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Abstract: This paper deals with the early detection of fault conditions in induction motors using
a combined model- and machine-learning-based approach with flexible adaptation to individual
motors. The method is based on analytical modeling in the form of a multiple coupled circuit model
and a feedforward neural network. In addition, the differential evolution algorithm independently
identifies the parameters of the motor for the multiple coupled circuit model based on easily obtained
measurement data from a healthy state. With the identified parameters, the multiple coupled
circuit model is used to perform dynamic simulations of the various fault cases of the specific
induction motor. The simulation data set of the stator currents is used to train the neural network for
classification of different stator, rotor, mechanical, and voltage supply faults. Finally, the combined
method is successfully validated with measured data of faults in an induction motor, proving the
transferability of the simulation-trained neural network to a real environment. Neglecting bearing
faults, the fault cases from the validation data are classified with an accuracy of 94.81%.

Keywords: induction motors; fault detection; machine learning; supervised learning; multiple
coupled circuit model; parameter identification

1. Introduction

Squirrel cage induction motors are often an essential part of industrial processes
and are widely used in various industries due to their robust characteristics. Failures
and repairs of individual machines or complete systems can quickly lead to high costs
in the industrial environment, as well as a large demand for additional manpower and
time. Continuous monitoring and early detection of electrical drive fault conditions offer a
potential solution to such problems. These tools can help ensure reliable and predictable
machine operation. For the above reasons, the early detection and diagnosis of fault
conditions in induction motors and other types of electric drives have been a highly
regarded research topic, as evidenced by various review publications [1–3]. According to
Gao et al., fault diagnosis methods are generally classified into model-based, signal-based,
and data-based approaches [4]: Model-based methods use models for fault diagnosis by
monitoring the correlation between the real systems and the models. Signal-based methods
utilize measured signals that reflect the fault cases. A diagnostic decision is made based
on the extracted features and previous experience about the features in the healthy and
faulty states. Data-based approaches use only existing data sets for fault detection. No
prior knowledge is required.

Traditionally, signal-based approaches have played a major role in induction machine
fault detection [5]. A classic method is the motor current signature analysis (MCSA), whose
main objective is a high-resolution Fourier analysis of the stator currents in order to identify
specific frequency components [6,7]. The stator currents are also considered in approaches
using the Park vector, which transforms the three-phase current into a two-dimensional
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representation. When a fault condition occurs, the shape of the representation changes com-
pared to the healthy state, allowing the fault condition to be detected [8,9]. In addition, more
sophisticated signal-based methods exist, such as the discrete wavelet transform (DWT),
which has the advantage of providing powerful frequency analysis of non-stationary
signals [10–12]. Similar methods are the Wigner–Ville distribution (WVD) [13] or the
Hilbert–Huang transform (HHT) [14]. These methods allow analysis in the combined time
and frequency domain and the detection of specific fault characteristics in this domain. As
in most of the approaches described so far, stator currents are primarily used as the signals
to be evaluated [15]. Alternatively, vibration measurements are also used [16,17], with
each quantity having its own advantages and disadvantages [18]. Other approaches use an
additional sensor to measure the magnetic flux [19–21] or a thermography camera [22,23]
for fault detection, but like the vibration sensor, this involves additional effort and cost.
Current sensors, on the other hand, are usually present in all motors. In general, the signal-
based approaches can be applied to all fault cases, such as short circuits in the stator [24,25],
broken cage bars or end rings [26,27], eccentricities [17,28], or bearing faults [29,30]. The
disadvantages of these signal-based methods are that they require precise prior knowledge
of the specific fault characteristics, and the detection must often be manually adapted to
the particular motor.

