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Abstract: The construction of smart grids has greatly changed the power grid pattern and power
supply structure. For the power system, reasonable power planning and demand response is
necessary to ensure the stable operation of a society. Accurate load prediction is the basis for realizing
demand response for the power system. This paper proposes a Pre-Attention-CNN-GRU model
(PreAttCG) which combines a convolutional neural network (CNN) and gate recurrent unit (GRU)
and applies the attention mechanism in front of the whole model. The PreAttCG model accepts
historical load data and more than nine other factors (including temperature, wind speed, humidity,
etc.) as input. The attention layer and CNN layer effectively extract the features and weights of each
factor. Load forecasting is then performed by the prediction layer, which consists of a stacked GRU.
The model is verified by industrial load data from a German dataset and a Chinese dataset from the
real world. The results show that the PreAttCG model has better performance (3~5% improvement
in MAPE) than both LSTM with only load input and LSTM with all factors. Additionally, the
experiments also show that the attention mechanism can effectively extract the weights of relevant
factors affecting the load data.

Keywords: load prediction; attention; convolutional neural network; gate recurrent unit

1. Introduction

The construction of smart grids has greatly changed the power grid pattern and
power supply structure. It is also a new challenge for the safe and stable operation of
power systems. For power systems, reasonable power planning and demand response are
necessary to ensure the stable operation of a society. Accurate load prediction is the basis for
realizing demand response, economic operation, and scientific management of the power
system. It is of great significance for optimizing unit combinations, power dispatching, and
power market transactions.

For users on the demand side, their electricity consumption behavior has been dy-
namically changing, which also leads to the non-linear characteristics of user load data.
At the same time, users’ electricity behaviors are also very easily affected by a variety of
external factors, such as climate change, holiday activities, electricity prices, etc. Electricity
behavior and these external factors are uncertain and not linear. Traditional methods and
simple neural network methods cannot achieve good effects. Therefore, on the premise that
relevant data can be obtained, multivariate prediction models considering these external
factor data and load data are becoming a very valuable research direction [1]. However,
determining the correlation weight of each external factor is a big challenge.

Based on the above considerations, this paper proposes a novel multivariate load
prediction model based on the pre-attention mechanism and convolution load network
(Pre-Attention-CNN-GRU, or PreAttCG) for multiple data, including meteorological data,
electricity price data, and load data. Putting the attention mechanism in front of the neural
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network model provides practical significance in terms of data analysis to attention layer
weights. We can directly use the attention layer weight values in the final training model to
comprehensively analyze the weights of the time dimension effect and factor dimension
effect with respect to load data. We conduct multivariate time series data using a two-
dimensional matrix and take advantage of the convolutional neural network to extract
features. We can then use a recurrent neural network to better capture the internal changes
and further improve prediction accuracy. Experiments on Chinese and German datasets
show that the PreAttCG model has more accuracy in load prediction tasks than baseline
methods such as LSTM. Additionally, the PreAttCG model can effectively find out the
weight of each external factor affecting the load.

2. Related Works

Many researchers have studied multivariate load forecasting.
Lang et al. [2] applied random weights and kernels into a neural network for short-

term forecasting of load data with old load and temperature data. Unterluggauer et al. [3]
proposed a multivariate multi-step model based on LSTM to predict short-term charging
load data. Bracale et al. [4] and Xing et al. [5] used multivariate quantile regression for short-
term load forecasting. Huang et al. [6] proposed a novel hybrid predictive model based
on multivariate empirical mode decomposition (MEMD) and support vector regression
(SVR) with parameters optimized by particle swarm optimization (PSO), which can capture
precise electricity peak load. Xiao et al. [7] proposed the Multi-scale Skip Deep Long
Short-Term Memory (MSD-LSTM) model for short-term load prediction with multivariate
data. Khan et al. [8] applied SVR to realize multivariate time series forecasting model for
load prediction.

