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Abstract: Development and optimization of the membrane distillation (MD) process are strongly
associated with better understanding of heat and mass transport across the membrane. The current
state-of-the-art on heat and mass transport in MD greatly relies upon the use of various empirical
correlations for the Nusselt number (Nu), tortuosity factor (τ), and thermal conductivity (κm) of the
membrane. However, the current literature lacks investigations about finding the most representative
combination of these three parameters for modeling transport phenomena in MD. In this study, we
investigated 189 combinations of Nu, κm, and τ to assess their capability to predict the experimental
flux and outlet temperatures of feed and permeate streams for hollow fiber MD modules. It was
concluded that 31 out of 189 tested combinations could predict the experimental flux with reasonable
accuracy (R2 > 0.95). Most of the combinations capable of predicting the flux reasonably well could
predict the feed outlet temperature well; however, the capability of the tested combinations to predict
the permeate outlet temperatures was poor, and only 13 combinations reasonably predicted the
experimental temperature. As a generally observed tendency, it was noted that in the best-performing
models, most of the correlations used for the determination of κm were parallel models. The study
also identified the best-performing combinations to simultaneously predict flux, feed, and permeate
outlet temperatures. Thus, it was noted that the best model to simultaneously predict flux, feed, and
permeate outlet temperatures consisted of the following correlations for τ, Nu, and κm: = ε

1−(1−ε)1/3 ,

Nu = 0.13(Re)0.64(Pr)0.38, κm = (1− ε)κpol + εκair where ε, Re, Pr, κpol , and κair represent membrane
porosity, Reynolds number, Prandtl number, thermal conductivities of polymer and air, respectively.

Keywords: membrane distillation; modeling; Nusselt number; thermal conductivity; tortuosity factor

1. Introduction

Membrane distillation (MD) is a thermally driven process where the driving force is a
vapor pressure difference created by a temperature difference across a porous hydrophobic
membrane. MD can use low-grade heat from different sources, such as the sun, geothermal
wells, and industrial processes, to produce ultra-fresh water [1–3]. MD is also an interesting
candidate to achieve zero liquid discharge and crystallization from different solutions
due to its ability to treat highly concentrated solutions, such as brine from desalination
facilities [4–7]. The use of MD for simultaneous recovery of freshwater and minerals from
different sources of impaired water makes it relevant to achieving sustainability and a
circular economy [6,8].

MD can be operated in several configurations, including air gap, vacuum, sweep
gas, and direct contact. Direct contact membrane distillation (DCMD) is the simplest
configuration of the process in terms of the equipment and modules involved [9–11]. In
DCMD, the membrane is in direct contact with the feed solution on one side and with the
permeate on the other side. The driving force (i.e., vapor pressure difference) is induced
by keeping the feed solution at a higher temperature than the permeate stream, creating
a positive heat transfer through the membrane. Water and volatile compounds from the
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liquid feed evaporate, travel through the membrane pores, and are condensed at the
membrane surface on the permeate side.

In DCMD, heat is transferred from the feed side to the permeate side due to the
transport of water vapor through the membrane pores and conduction through the mem-
brane [12,13]. As a result, the temperature at the membrane surface differs from its value
in the bulk of the solution. The mass (vapor) flux across the membrane is directly linked
with the difference in vapor pressures at the membrane surface on the feed and permeate
sides, where the mass transfer coefficient of the membrane appears as a constant. The
temperature difference between the bulk solution and membrane surface is known as
temperature polarization, which decreases the effective driving force across the membrane
and results in a reduction in transmembrane vapor flux [13]. The mass transfer coefficient
of the membrane is a function of membrane properties including pore size, overall porosity,
thickness, and the τ which, depending upon the membrane pore size and mean free path of
the water vapor, can be calculated according to different models [3]. Determination of the
vapor pressure at the surface requires knowledge of the membrane surface temperatures,
which are linked with the bulk temperatures through heat transfer coefficients [14]. The
thermal conductivity of the membrane (κm) affects the heat conducted across the mem-
brane and therefore directly influences the total heat transport across the membrane and
hence the temperature at the membrane surface [15]. Thus, the determination of flux is
associated with the calculation of surface temperatures and the mass transfer coefficient of
the membrane.

Understanding heat and mass transport in MD is important to design, improve, and
optimize the process and module design [3,16–18]. Numerous semi-empirical correlations
have been proposed to calculate the Nusselt number (Nu) for heat transfer coefficient in
MD channels (see Section 2.3) [13,19]. The ultimate selection of the correlation for the Nu
for a given fluid is a function of the applied hydrodynamics and the system configuration
(e.g., flat sheet, hollow fiber). Likewise, Nu, several correlations have been proposed
to describe the κm, including the parallel resistance model, the series resistance model,
and the Maxwell I model, as described in Section 2.3. In all these correlations, effective
membrane thermal conductivity models account for the membrane porosity, the thermal
conductivity of stagnant air within the pore, and the thermal conductivity of the membrane
material. High κm decreases the temperature gradient across the membrane, which results
in lower vapor flux [20]. For τ, which is inversely linked with the vapor flux, three different
approaches have been adopted [21,22]: (i) use it as an adjustable parameter in the model;
(ii) use a constant value (usually between 1 and 2, but occasionally greater than 2) for the τ;
and (iii) use theoretical approaches to link the membrane porosity with the τ.