Due to major advances in the field of artificial intelligence (AI) and machine learn-
ing (ML), data-based approaches for induction machine fault diagnosis have been increas-
ingly developed [31,32]. The advantage over signal-based methods is that now no specific
prior knowledge of the fault characteristics and no manual analysis of the signals is re-
quired [33]. All that is required is the acquisition of a sufficient amount of data, and the
corresponding algorithms learn the necessary fault characteristics independently. In the
field of machine learning, there are different methods available, such as the support vector
machine (SVM) [34–36], the k-nearest neighbors (kNN) algorithm [35,36], and different
types of neural networks, such as regular feedforward neural networks (FFNN) [37–39],
convolutional neural networks (CNN) [40,41], recurrent neural networks (RNN) [42,43],
autoencoders (AE) [44,45], or deep belief networks (DBN) [45]. The publications listed so
far deal with several fault cases, but individual approaches also focus on specific fault types,
such as stator short circuits [46,47], broken rotor bars [48–50], or bearing faults [45,51,52].
A combination of signal-based and data-based methods is also common, with the signal-
based approaches preprocessing the data to extract known fault features that the algorithms
use for diagnosis [14,22,38,48]. However, the disadvantage of data-based methods is that
enough data about the different healthy and faulty states must be available. In an industrial
environment, detailed data acquisition for motors, especially for fault conditions, is prob-
lematic, making practical use impossible without a great deal of effort. Another possibility
is to combine a model-based method with data-based methods. Such an approach is used
by Murphey [53] and Masrur [54] to first generate data through modeling, which is then
used to train an AI and classify faults in the voltage supply. The basic idea of such a method
is advantageous because there is no need for expensive measurements of the motor in the
different fault cases. Instead, appropriate modeling is used to generate data on the behavior
of the motor in the healthy and fault states. However, a crucial step is missing to ensure
practicability. This is because the parameters of the motor are also required to reproduce its
behavior. Determining these parameters, whether by different test methods [55,56] or finite
element analysis [57], is very time-consuming and thus hinders practical implementation.

In the approach presented here, a method for fault detection of squirrel cage induction
motors is demonstrated, which identifies the parameters for modeling in advance from
easily measurable quantities. The modeling is based on a multiple coupled circuit model
whose parameters are identified using the differential evolution (DE) algorithm by compar-
ing the simulation results with real measured data. Finally, the data set generated by the
model is used to train a feedforward neural network for fault detection. The contribution
of this paper aims at the practicable application of fault detection in the industry. By
combining modeling and machine learning, the monitoring of an induction motor can
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be conducted with little prior knowledge, low effort, and already existing measurement
technology. The structure of this paper leads through the different aspects of the method. In
Section 2, the theoretical background of the modeling, the differential evolution algorithm,
and neural networks are presented. Then, in Section 3, the interaction of the individual
components within the overall framework is described. Section 4 shows the experimental
setup in detail, leading to the validation and results in Section 5 and the conclusions in
Section 6.

2. Theoretical Background

First, the technical background of the main aspects used in the approach is presented.
This includes the modeling of the induction motor with squirrel cage rotor based on the
multiple coupled circuit model together with the modified winding function method,
which is used to calculate the self and mutual inductances. In addition to the healthy state
modeling, the effects of the fault cases on the modeling are described. In addition, the
mathematical background of the differential evolution algorithm and neural networks is
briefly explained.

2.1. Induction Machine Modeling

A variety of model approaches exist for calculating the behavior of squirrel cage
induction motors. Models based on a transformation into an arbitrary reference frame [58]
do not allow the precise calculation of faults such as winding short circuits and are therefore
not suited for fault detection. The finite element method (FEM), on the other hand, can
be used to perform very complex simulations [59,60]. However, this approach is also
not optimal for practical fault detection because of the high computational and time
requirements. For comprehensive and flexible fault detection, the multiple coupled circuit
model [61] is well-suited. This analytical modeling approach is based on the electrical
network of the machine. With this type of modeling, the static and dynamic behavior as
well as several fault types can be calculated [62]. The inductances for the modeling are
usually estimated with the winding function method (WFM). This approach utilizes the
distribution of the respective windings and geometrical quantities of the machine [63].
The modified winding function method (MWFM) is an extension of the original approach.
Unlike the basic version, it is possible to calculate the inductances with variable air gap
thicknesses [64].