Roy et al. [9] proposed a hybrid model based on Multivariate Adaptive Regression
Splines (MARS) and an Extreme Learning Machine (ELM) to estimate heating load in
buildings. Similarly, Cheng et al. [10] used Evolutionary Multivariate Adaptive Regression
Splines (EMARS) to predict building energy. Fan et al. [11] used the features extracted
by unsupervised deep learning as inputs for cooling load prediction. Zhang et al. [12]
filtered original input data using an Unscented Kalman Filter (UKF) and then used an
improved coupled generative adversarial stacked auto-encoder (ICoGASA) that consisted
of three generative adversarial networks (GANs) to generate more similar errors in weather
forecasting and the lifestyles of different residents for prediction analysis. Zhang et al. [13]
proposed a novel asynchronous deep reinforcement learning model with an adaptive
early forecasting method and reward incentive mechanism for short-term load forecasting.
Hu et al. [14] proposed a multivariate regression load forecasting algorithm based on
variable accuracy feedback. Gupta et al. [15] proposed a joint feature selection framework
for multivariate prediction. Ouyang et al. [16] proposed a combined multivariate model
through the use of different kernel functions in support vector regression models for wind
power prediction.

The algorithms and models mentioned mainly used regression methods and simple
structured neural networks. These methods can only accommodate data with low dimensions.
They cannot take advantage of more useful factors that are strongly related to load data.

The convolutional neural network (CNN) [17] is mainly used in image processing
to extract the features of pictures based on maintaining the spatial relations between the
pixels. As time series data can be converted to 2-D curves, we can apply a CNN to them
to extract the features efficiently. As a result, many researchers have introduced CNNs to
their forecasting models. Bendaoud et al. [18] provide 2-D input to a CNN and conducted
one-quarter-ahead and 24 h-ahead forecasting. Dong et al. [19] combined a CNN and K-
means clustering to improve the scalability of short-term load forecasting. Deng et al. [20]
used multi-scale convolutions (MS-CNN) to extract different level features for short-term
load forecasting. Zhao et al. [21] built a new model based on a CNN to improve short-term
heat load prediction of different buildings in residential districts. Jin et al. [22] proposed a
CNN–GRU hybrid model with parameter-based transfer learning to optimize short-term
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load prediction. Yu et al. [23] used a 2-D CNN to improve their bird swarm algorithm for
torsional capacity evaluation of RC beams.

Alhussein et al. [24] and Rafi et al. [25] combined LSTM and a CNN for load forecasting
and achieved better results than LSTM-only models. Similar to LSTM methods, Sajjad et al. [26]
used a GRU instead of LSTM.

Li et al. [27], Khan et al. [28], Imani et al. [29], Tudose et al. [30], and Dong et al. [31]
introduced a CNN to their models for short-term load forecasting and achieved better
results in evaluation indexes.

The studies mentioned above introduced CNNs to extract load features and obtain
ideal results. However, those studies did not consider multivariate factors and their
structures were simple. Therefore, there is much space for improvement.

Attention is a mechanism that can help improve neural networks. It can calculate the
weights of features efficiently, which can help the model to understand the data better. The
mechanism is mainly used in the fields of computer vision (CV) [32] and natural language
processing (NLP) [33].

The efficiency of extracting the best weight of each factor can also help to achieve better
performance in load forecasting. Tang et al. [34] introduced attention to a Temporal Convolu-
tional Network (TCN) for short-term load forecasting. Thus, to achieve better performance in
load forecasting, we have proposed the Pre-Attention-CNN-GRU (PreAttCG) model.

3. Algorithm Model Design

With the continuous improvement of smart grid construction, collectable data are not
only load curve data in the actual power system, but also rich regional location data, real-
time electricity price data, etc. Through interaction with the meteorological system, some
meteorological data can also be obtained. Users’ electricity consumption behaviors are
closely related to these various external factors. Fully excavating and analyzing the effect
of these multiple factors on power consumption behaviors is helpful to predict electricity
consumption behavior more accurately. It can help to reasonably plan power distribution,
save energy, and support the sustainable development of power and other energy. When
considering these various factors, users’ load data form a typical multi-factor time series.
The data have the same time dimension as the ordinary time series and have a multi-time
data dimension with multiple factors affecting the load data in each time dimension. This
paper introduces a comprehensive analysis of the effect weight of the time dimension and
factor dimension on power load. We also use a convolutional neural network to extract
two-dimensional multiplex time series data as input to the subsequent recurrent neural
network layer. The model’s structure is shown in Figure 1.