Despite their fundamental importance, heat and mass transport in MD are poorly
understood [13,23,24]. The current state-of-the-art modeling of MD approaches has two
major limitations regarding the use of various correlations for the Nu, κm, and τ of the
membrane. Firstly, they compare the validity of various correlations proposed for any of
the three parameters (Nu, τ, and κm) for a fixed combination of the other two parameters. In
other words, the state-of-the-art approaches do not test the validity of various combinations
of correlations for the Nu, κm, and τ of the membrane. For instance, in some studies
for the determination of a suitable correlation for the Nu, it was assumed that the κm
could be represented by the parallel model [13,25]. Phattaranawik et al. considered the
suitability of κm correlations in their DCMD model but neglected the correlations for τ [26].
Kim et al. studied the effect of using eleven different correlations for the τ on the flux and
concluded that the use of an inappropriate correlation can incorporate a significant error in
the predicted flux [27]. However, the study was carried out by assuming that heat transport
within the membrane and in feed and permeate channels can be described by using a fixed
combination of correlations for κm and Nu. This approach is clearly very specific to the
membrane and operating setup applied in each of the studies, and its validity for a broad
set of membrane and module characteristics cannot be guaranteed. The second important
limitation of the current state-of-the-art is that the validation of different correlations for Nu,
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κm, and τ has been tested by comparing the theoretical and experimental values of vapor
flux only [11,15,27–29]. The potential of these models to predict the outlet temperatures of
feed and permeate, which are crucial to calculating thermal and cooling energy demand,
respectively, is broadly neglected in the current literature.

The overall objective of the current study is to analyze the capability of various
combinations of state-of-the-art correlations for Nu, κm, and τ to predict the experimental
flux and outlet temperatures for hollow fiber membrane modules. The ultimate objective is
to find the best-suited combination of Nu, κm, and τ to predict the experimental data (flux
and outlet temperatures).

2. Materials and Methods
2.1. MD Test

Experimental analysis of DCMD has been conducted to validate the model predictions
by using a polypropylene hollow fiber membrane from Membrana GmbH. The membrane
has a porosity of 73%, a mean pore size of 0.2 µm, and a thickness of 450 µm. The membrane
module, consisting of 19 hollow fibers with an effective length of 51 cm placed in a shell
with a 2.1 cm internal diameter, was fabricated in the laboratory. The experiments were
performed with pure water as feed and permeate circulating on the lumen and shell sides,
respectively, of the hollow fiber membrane module operating in the countercurrent mode.
The Reynolds numbers for the permeate and feed sides were in the ranges 130–300 and
200–1800, respectively. Inlet and outlet temperatures of the feed and permeate streams
were measured by using thermocouples (TECPEL thermometers). The flux was measured
by following the weight loss of the feed container as a function of experimental time.
Circulation of hot and cold streams was achieved by using a peristaltic pump (Masterflex
L/S). The temperatures of the feed and permeate streams were controlled by using heating
(Grant) and cooling (Julabo 200F) systems, respectively. Detailed experimental design
parameters can be found in Table 1, whereas a schematic illustration of the experimental
setup can be found elsewhere [30–32]. The experimentation was designed to comprehend
the effect of different operating parameters, including feed inlet temperature and feed and
permeate flow rates, on the process performance.

Table 1. Experimental temperatures and flow rates used in the study.

No. Feed Inlet
Temperature (◦C)

Permeate Inlet
Temperature (◦C)

Feed Flow Rate
(Lh−1)

Permeate Flow
Rate (Lh−1)

1 35 12 99 29
2 39 13 99 29
3 44 14 99 29
4 48 15 99 29
5 49 18 99 29
6 49 22 99 29
7 57 17 99 29
8 65 16 99 29
9 48 14 68 29
10 48 14 43 29
11 47 14 29 29
12 49 14 99 23
13 48 15 99 32
14 48 15 99 50

2.2. Model Development

Mass flux in MD can be described mathematically as follows:

J = B
(

Pf m − Ppm

)
(1)
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where Pfm and Ppm are the vapor pressures at the membrane surface on the feed and
permeate sides, respectively. B is a characteristic membrane parameter, and different
models can be used to determine it [3]. The ultimate selection of the model depends on
the mean free path of the water vapor and the nominal pore size of the membrane. For
PP hollow fiber membranes, the mean free path of water molecules and the nominal pore
size are in the same order of magnitude [20,33], and thus the combined Knudsen- and
molecular diffusion model is used to determine B (see Equation (2)).