2.1.1. Modeling Basic Machine

The theory of the modeling in this chapter originates from Toliyat et al. [61]. The
central component of the model is the voltage equation with the corresponding resis-
tances R, leakage inductances L, and inductances M. The voltages and currents of the
three stator phases US and iS and the rotor loops UR and iR are considered individually.
Due to NR cage bars in the rotor, NR loop currents and an end ring current iE exist for the
rotor currents iR (see Figure 1). The squirrel cage rotor causes zero values for the rotor
voltages UR [61]: [

[US]
[UR]

]
=

[
[RS] 0

0 [RR]

][
[iS]
[iR]

]
+

[
[LS] 0

0 [LR]

]
d
dt

[
[iS]
[iR]

]
+

d
dt

([
[MSS] [MSR]
[MRS] [MRR]

][
[iS]
[iR]

]) (1)

[
US
]
=

US,a
US,b
US,c

 [
iS
]
=

iS,a
iS,b
iS,c

 [
UR
]
= 0

[
iR
]
=



iR,1
iR,2
iR,3
. . .

iR,NR
iE

 (2)
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…
Re,11 Le,11 Re,21 Le,21 Re,(NR −1)1 Le,(NR −1)1 Re,NR1 Le,NR1

Rb,1

Lb,1

…
Re,12 Le,12 Re,22 Le,22 Re,(NR −1)2 Le,(NR −1)2 Re, NR2 Le, NR2

Rb,2

Lb,2

Rb,(NR −1)

Lb,(NR −1)

Rb,NR

Lb,NR

iR,1 iR,2 iR,(NR −1) iR,NR

iE

Figure 1. Electrical network of a rotor of a squirrel cage induction motor with the individual loop
currents iR, end ring current iE, and associated resistances Re and Rb, as well as leakage inductances Le

and Lb of cage bars and end ring segments.

The individual windings of the stator phases are summarized for the stator resis-
tance RS and leakage inductance LS. The resistances Rb and leakage inductances Lb of the
cage bars and the resistances Re and leakage inductances Le of the end ring segments build
the matrices for the resistance RR and leakage inductance LR of the rotor (see Figure 1). The
leakage inductance matrices L behave analogously to the resistance R and are therefore not
shown separately below [61]:

[
RS
]
=

RS 0 0
0 RS 0
0 0 RS

 (3)

[
RR
]
=



2(Rb + Re) −Rb 0 . . . −Rb −Re
−Rb 2(Rb + Re) −Rb . . . 0 −Re

0 −Rb 2(Rb + Re) . . . 0 −Re
. . . . . . . . . . . . . . . . . .
−Rb 0 0 . . . 2(Rb + Re) −Re
−Re −Re −Re . . . −Re NR · Re

 (4)

For the self inductance of stator and rotor, the square matrices MSS and MRR are
present. In these matrices the couplings of the stator phases to each other and rotor loops
to each other are described. The only difference in the self inductance of the rotor MRR is
that no magnetic coupling with the end ring exists. The coupling between stator and rotor
results in the mutual inductances MSR and MRS, which specify the relationship between
the stator phases and rotor loops. These two matrices are mirror symmetric [61]:

[
MSS

]
=

MSa,Sa MSa,Sb MSa,Sc
MSb,Sa MSb,Sb MSb,Sc
MSc,Sa MSc,Sb MSc,Sc

 (5)

[
MRR

]
=


MR1,R1 MR1,R2 . . . MR1,RNR 0
MR2,R1 MR2,R2 . . . MR2,RNR 0

. . . . . . . . . . . . . . .
MRNR,R1 MRNR,R2 . . . MRNR,RNR 0

0 0 . . . 0 0

 (6)
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[
MSR

]
=

MSa,R1 MSa,R2 . . . MSa,RNR 0
MSb,R1 MSb,R2 . . . MSb,RNR 0
MSc,R1 MSc,R2 . . . MSc,RNR 0

 (7)