Figure 1 shows the designed model’s steps for processing the original multivariate data
from input to output, and the internal principles of each step are specifically described below.

3.1. Input Data of the Model

The main input is load data. Because users’ electricity consumption is often related to
meteorological data [1], we include meteorological data such as the temperature, rainfall,
visibility, air pressure, and electricity price as external factor input data. These data are all
time series data, so they have the practical significance of both time and external factors. In
terms of external factors, there may be a variety of data with different factors according
to the different actual data situation. The time series may be 96 points, 24 points, and so
on according to the different actual acquisition frequency. Therefore, analyzing the effect
weight of different aspects and different factors is conducive to a better understanding of
user behavior.
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Figure 1. Multivariate load prediction model based on a pre-attention mechanism and convolutional
neural network.

3.2. Attention Layer

The attention mechanism (Attention) is not a complete model, but should be a tech-
nology. It functions to focus on and fully learn from the more important parts of a dataset
and can be applied to any relevant model of sequence data. Under the traditional encoder–
decoder model architecture, the codec needs to be limited by a fixed-length vector in the
internal structure. The emergence of the attention mechanism breaks this point. In fact, a
model based on the attention mechanism can also be used as a real measure of similarity.
The current input weight is proportional to the similarity of the target state, and the more
similar the weight, the greater the result. Therefore, the introduction of the attention mech-
anism allows the model to selectively focus on the corresponding relevant information in
the input when making the output. It is also widely used in many sequence prediction
problems, which is why this paper uses Attention to analyze the effect weight of different
external factors on electricity behavior.
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The essence of the attention mechanism is to introduce a fully connected layer, but the
activation function in the internal structure of the layer is set to SoftMax. Its output is a
set of weights representing attention, which is then combined with the original input to
obtain the “importance” of each original feature. In order to comprehensively consider
the different weights of the time dimension and the external factor dimension, the spe-
cific weight calculation method of the attention layer designed in this section is shown
in Figure 2.
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Figure 2. Attention mechanism weights are calculated in this section.

For the time dimension, the attention allocation matrix is as follows:

Mt =


a1 a1 . . . a1
a2 a2 . . . a2

. . .
atimestep atimestep . . . atimestep


Timestep∗input_dim

(1)

For the time dimension, the attention allocation matrix is as follows:

M f =


b1 b2 . . . binput_dim
b1 a2 . . . binput_dim

. . .
b1 b2 . . . binput_dim


Timestep∗input_dim

(2)

The resulting final attention distribution matrix is therefore as follows:

M f ianl =


a1 ∗ b1 a1 ∗ b2 . . . a1 ∗ binput_dim
a2 ∗ b1 a2 ∗ b2 . . . a2 ∗ binput_dim

. . .
atimestep ∗ b1 atimestep ∗ b2 . . . atimestep ∗ binput_dim


Timestep∗input_dim

(3)

The final attention allocation matrix is an element-by-element product of the time
dimension and the factor dimension. Therefore, the value of each element in the matrix
is the final weight obtained by considering the time dimension and the space dimension
comprehensively. After model training is completed, the weight of each part is output,
and the obtained value reflects the weight of the corresponding time or factor dimension.
This reflects the degree of effect of the corresponding factors on electricity consumption
behavior, which has a certain practical significance.
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3.3. Convolutional Layer

Convolutional neural networks (CNNs) show excellent performance in target monitor-
ing and image classification and can acquire local features from the higher level of inputs
and combine them into more complex features at the lower level. A CNN is usually used
for the processing of visual data, namely data formatted as a two-dimensional matrix. The
multivariate load data to be analyzed in this paper are exactly this type of matrix data with
the dual features of multivariate factors and time series.