B =

[
3τδm

2εr

(
πRTm

8M

) 1
2
+

τδmPairRTm

εPtotDM

]−1

(2)

Pair is the air pressure, and Ptot is the total pressure inside the membrane [3]. τ can be
described by different correlations, as detailed in Section 2.3. D is the vapor diffusivity and
is affected by both the temperature and Ptot. An empirical correlation between Ptot and D is
proposed in a study by Yun et al. [4] (see Equation (3)) and is used in our study.

PtotD = 1.19 · 10−4 · T1.75 (3)

To estimate the mass flux over the membrane, the difference in vapor pressure at the
two membrane surfaces must be known. The vapor pressure is described as a function of
temperature in the Antoine equation (see Equation (4)) [5]. Therefore, temperature on the
membrane surfaces in the feed (Tfm) and permeate (Tpm) is a prerequisite for the calculation
of Pfm and Ppm.

P = exp
(

Aa −
Ba

T + Ca

)
(4)

Since mass flux is driven by a temperature gradient between the feed and permeate
streams, an accurate calculation of the heat transfer across the membrane must be applied.
Heat transfer in MD can be divided into three steps [6]:

1. Heat transfer from the feed bulk to the membrane surface with the rate Qf;
2. Heat transfer across the membrane with the rate Qm;
3. Heat transfer from the boundary layer to the bulk solution on the permeate side is at

a rate of Qp.

Both the heat transfer in the permeate and feed solutions are convection processes
and thus dependent upon a convective heat transfer coefficient (h f /p) and the temperature
polarization according to Equations (5) and (6) [34]:

Q f = h f

(
Tf − Tf m

)
(5)

Qp = hp
(
Tpm − Tp

)
(6)

The heat transfer coefficient in the feed and permeate solution can be estimated from
the following correlation between Nu, the thermal conductivity of the solution κp/ f , and
the equivalent diameter De of the channel (see Equation (7)).

hp/ f =
Nup/ f ·κp/ f

De
(7)

The equivalent diameter corresponds to the diameter of the fibers in the solution on
the lumen side. For the solution on the shell side, Equation (8) should be used due to the
triangular arrangement of the fibers [7]. Furthermore, multiple empirical correlations have
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been proposed to determine Nu. Thus, to ensure the most accurate prediction of the flux,
different Nu correlations are investigated in this study (see Section 2.3) [14].

De =
3.44 · P2

t − π·d2
out

π · dout
(8)

dout is the outer diameter of the fibers, and Pt is the average distance between the centers of
the fibers [7].

The heat transfer rate across the membrane is affected by the κm and the mass transfer
across the membrane (see Equation (9)) [35].

Qm =
κm

δm

(
Tf m − Tpm

)
+ J∆Hv = hc

(
Tf m − Tpm

)
+ hv

(
Tf m − Tpm

)
(9)

where κm can be calculated according to different correlations relating the thermal con-
ductivity of the polymer used as membrane material, κpol and the thermal conductivity
of the air, κair, present in the pores, as detailed in Section 2.3 [6]. δm is the thickness of
the membrane, and ∆Hv is the latent heat of water vapor, which is dependent on the
temperature at the membrane surfaces (see Equation (10))

∆Hv = 1.7535
(Tf m + Tpm

2
+ 2024.3

)
(10)

Under the steady state conditions:

Q f = Qm = Qp (11)

Due to the equality of the different heat transfer rates at steady state, the following
correlations between Tfm, Tpm, Tf, and Tp can be derived [3].

Tf m = Tf − (Tf − Tp)

1
h f

1
hv+hc

+ 1
hp

+ 1
h f

(12)

Tpm = Tp + (Tf − Tp)

1
hp

1
hv+hc

+ 1
hp

+ 1
h f

(13)

To calculate the temperature profile along the module, the energy balance along the
fibers must be applied. This is done by dividing the system into (L/n) elements, where
L is the total length of the system and n is the total number of elements. The energy
difference between the entrance and exit on the feed side for the i-th element is equal to the
amount of energy transferred across the membrane due to conduction and convection (see
Equations (14) and (15)), with a corresponding correlation also applicable for the permeate
stream [3]. Thus, the feed and permeate temperatures for element i + 1 along the fiber for
the countercurrent configuration can be calculated as follows:

Tf |i+1
=

.
m f CpTf |i −

(
κm
δm

(
Tf m − Tpm

)
dA + J∆HvdA

)
.

m f Cp|i+1

(14)

Tp|i+1
=

.
mpCpTp|i −

(
κm
δm

(
Tf m − Tpm

)
dA + J∆HvdA

)
+ Qe

.
mpCp|i+1

(15)

Calculating temperature profiles along the module length allows for the determination
of mass transfer both parallel to the flow and across the membrane in discrete steps. This is
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simply calculated as the difference of mass flux along the module and across the membrane
of the previous element:

.
m f |i+1

=
.

m f |i − JidA (16)

The heat transfer to the environment (Qe in Equation (18)) is firstly governed by the
convective heat transfer from the bulk solution on the shell side to the inner surface of the
module with a rate Qinner, and secondly by the conductive heat transfer across the module
with a rate Qmodule. Lastly, heat is transferred from the outer surface of the module to the
environment via both convection with the rate Qouter and radiation with the rate Qr. The
formula for the different rates is presented in Equation (17) [8].