[
MRS

]
=
[
MSR

]T (8)

In addition to the electrical description, the mechanical equation of motion is also
important. Only in combination with the mechanical equation is it possible to calculate
the rotor speed ω and the dynamic properties of the electrical machine. For this purpose,
the moment of inertia J as well as the torque of the load machine TL and the electrical
machine Tel are required. The generated torque Tel results from the local derivation of the
currents i and the inductances M [61]:

d
dt

ω =
1
J
(Tel + TL) (9)

Tel =
1
2
[
[iS]T [iR]T

] ∂

∂ϕ

[
[MSS] [MSR]
[MRS] [MRR]

][
[iS]
[iR]

]
(10)

2.1.2. Inductance Calculation

The winding function method is used to calculate the self and mutual inductances M.
This analytical method assumes an infinite permeability of iron and does not need any
symmetry for the winding slots. Consequently, the coupling inductance MA,B between any
two windings A and B in an electrical machine can be calculated according to the following
equation [63]:

MA,B(ϕ) = µ0rl
∫ 2π

0
nA(ϕ, θ) · NB(ϕ, θ) · g−1(ϕ, θ)dθ (11)

This equation contains the turn function nA(ϕ, θ), which describes the local distri-
bution of the windings of A over the circumference θ. In addition, the winding func-
tion NB(ϕ, θ) appears, which reflects the magnetomotive force of the windings of B. Other
parameters used in the calculation are the machine length l, the stator core radius r, the air
gap thickness g, and the vacuum permeability µ0. Thus, the equation allows determining
the inductances M(ϕ) for the magnetic coupling between the individual stator phases and
rotor loops as a function of the rotation angle ϕ.

In the presence of a variable air gap, as in the case of an eccentric rotor, the equation
must be extended to the modified winding function method because the average of the
winding function is no longer zero. Al-Nuaim and Toliyat [64] describe the necessary steps
to account for a variable air gap in detail. Finally, only the calculation of the winding
function changes, where NB(ϕ, θ) describes the average value of the winding function [64]:

NB(ϕ, θ)) = nB(ϕ, θ)− NB(ϕ, θ) (12)

NB(ϕ, θ) =
1

2π · g−1(ϕ, θ)

∫ 2π

0
nB(ϕ, θ) · g−1(ϕ, θ)dθ (13)

2.1.3. Fault Implementation

Stator faults

Winding and phase short circuits create a new path in the electrical network. Therefore,
the multiple coupled circuit modeling is extended to model these fault cases [62,65]. Figure 2
shows an example of a winding short circuit in the upper phase. In the path shown in
red, the short-circuit current iK flows across the resistor RK, while the total voltage in the
short-circuit path remains at zero.
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U
W

RN LN

iS,N

U
V

U
U

…
RS,U1 LS,U1

iS,U1

RS,U2 LS,U2

iS,U2 − iK

RS,U(n−1) LS,U(n−1)

iS,U(n−1)

RS,Un LS,Un

iS,Un

…
RS,V1 LS,V1

iS,V1

RS,V2 LS,V2

iS,V2

RS,V(n−1) LS,V(n−1)

iS,V(n−1)

RS,Vn LS,Vn

iS,Vn

…
RS,W1 LS,W1

iS,W1

RS,W2 LS,W2

iS,W2

RS,W(n−1) LS,W(n−1)

iS,W(n−1)

RS,Wn LS,Wn

iS,Wn

RK

iK

Figure 2. Electrical network of a stator of a squirrel cage induction motor with the phase currents iS
and the winding short-circuit path (red) with short-circuit current iK and the resistor RK.

