning onto the
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human. The caveat of relying on human knowledge to guide agent performance is that the
evaluator must understand what ideal behavior looks like.

Another way to use prior expert knowledge is with inverse reinforcement learning [140,141]
which takes expert trajectories and attempts to determine what reward functions could have
led to the observed behavior. Similarly to RL from human preferences, inverse RL requires
knowledge of expert behavior to exist before the technique can be applied.However, if
such knowledge exists, inverse RL can reduce the subjectivity that exists when a human
translates an optimization objective into a reward function.

4.3. Future Outlook

The development of RL-based powertrain controllers is a promising area of research.
However, switching to an RL-based controller raises a new set of considerations that
must be examined and understood. Not all of these considerations exist within the RL
algorithm itself. This review highlights two important considerations: the continuity of
an RL algorithm’s action outputs and the reward function formulation. Both influence the
performance of RL-based controllers. Continuity mismatches occur as RL algorithms are
often limited to a specific continuity domain, while powertrain systems contain a mixture
of continuous and discrete actuators. Continuity mismatches harm the optimality of the
controller which makes them an important factor to understand. RL is also uniquely
capable of optimizing performance over long future horizons while maintaining real-time
tractability. This increases the amount of freedom available to the designer in selecting a
reward function to use with RL. The limits and reward-function forms best suited for RL-
based control of powertrains have yet to be examined. The challenges highlighted in this
review can be addressed, which should improve the quality of RL-based powertrain control.
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Abbreviations
The following abbreviations are used in this manuscript:

RL reinforcement learning
ICE internal combustion engine
BEV battery electric vehicle
FCV fuel cell vehicle
HEV hybrid electric vehicle
DoE design of experiments
NN neural network
MPC model predictive control
ECMS equivalent consumption minimization strategy
DP dynamic programming
EMS energy management strategy
SoC state of charge
PHEV plug-in hybrid electric vehicle
TC terminal condition
UC ultracapacitor
ORC organic Rankine cycle
WHR waste-heat recovery
PID proportional-integral-derivative
EV electric vehicle
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FC fuel cell
HyAR hybrid action representation
PMP Pontryagin’s maximum principle
EM electric machine
DC direct current
DDPG deep deterministic policy gradient
PILCO probabilistic inference for learning control
REINFORCE reward increment = non-negative factor× offset reinforcement× characteristic eligibility
PPO proximal policy optimization
MPO maximum a posteriori policy optimization
EA evolutionary algorithm
CEM cross entropy method
TRPO trust region policy optimization
DQN deep Q-network
CPO constrained policy optimization
TD3 twin delayed deep deterministic policy gradient
SARSA state, action, reward, [next] state, [next] action
A3C Asynchronous advantage actor-critc

The following symbols are used in this manuscript:
k an iterable
V value, or cost-to-go, or a state
u control input, a.k.a. action
x system state
r reward, given from a cost/reward function
s system state
Pr probability
γ discount factor
N number of steps
Q value, or cost-to-go, of a state-action pair
∆ change in value between the previous and current time step
P power
τ torque
n selection of a discrete actuator
ω rotational velocity
i current
m mass
pos position of a continuous actuator
v velocity
TC terminal condition
δ difference between the present value of a signal and a user-defined reference value
Loss Power loss
w weighting coefficient
c constant
η efficiency
E energy
Q heat generation
T temperature
f function
t time

The following superscripts and subscripts are used in this manuscript:
∗ optimal
0 initial
bat battery
e. f uel, electrical consumption of the electric system in fuel equivalent units
− min(0, value)
+ max(0, value)
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