Qinner = hinner Ainner(Tbulk − Ts,inner)

Qmodule =
kmodule

δtube
Am(Ts,inner − Ts,outer)

Qouter = houter Aouter(Ts,outer − Tair)

Qr = AouterCε
(
T4

s,outer − T4
air
) (17)

At steady state, the following equality for the heat loss can be applied.

Qe = Qin = Qmodule = Qout + Qr (18)

2.3. Variable Parameters

Three parameters used for the modeling computations are varied, i.e., τ, κm, and Nu.
Nine correlations for the Nu, seven for τ, and three for the κm are tested. The specific
details about the correlations used are presented in Table 2. All possible combinations of
the considered correlations are tested, i.e., 189 combinations in total. Nu correlations are
empirically determined and depend on various dimensionless parameters, module length,
and equivalent diameter. The correlations presented in the table are valid in the laminar
flow regime, i.e., Re < 2100. Considered correlations for κm are the parallel resistance model,
the series resistance model, and the Maxwell I model [8].

Table 2. Correlations of τ, Nu, and κm used in the DCMD computations.

Tortuosity (τ)

τ1 = (2−ε)2

ε
[27]

τ2 = ε

1−(1−ε)1/3 [28]

τ3 = 1√
ε

[30]

τ4 = 1
ε [27]

τ5 = (3−ε)
2

[30]
τ6 =

√
1− ln(ε/2) [30]

τ7 = ε

1−(1−ε)2/3 [30]

Nusselt number (Nu)

Nu1 = 1.86
(

RePr
L/De

)1/3 [31]

Nu2 = 4.36
(

0.036RePr(De/L)
1 + 0.0011RePr(De/L)0.8

)
[31]

Nu3 = 0.13(Re)0.64(Pr)0.37 [32]

Nu4 = 1.95
(

RePr
L/De

)1/3 [33]

Nu5 = 0.097(Re)0.73(Pr)0.13 [34]

Nu6 = 3.66 +
(

0.104RePr(De/L)
1 + 0.106RePr(De/L)0.8

)
[33]

Nu7 = 1.62(RePrDe/L)0.33 [35]

Nu8 = 4.36 + 0.023Pe/(L/De)
1 + 0.0012Pe/(L/De)

[36]

Nu9 = 4.364 + 0.02633
(L/(DePe)0.506)exp(41L/(DePe))

(
Pr

Prw

)k

k = 0.20—feed, k = 0.19—permeate
[36]
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Table 2. Cont.

Membrane thermal conductivity (κm)

κm,1 = (1− ε)κpol + εκair [37]

κm,2 =
(

ε
κair

+ 1−ε
κpol

)−1 [37]

κm,3 = κair

( 1 + (1−ε)2βpol−air
1−(1−ε)2βpol−air

)
βpol−air =

(
κpol − κair

)
/
(
κpol + 2κair

) [37]

3. Results and Discussion
3.1. Experimental Mass Fluxes and Outlet Temperatures

Details of experimental input (inlet temperatures and flow rates) and output (outlet
temperatures and fluxes) parameters are provided in Table 3. It is evident from the table
that the flux increases with an increase in feed temperatures and flow rates. Experiments 1–
8 indicate that flux increases exponentially from 1.05 to 6.07 kg/m2.h by increasing the feed
temperature from 35 to 65 ◦C at a constant feed and permeate flow rate. This agrees with
the exponential dependence of flux on temperature in MD reported in the literature [3,36].
The corresponding feed outlet temperature also increases, from 34 to 60 ◦C. A similar trend
is also observed for the permeate outlet temperature. Experiments 9–11 were aimed at
investigating the effect of feed flow rate on transmembrane flux and outlet temperatures. It
is evident from the corresponding data that the flux decreases with the feed flow rate. This
is a direct consequence of increased temperature polarization and feed temperature drop
along the membrane module, as evident from the corresponding Tfout data. The observed
trend again corresponds to the observations reported in the literature [37]. Experiments
12–14 were carried out to explore the effect of permeate flow rates on the mass flux and
temperature drops along the module. As evident from the corresponding flux data reported
in Table 3, flux exhibits a very weak dependence upon the permeate flow rate. Both feed
and permeate outlet temperatures drop slightly with an increase in permeate flow rate,
which was expected due to improved heat transfer on the permeate side and a shorter
residence time for the permeate stream inside the module.