The convolutional network used in the method of this paper mainly consists of multi-
ple stacked convolution and pooling operations. Where the number of convolution kernels
can determine the degree of feature extraction. The size of the convolution kernel can be
adjusted according to the fixed length of the input sequence data. The pooling layer is used
to filter some unimportant features.

In deep learning-related model frameworks, the stacking of multiple convolutional
layers enables the initial layers to learn low-level features in the application inputs. How-
ever, the output feature map of the convolutional layer has a limitation: it will track the
specific location of the input feature more accurately, that is, even a very small movement
of the input feature will cause the generation of different feature maps. Therefore, a pooling
layer is added to the middle of the continuous convolution layer to reduce the limitation
of the invariance of the generated feature map, while the activation function is used to
enhance the ability of the model to learn complex structures. The activation function used
in this section is ReLU, or the Rectified Linear Unit function, as shown in Equation (4).

frelu(x) = Max(0, x) (4)

The ReLU function retains values greater than 0 (which are also relatively good
features in the data), discarding values with features less than 0; this activation function
can effectively address gradient-related problems in model training and make the network
easier to train.

3.4. Prediction Layer

The prediction layer of the model designs a three-layer stacked GRU network based
on GRUs. The network structure not only solves the gradient problem of RNNs itself, but
also improves the training efficiency of the model due to its simple unit structure.

4. Experiment Design and Comparative Analysis

This section introduces the superiority and practical significance of the proposed method
in prediction accuracy mainly through the experiments conducted on real datasets. Accuracy
will be reflected by methods such as established indexes and control variables, and the
practical significance of the methods will be analyzed separately for different datasets.

4.1. Dataset

This paper uses different industrial electricity consumption datasets from China and
Germany to validate the proposed model. In the German datasets, the load data and
real-time electricity price data come from the actual data of some regions, which have been
published by an agency in Germany since October 2018. These data represent the actual
electricity consumption situation of a region and the historical real-time electricity price
situation of a region. The meteorological data used came from the Climate Data Center of
the German Meteorological Bureau, which provided the meteorological conditions of the
electricity price and load dataset in the provided dataset. Combining the two sets of data
provides the multivariate load dataset used for the experiments in this section.

The Chinese dataset used was derived from ledger data provided by the relevant depart-
ments, including load data and meteorological data from some regions from January 2020 to
May 2021. The details of the dataset are shown in Tables 1 and 2.
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Table 1. Definition of the German dataset.

Symbol Meaning Instance File Format

TI Time 2018-10-02 01:00:00 –
LD Load 3627.00 csv
PC Price 56.65 csv
P0 Pressure 9.383 txt
RR Rainfall 0.3 txt
VV Visibility 4.893 txt
T Temperature 17.8 txt
U Humidity 72 txt
FF Wind speed 6.7 txt

Table 2. Definition of the China dataset.

Symbol Meaning Instance File Format

Station_Id Station ID 54,863 txt
Province Province Henan txt

City City Zhoukou txt
Region Region Huaiyang txt

Year Year 2020 txt
Month Month 3 txt

Day Day 1 txt
Hour Hour 0 txt
Min Minute 0 txt
TEM Temperature 19.8 txt
RHU Humidity 72 txt

Pre_1H Rainfall 0.1 txt
WIND_S_Avg_2 min Wind speed over two minutes 1.2 txt

WIND_S_Avg_10 min Wind speed over ten minutes 1.6 txt

For the dataset shown in Table 1, after certain processing of the time identification
and region identification data, the multiple input variables include temperature, humidity,
precipitation, wind speed within 2 min, and wind speed within 10 min, as well as load data.

4.2. Index Definition

The core of this paper is more accurate load prediction, so we defined RMSE, MAPE,
and R2_Score to evaluate the prediction effect.

4.3. Comparison Methods

Based on the PreAttCG method presented in this paper, the following section briefly
introduces the method selected from the technical selection aspects of deep learning predic-
tion methods and the consideration of multivariate factors.

(A) LSTM network (LoadLSTM) with load data input. This method focuses on incor-
porating multiple external factors into the model input. Therefore, a set of comparison tests
will be set to only use the load data themselves without considering the effect of external
factors, using the results obtained as a benchmark.