The system of electrical equations must be extended by one line with newly introduced
matrices, which describe the short-circuit path accordingly. The matrices of the resistance R
and leakage inductance L from Equation (1) no longer resemble a unit matrix since different
currents flow in the stator phases and in the short circuit. The short-circuit matrices with the
resistances RK, RSK, and RKS and the leakage inductances LK, LSK, and LKS can be derived
from the newly created network of the stator. The corresponding magnetic couplings of the
short-circuit loop with the stator phases and rotor loops extend the inductance matrix M.
In the case of the healthy machine or other fault cases without a short circuit, the newly
introduced short-circuit matrices become zero so that the expression finally returns to the
form of the initial Equation (1):[US]

[UR]
0

 =

 [RS] 0 [RSK]
0 [RR] 0

[RKS] 0 [RK]

 [iS][iR]
[iK]

+

 [LS] 0 [LSK]
0 [LR] 0

[LKS] 0 [LK]

 d
dt

 [iS][iR]
[iK]


+

d
dt

 [MSS] [MSR] [MSK]
[MRS] [MRR] [MRK]
[MKS] [MKR] [MKK]

 [iS][iR]
[iK]


(14)

To model open phases in the stator, the matrices of the inductance M, leakage induc-
tance LS, and resistance RS are adjusted according to the changed winding distribution.
Since no current can flow in the affected phase due to the disconnection of the voltage, no
windings of the open phase actively contribute to the electrical behavior.

Rotor faults

Broken bars or end rings in the squirrel cage rotor create a new structure of the
electrical network in the rotor. For the rotor with a broken bar shown in Figure 3, the first
and second rotor loops combine to form a single loop because current flow is no longer
possible through the broken bar [62,65].
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…
Re,11 Le,11 Re,21 Le,21 Re,(NR −1)1 Le,(NR −1)1 Re,NR1 Le,NR1

Rb,1

Lb,1

…
Re,12 Le,12 Re,22 Le,22 Re,(NR −1)2 Le,(NR −1)2 Re, NR2 Le, NR2

Rb,(NR −1)

Lb,(NR −1)

Rb,NR

Lb,NR

iR,1 iR,(NR −1) iR,NR

iE

Figure 3. Electrical network of a rotor of a squirrel cage induction motor with the individual loop
currents iR in case of one broken cage bar.

For the multiple coupled circuit model, the elements of the first rotor loop now describe
the newly created loop, while the elements of the second rotor loop become zero. This
changes the matrix for the resistance RR, while the adjustment of the matrix for the leakage
inductance LR behaves identically to the resistance matrix. Furthermore, the changed
composition of the loops results in modified winding distributions for the calculation of
the self and mutual inductances M. The first rotor loop combines a larger rotor section
than before, while the second loop no longer has a winding available. The procedure is
analogous for multiple broken cage bars or broken end rings:

[
RR
]
=



2(Rb + 2Re) 0 −Rb . . . −Rb −2Re
0 0 0 . . . 0 0
−Rb 0 2(Rb + Re) . . . 0 −Re
. . . . . . . . . . . . . . . . . .
−Rb 0 0 . . . 2(Rb + Re) −Re
−2Re 0 −Re . . . −Re NR · Re

 (15)

Mechanical faults

For the implementation of static, dynamic, and mixed eccentricity in the modeling, it
is necessary to consider the air gap changes over the circumference of the machine. The
variable air gap g(ϕ, θ) has a direct influence on the calculation of the inductances M via the
modified winding function method. As an approximate description of the air gap g(ϕ, θ),
the relationship from the following Equation (16) is used, which combines all three forms
of eccentricity in one equation. For this purpose, the parameters δs and δd are introduced,
which define the severity of the static and dynamic eccentricity [17]:

g(ϕ, θ) = g · [1− δs · cos(θ)− δd · cos(ωt− θ)] (16)

Eccentricity is also used to model localized bearing faults. The difference is that the
eccentricity occurs only when the air gap changes due to the passage of a defect in the
bearing. To account for this moment, the model uses the typical frequencies of bearing
faults (see Equation (17) as an example for outer ring fault), which is determined as a
function of the bearing geometry (Nbear, bd, dp, β) and the rotor frequency fR [29,30]:

fo =

(
Nbear

2

)
· fR ·

[
1− bd

dp
cos(β)

]
(17)
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The modeling of global bearing faults with general roughness must be implemented
differently due to its lack of predictability. The distributed roughness results in a slight
increase of the load torque, which is modeled by additional added noise.