Table 3. Experimentally measured inlet and outlet temperatures and trans-membrane flux at known
feed and permeate temperatures and flow rates.

No. Tf,in [◦C] Tf,out [◦C] Tp,in [◦C] Tp,out [◦C] Qf [L/h] Qp [L/h] J [kg m−2h−1]

1 35 34 12 18 99 29 1.05
2 39 38 13 20 99 29 1.35
3 44 42 14 21 99 29 1.84
4 48 46 15 24 99 29 2.35
5 49 47 18 27 99 29 2.27
6 49 47 22 29 99 29 2.38
7 57 54 17 29 99 29 3.76
8 65 60 16 32 99 29 6.07
9 48 42 14 23 68 29 2.13
10 48 42 14 23 43 29 2.15
11 47 38 14 22 29 29 1.84
12 49 47 14 25 99 23 2.45
13 48 47 15 23 99 32 2.43
14 48 46 15 22 99 50 2.48

3.2. Evaluation of the Model Predictions

All possible combinations of Nu, κm, and τ shown in Figure 1 have been evaluated to
assess their ability to predict the experimental values of the average flux across the mem-
brane and the outlet temperatures Tf,out and Tp,out. The accuracy of the results is determined
by the R2-value of the fit to the function y = x of the experimental (y) and model prediction
(x) data. Detailed results are shown in Table A1 in the Appendix A, which indicates that
the R2 values for flux and outlet temperatures predicted by each of the combinations differ
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widely. Thus, R2-values for J fall in the interval −2.866 < R2 < 0.989, while R2 values for
Tf,out and Tp,out lie in the intervals 0.891 < R2 < 0.977 and −0.529 < R2 < 0.969, respectively.
The variation of R2-values across all models is noteworthy, as it indicates that model
predictions are significantly affected by the combination of the adjustable parameters used.
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Figure 1. An illustration of different combinations of km, τ, and Nu tested in the study. The numbering
for each correlation is according to Table 2.

A statistical analysis of the data has been provided in Figure 2. It is evident from
Figure 2 that only 31 out of 189 combinations could predict the flux with accuracy exceeding
R2 > 0.9. This emphasizes the significance of using the appropriate combination of tortuosity,
heat transfer, and κm correlations in DCMD modeling. Furthermore, the variation and the
number of low R2-values suggest that many combinations yield inaccurate predictions.
Thus, evaluation of the prediction performance of a given model may have to account
for the relative model performance rather than the absolute performance. The number of
combinations that could predict Tf,out with R2 > 0.9 was the highest (180). On the other
hand, only 13 combinations could predict Tp,out with reasonable accuracy (R2 > 0.9).
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the model predicts all three parameters well, but standard deviations vary between J, Tf,out, 
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3.3. Selection of the Best Fitting Model

The selection of the best-fitting model in this study is based on the highest sum of the
R2-values for J, Tf,out, and Tp,out. The combinations of the three adjustable parameters τ, Nu,
and κm with the best overall prediction performance based on the conditions set in this
study are reported in Table 4 along with the corresponding R2-values. The accuracy of the
fit to flux, feed, and permeate outlet temperatures is represented with R2(J), R2(Tf,out), and
R2(Tp,out), respectively. R2

tot is the average of R2(J), R2(Tf,out), and R2(Tp,out).

Table 4. R2-values and correlation numbers (numbers for τ, Nu, and κm correspond to Table 3) for
the best-fitting model (based on fit for Tf,out, Tp,out, and J).

τ Nu κm R2(J) R2(Tf,out) R2(Tp,out) R2
tot

2 3 1 0.970 0.976 0.951 0.966
1 3 1 0.911 0.976 0.948 0.945
2 5 1 0.951 0.973 0.907 0.944
1 5 1 0.880 0.973 0.903 0.918
6 9 1 0.942 0.970 0.805 0.906

The model with the best predictability for all the parameters is the one that combines
τ2, Nu3, and κm,1. The experimental values are plotted against the predicted values for
this model in Figure 3 to confirm the model’s performance. It is evident from the figure
that the model predicts all three parameters well, but standard deviations vary between J,
Tf,out, and Tp,out, where J-standard deviations are generally higher than those of Tp,out and
especially Tf,out.
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Tp,out. Note that error bars in some cases are smaller than the points and, therefore, are not visible for
some points.

One may note from Table A1 that the model with the best overall prediction ability
does not have the best prediction ability when solely focusing on the flux. Therefore, it
is necessary to investigate the best model when only taking flux prediction into account.
Several combinations of τ, Nu, and κm can determine the flux accurately. The best five
models for flux prediction are shown in Table 5 along with their corresponding R2 values
for their general predictions. It is evident from the table that even though a given model
can predict the flux well, this does not necessarily entail that it is also able to predict the
outlet temperatures well.