(B) LSTM network (FullLSTM) with full amount of data input. The input of this
method will use all external factor data and load data of this section’s dataset, which can
be used to prove the improvement in model prediction ability through the consideration of
external effect factors.

4.4. Experiment Results and Comparative Analysis

After clarifying the result index and the experimental comparison method, experimen-
tal verification will be conducted on the selected dataset. The specific experimental results
are as follows.
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4.4.1. German Dataset

A comparison of prediction accuracy with the selected contrast method was first used
on the German dataset, and the performance of each method is shown in Table 3.

Table 3. Comparison of prediction accuracy indexes (German dataset).

Index LoadLSTM FullLSTM PreAttCG

MAPE (%) 10.217 6.103 4.983
RMSE 439.071 422.919 417.083

R2_SCORE 0.931 0.939 0.953

As can be seen from each index, the prediction accuracy of the method proposed in
this section is better than the benchmark method. Compared with only inputting load data,
inputting both meteorological and price data can obtain a better prediction effect. To show
the differences between methods more intuitively, the load prediction results obtained by
PreAttCG and the LSTM model only with load data are shown in Figure 3.
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As can be seen from Figure 3, although the benchmark LSTM method can predict
the general electricity consumption trend of users, the details of the users’ electricity
consumption behavior and the accuracy of the model are inferior to the proposed model
because of the impact of external factors on electricity consumption behavior.

Due to the attention design of the method in our model, the attention weight output of
all dimensions after model training can be further analyzed to analyze the effect of various
factors on actual electricity consumption behavior. The different weights for the time and
factor dimensions are shown in Figure 4.

As Figure 4 shows in the time dimension, the impact weight of 7:00 and 23:00 on future
power is higher. In the dimension of external factors, user electricity behavior is affected
by real-time price weight, as well as temperature, rainfall, and other meteorological data,
though by not as much as price. We can speculate that the user may belong to industrial and
commercial users, and real-time electricity price can be controlled by electricity suppliers;
therefore, to further regulate user electricity behavior, the load curve for peak filling can be
adjusted. This is one of the research topics of this paper.
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In order to further verify the importance of each factor on the prediction results, the
input meteorological data and electricity price data are deleted from the model input one
by one according to the idea of the control variable. We compared the prediction results
with the results of the full data input and observed the change in each index. Taking MAPE
as an example, the specific results are shown in Table 4, where the change in MAPE is the
comparison of the value of this section with the first line of full input.

Table 4. Comparison of prediction results in terms of changes in MAPE (%) for different input data
in the German dataset.

Input LoadLSTM FullLSTM MAPE Change

Full Data 14.103 10.983 –
No Electricity Price 15.015 12.042 +1.059

No Temperature 14.782 11.392 +0.409
No Pressure 14.133 11.275 +0.292
No Rainfall 14.201 11.417 +0.434

No Visibility 14.108 11.022 +0.039
No Humidity 14.072 11.071 +0.088

No Wind Speed 14.091 10.994 +0.011
Load Data Only 15.547 12.639 +1.656

It can be seen from Table 4 that any external factor data will have a certain impact
on the prediction of electricity consumption behavior. It once again confirms that when
predicting users’ electricity consumption behaviors, considering more external factor data
comprehensively can help to improve the prediction effect. As can be seen from the change
in MAPE in the table, without the electricity price data input, the corresponding index
has the largest change, and with no wind speed input, the index data change is very
small. The result is consistent with the weight of the output model proposed in this paper.
It illustrates the effectiveness of the attention mechanism designed in the model in this
section. In addition, under our PreAttCG model, only the univariate of input load data is
predicted, with the highest MAPE value and the worst prediction effect, which also shows
that the inclusion of analysis of some data related to user electricity consumption behavior
is beneficial for improving prediction accuracy.

4.4.2. Chinese Dataset

As with previous dataset experiments, experiments were continued on the multivariate
load dataset used in China, which compared the method proposed in this section with
the selected comparison method, and the specific performance of each method is shown
in Table 5.
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Table 5. Comparison of prediction accuracy indexes (Chinese dataset).