It is evident from Table 5 and Figure 4 that the best models to predict J can also predict
feed outlet temperature reasonably well with R2-values above 0.9; however, their capability
to predict permeate outlet temperatures is poor, and the corresponding R2-values fall in
the range −0.187 < R2 < 0.758. However, accurate prediction of outlet temperatures for
permeate as well as the feed stream is important as these parameters play a significant role
in the heating and cooling energy consumption of the DCMD process.
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Table 5. R2-values and correlation numbers (numbers for τ, Nu, and κm correspond to Table 3) for
the best-fitting model for the flux.

τ Nu κm R2(J) R2(Tf,out) R2(Tp,out) R2
tot

2 3 3 0.989 0.965 0.758 0.904
1 3 2 0.986 0.916 −0.071 0.610
1 5 2 0.985 0.910 −0.187 0.569
2 5 3 0.984 0.959 0.657 0.866
2 5 2 0.978 0.911 −0.154 0.578
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4. Observed Tendencies

All different combinations of adjustable parameters and the corresponding R2 values
are shown in Table A1 in the Appendix A. The results have been reported in decreasing
order with respect to Rtot

2. From Table A1, it is evident that Rtot
2 values vary significantly for

different combinations, and even though it is not possible to clearly evaluate the prediction
accuracy for every correlation, some tendencies can be observed.

It is noteworthy that among the best-performing models, the most commonly used
correlation for the determination of κm is κm,1. This indicates that κm,1 can describe the heat
transfer across the membrane more accurately than the remaining correlations. Contrarily,
most of the models with poor overall prediction performance use κm,2 correlation. Models
based on κm,2 especially show poor prediction of the outlet temperatures, suggesting that
κair and κpol are not weighted appropriately in the series resistance model (κm,2) and that
the focus of this correlation may be flux prediction.

A similar tendency is observed when examining tortuosity correlations, where τ2,
when paired with the appropriate correlations for Nu and κm, best predicts the experimental
outputs. The poorest prediction of the correlations for τ follows the order τ5, τ3, and
τ7. Generally, a tendency is observed where a lower value of τ corresponds to a lower
prediction ability, except for τ1 and τ2. This suggests that the optimal value of τ is around
2.0 for a membrane with high porosity, which is also reported in a study by Khayet et al. [3].
The value of τ has a direct impact on the permeability coefficient, B, which is used to
determine the transmembrane flux. Higher values of τ entail lower B and thereby also
lower predicted flux. This observation leads to the conclusion that most of the correlations
used for τ tend to overestimate the flux.

When observing the Nu correlations, no clear tendency was observed. This is evident
from the fact that Nu3 and Nu5 are present in both the models with the highest and lowest
prediction accuracy. This might also suggest that the choice of the Nu correlation is of
less significance than those of τ and κm. Furthermore, these observed tendencies for the
correlations of τ, Nu, and κm emphasize the importance of making the correct choice of
model for theoretical DCMD modeling.
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5. Conclusions

In the present work, different combinations of state-of-the-art empirical correlations
for the tortuosity factor, Nusselt number, and thermal conductivity of the membrane have
been evaluated for their ability to predict outlet temperatures and flux in DCMD. In total,
189 combinations have been investigated, with varying results. Only 31 combinations
were able to predict the experimental flux with reasonable accuracy (R2 > 0.95) whereas
180 correlations could accurately predict the feed outlet temperature. The worst predictions
were observed for the permeate outlet temperatures, where only 13 tested combinations
could predict the experimental temperature with reasonable accuracy. Only five combi-
nations could predict all three set parameters simultaneously (flux, feed, and permeate
outlet temperatures) with reasonable accuracy. This highlights the importance of using an
appropriate combination of the adjustable parameters when using a theoretical model to
predict the performance of a DCMD setup. The model with the best ability to predict J,
Tf,out, and Tp,out consists of τ2, Nu3, and κm,1, where the numbering in subscript is according
to Table 2. This model has an average R2 = 0.97 for the fit of predicted values against
experimental values.
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Abbreviations

Math symbols
τ Tortuosity
κ Thermal conductivity
κpol Thermal conductivity of polymer
κair Thermal conductivity of air
J Mass flux
P Vapour pressure
B Membrane characteristic parameter
d Nominal pore size
λ Mean free path of water vapour molecules
Kn Knudsen number
δm Membrane thickness
ε Membrane porosity
r Pore radius
R Gas constant
T Temperature
D Diffusivity of water vapour
M Molecular weight
Aa, Ba, Ca Antoine’s equation coefficients
Q Heat flux
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h Heat transfer coefficient
De Equivalent diameter
dout Outer fiber diameter
Pt Average distance between fibers
∆Hv Latent heat of water vapour
L Module length
Cp Isobaric heat capacity

Appendix A

Table A1. R2 values for the correlation between experimental and theoretical data for J, Tf,out, Tf,out,
and total average R2. Model no. indicates the correlations used for the model in the following order:
τ, Nu, and κm.

MODEL NO. R2(J) R2(Tf,out) R2(Tp,out) R2
tot

231 0.970 0.976 0.951 0.966
131 0.911 0.976 0.948 0.945
251 0.951 0.973 0.907 0.944
151 0.880 0.973 0.903 0.918
691 0.942 0.970 0.805 0.906
621 0.905 0.971 0.838 0.905
233 0.989 0.965 0.758 0.904
681 0.923 0.970 0.817 0.903
661 0.892 0.970 0.836 0.899
491 0.908 0.970 0.808 0.895
641 0.924 0.966 0.783 0.891
133 0.959 0.964 0.746 0.890
481 0.880 0.970 0.820 0.890
421 0.856 0.971 0.840 0.889
611 0.939 0.964 0.756 0.886
461 0.837 0.970 0.839 0.882
441 0.880 0.966 0.785 0.877
411 0.901 0.965 0.758 0.875
253 0.984 0.959 0.657 0.866
671 0.971 0.959 0.658 0.863
471 0.952 0.959 0.660 0.857
261 0.780 0.969 0.809 0.853
153 0.941 0.958 0.645 0.848
221 0.760 0.970 0.811 0.847
791 0.756 0.970 0.815 0.847
781 0.701 0.970 0.827 0.833
281 0.737 0.969 0.791 0.832
721 0.657 0.971 0.847 0.825
771 0.846 0.959 0.666 0.824
711 0.739 0.965 0.766 0.823
241 0.745 0.965 0.756 0.822
741 0.700 0.966 0.792 0.820
291 0.699 0.969 0.779 0.816
761 0.623 0.970 0.846 0.813
161 0.664 0.969 0.805 0.813
651 0.524 0.974 0.933 0.811
121 0.642 0.970 0.807 0.806
211 0.722 0.964 0.730 0.806
181 0.615 0.969 0.787 0.790
391 0.569 0.970 0.821 0.787
263 0.882 0.952 0.516 0.783
141 0.624 0.965 0.752 0.780
223 0.867 0.953 0.519 0.780
371 0.703 0.959 0.671 0.778
631 0.388 0.976 0.965 0.776
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Table A1. Cont.

MODEL NO. R2(J) R2(Tf,out) R2(Tp,out) R2
tot

693 0.834 0.954 0.538 0.775
191 0.573 0.969 0.775 0.772
623 0.768 0.956 0.584 0.769
683 0.797 0.954 0.556 0.769
451 0.387 0.974 0.936 0.766
283 0.851 0.952 0.491 0.765
381 0.488 0.970 0.832 0.763
111 0.599 0.964 0.726 0.763
663 0.745 0.954 0.583 0.761
311 0.543 0.965 0.772 0.760
493 0.768 0.954 0.544 0.755
643 0.798 0.950 0.512 0.753
591 0.463 0.970 0.823 0.752
243 0.858 0.948 0.448 0.751
571 0.620 0.959 0.674 0.751
613 0.825 0.948 0.478 0.750
341 0.486 0.966 0.798 0.750
293 0.824 0.951 0.474 0.750
321 0.425 0.971 0.853 0.750
163 0.790 0.952 0.506 0.749
483 0.721 0.954 0.562 0.746
271 0.642 0.959 0.636 0.746
123 0.772 0.953 0.508 0.744
423 0.684 0.956 0.591 0.744
213 0.842 0.946 0.416 0.735
463 0.656 0.955 0.589 0.733
673 0.897 0.941 0.362 0.733
361 0.376 0.970 0.852 0.733
443 0.721 0.950 0.518 0.730
413 0.755 0.948 0.484 0.729
183 0.752 0.951 0.481 0.728
581 0.369 0.970 0.835 0.725
511 0.433 0.965 0.774 0.724
431 0.225 0.976 0.966 0.722
473 0.847 0.941 0.368 0.719
143 0.760 0.947 0.438 0.715
193 0.720 0.951 0.464 0.712
541 0.367 0.966 0.801 0.711
521 0.296 0.971 0.855 0.708
171 0.510 0.959 0.632 0.700
113 0.740 0.945 0.406 0.697
561 0.241 0.970 0.854 0.688
793 0.521 0.955 0.561 0.679
273 0.783 0.940 0.307 0.677
773 0.654 0.942 0.383 0.660
783 0.444 0.955 0.580 0.660
653 0.272 0.962 0.733 0.656
723 0.385 0.956 0.609 0.650
713 0.498 0.949 0.501 0.649
743 0.444 0.951 0.535 0.643
173 0.672 0.939 0.298 0.636
633 0.109 0.968 0.830 0.636
763 0.341 0.955 0.607 0.634
232 0.965 0.918 −0.037 0.615
751 −0.082 0.974 0.942 0.611
132 0.986 0.916 −0.071 0.610
453 0.095 0.962 0.741 0.599
393 0.248 0.955 0.575 0.593
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Table A1. Cont.