Index LoadLSTM FullLSTM PreAttCG

MAPE (%) 12.172 10.078 9.421
RMSE 39.262 38.402 35.657

R2_SCORE 88.097 89.171 90.391

Similarly, it can be seen from the various indexes that the PreAttCG model has better
prediction accuracy than the benchmark method. Compared with only inputting load
data, considering meteorological data in model input can obtain better prediction results.
To show the method differences across the methods more intuitively, the load prediction
results obtained by the methods in this section and by the LSTM model that only considers
load data are shown in Figure 5.
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As shown in Figure 5, the experimental results were obtained using one of the stations
(Station_ID: 53982) as an example. The right panel shows the predictions of the LSTM
model, and the left panel shows the predictions of the proposed model. It can also be seen
that the proposed model better describes the details of user consumption behavior, and the
value at the peak is closer to the true value.

Figure 6 shows the effect of the past 24 h and external factors for the current area. It
can be seen in the time dimension that the effect weights of 2:00, 13:00, and 20:00 are higher;
in the feature dimension, the effect of the 0th and 1st feature weights are higher. It can be
said that for current user behavior, temperature and humidity factors have more effect on
power load.

As with the previous dataset, the effect of these external factors on users’ electricity
behavior is further verified by using control variables. They can help to improve the
accuracy of the model’s prediction compared to deleting the meteorological data from the
model input. We observed changes in the various indexes, including MAPE, with MAPE
changes compared to the value of the first line of full input in Table 6.

As can be seen from Table 6, the meteorological factor data will have a certain impact
on the prediction of electricity consumption behavior. It once again confirms that when
predicting users’ electricity consumption behavior, considering more external factor data
related to electricity consumption behavior comprehensively can help to improve the
prediction effect.
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Table 6. Comparison of prediction results in terms of changes in MAPE (%) for different input data
in the Chinese dataset.

Input LoadLSTM FullLSTM MAPE Change

Full Data 10.078 9.421 --
No Temperature 10.725 9.682 +0.261

No Humidity 10.515 9.584 +0.163
No Rainfall 10.139 9.497 +0.076

No Wind Speed in two minutes 10.082 9.433 +0.012
No Wind Speed in ten minutes 10.091 9.421 0.00

Load Data Only 11.023 10.048 +0.627

As can be seen from the change in MAPE in the table, the largest corresponding index
change occurs in the absence of temperature data in input; in the absence of wind speed
data in input, the index change is very small. The result is consistent with the weight of the
model output results proposed in Figure 6. The result for the Chinese dataset also illustrates
the effectiveness of the attention mechanism designed in the model in our paper. As with
the German dataset experiment, prediction with univariate input load data has the worst
effect under the algorithm proposed in this paper, which also shows that external factors
related to user electricity behavior are beneficial for improving prediction accuracy. When
data conditions permit, inputting more external factor data into the model can improve the
prediction effect to a certain extent.

5. Conclusions

This paper proposes a multivariate prediction method based on a pre-attention mech-
anism and convolutional neural networks that considers multivariate load data, including
meteorological data, electricity price data, and load data. By improving the method of
calculating attention weight, we use an attention layer comprising weight values to compre-
hensively analyze the effect weights of power load under the time dimension and external
factor dimension. The proposed model helps to intuitively understand users’ electricity
behaviors. This paves the way for subsequent studies on load regulation through the
regulation of some human-controllable factors. The advantages of the proposed method in
terms of industrial load prediction accuracy and power consumption curve characterization
are proven by the experiments involving German and Chinese datasets exploring the effect
of the time dimension and factor dimension on load data. We transformed multivariate
time series data into a two-dimensional matrix and took advantage of a convolutional
neural network to extract features. We could then use a recurrent neural network to better
capture internal changes and further improve prediction accuracy.

For future work, we will focus more on how to improve the accuracy of electricity
load forecasting for a certain type of user (residential, commercial, etc.) or a certain type of
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specific industry. We will analyze the characteristics of each user type more accurately and
establish more accurate and efficient models. Besides accuracy, running speed will also be
within the scope of consideration.
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