MODEL NO. R2(J) R2(Tf,out) R2(Tp,out) R2
tot

373 0.433 0.942 0.395 0.590
252 0.978 0.911 −0.154 0.578
433 −0.095 0.968 0.837 0.570
152 0.985 0.910 −0.187 0.569
383 0.142 0.956 0.594 0.564
313 0.216 0.949 0.515 0.560
573 0.311 0.942 0.401 0.551
343 0.142 0.951 0.549 0.547
323 0.062 0.957 0.623 0.547
593 0.100 0.955 0.582 0.546
731 −0.323 0.976 0.968 0.541
363 0.002 0.956 0.622 0.527
262 0.968 0.903 −0.306 0.522
222 0.962 0.904 −0.305 0.520
583 −0.020 0.956 0.600 0.512
513 0.065 0.949 0.521 0.512
282 0.955 0.903 −0.333 0.508
292 0.943 0.902 −0.354 0.497
162 0.922 0.902 −0.334 0.497
242 0.960 0.899 −0.372 0.496
543 −0.020 0.951 0.556 0.496
122 0.913 0.903 −0.333 0.494
523 −0.111 0.957 0.629 0.492
212 0.954 0.897 −0.402 0.483
182 0.902 0.902 −0.360 0.481
142 0.908 0.898 −0.399 0.469
563 −0.178 0.956 0.628 0.469
192 0.884 0.901 −0.381 0.468
112 0.898 0.896 −0.429 0.455
351 −0.570 0.974 0.947 0.451
272 0.929 0.892 −0.505 0.439
692 0.522 0.910 −0.186 0.415
753 −0.492 0.963 0.761 0.411
172 0.860 0.891 −0.529 0.407
682 0.461 0.910 −0.162 0.403
622 0.414 0.912 −0.131 0.399
672 0.633 0.898 −0.353 0.393
612 0.505 0.904 −0.238 0.390
642 0.461 0.906 −0.203 0.388
662 0.381 0.911 −0.130 0.387
492 0.398 0.910 −0.169 0.380
551 −0.827 0.974 0.949 0.366
482 0.325 0.911 −0.145 0.364
472 0.529 0.898 −0.338 0.363
422 0.271 0.913 −0.113 0.357
412 0.377 0.905 −0.221 0.353
331 −0.887 0.976 0.969 0.353
733 −0.766 0.969 0.855 0.352
442 0.326 0.907 −0.186 0.349
462 0.231 0.912 −0.112 0.343
772 0.176 0.900 −0.297 0.260
792 −0.019 0.912 −0.123 0.257
531 −1.183 0.977 0.969 0.254
652 −0.222 0.920 0.050 0.249
632 −0.411 0.927 0.177 0.231
782 −0.126 0.913 −0.099 0.230
712 −0.050 0.907 −0.177 0.227
353 −1.087 0.963 0.777 0.218
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Table A1. Cont.

MODEL NO. R2(J) R2(Tf,out) R2(Tp,out) R2
tot

742 −0.125 0.909 −0.141 0.214
722 −0.206 0.915 −0.066 0.214
762 −0.263 0.914 −0.065 0.195
452 −0.465 0.921 0.071 0.175
372 −0.186 0.901 −0.264 0.150
432 −0.684 0.928 0.198 0.147
333 −1.444 0.969 0.869 0.131
392 −0.444 0.914 −0.087 0.128
553 −1.396 0.964 0.784 0.117
312 −0.483 0.908 −0.141 0.095
572 −0.375 0.902 −0.249 0.092
382 −0.583 0.915 −0.062 0.090
342 −0.580 0.910 −0.105 0.075
322 −0.687 0.916 −0.029 0.067
592 −0.666 0.915 −0.071 0.059
362 −0.761 0.915 −0.027 0.042
512 −0.708 0.909 −0.125 0.025
582 −0.820 0.916 −0.045 0.017
533 −1.796 0.970 0.875 0.016
542 −0.817 0.911 −0.088 0.002
522 −0.937 0.917 −0.011 −0.010
562 −1.019 0.916 −0.010 −0.037
752 −1.250 0.923 0.125 −0.067
732 −1.560 0.931 0.254 −0.125
352 −2.023 0.925 0.169 −0.309
332 −2.422 0.933 0.300 −0.397
552 −2.419 0.926 0.189 −0.435
532 −2.866 0.934 0.320 −0.537
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