Voltage supply faults

Failures due to a faulty voltage supply directly affect the input to the model. Depend-
ing on the type of fault, the voltages are increased or decreased individually or collectively.

2.2. Differential Evolution Algorithm

The differential evolution algorithm offers an approach for coping with optimization
problems. The algorithm uses a population of possible solutions (individuals) that are
varied over several iterations with the goal of minimizing a defined fitness function [66].
The hyperparameters are the differential weight F, the crossover probability CR, and the
population size NP. An important property of the algorithm is its capability to work with
nonlinear and non-derivative problems. The advantage of a population-based approach
over methods based on a single individual, such as cyclic coordinate search, lies in the low
risk of getting stuck in local minima [67].

The individual steps and operations of the differential evolution algorithm can be
seen in Algorithm 1. The mutation for designing new individuals is performed in step two,
and the binary crossover between existing individuals and new designed individuals is
performed in step four. The steps of the algorithm are executed for every individual in
the population NP in every iteration of the optimization process. It is common to select
a special mutation scheme such as DE/rand-to-best/1 [68], which has an effect on the
design of the new individual z. In this case, the calculation utilizes the currently considered
individual x, the best individual best, and two randomly chosen individuals a and b by the
following equation [68]:

z = x + F · (best− x) + F · (a− b) (18)

Algorithm 1 Procedure of the individual steps for one iteration of the differential evolution
algorithm.
Find the best individual best of the population.
For each individual x:
1. Choose the two random distinct individuals

a and b.
2. Construct an interim design:

z = x + F · (best− x) + F · (a− b)
3. Choose a random dimension j ∈ [1, . . . , n]

for optimization in n dimensions.
4. Construct the candidate individual x′ using

binary crossover.

x′i =

{
zi, if i = j or with probability CR
xi, otherwise

5. Evaluate x′ with fitness function.
6. Insert the better design between x and x′

into the next generation.

2.3. Artificial Neural Network

An artificial neural network (ANN) is a computational model inspired by the structure
and function of biological neural networks in the brain [69]. It consists of interconnected
neurons that process and transmit information in the form of numerical values. The
connections between neurons are modeled by weights learned during training that adjust
the strength of the signal transmitted from one neuron to another [70]. In general, a
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feedforward neural network consists of three types of layers: an input layer, one or more
hidden layers, and an output layer. The input layer receives the raw input data and passes
it to the first hidden layer. The output y of a single neuron in the hidden layers of an ANN is
calculated as the sum of its inputs x multiplied with a weight w plus a bias term b, which is
then passed through an activation function f () (e.g., sigmoid or ReLU function) to produce
the neuron’s output value [71]:

y = f
(
∑ wi · xi + b

)
(19)

The number of neurons in the input and output layers depends on the task at hand,
while the number of hidden layers and the number of neurons in each hidden layer can vary
greatly depending on the complexity of the problem and the amount of data available [71].

Artificial neural networks are often trained using a supervised learning process in
which the network is presented with a set of input data with corresponding output values.
The network adjusts its weights to minimize the difference between the predicted output
and the actual output. In this backpropagation process, the gradient of the error function
with respect to the weights is calculated and updated using gradient descent [69].

During training, an ANN can be prone to overfitting. This means that the network
adapts too much to the training data instead of learning generalizable patterns [72]. To
prevent such overfitting and to improve the generalization of the network, regularization
techniques, such as L1 and L2 regularization, are used. L1 regularization adds a penalty
value to the loss function that is proportional to the absolute value of the weights, while
L2 regularization adds a penalty value that is proportional to the square of the weights.
These penalty terms encourage the network to use smaller weights and reduce the complex-
ity of the model, thus preventing overfitting [73]. Another commonly used regularization
technique is the dropout procedure, which randomly drops a portion of the neurons in the
network during each training epoch. This forces the network to learn robust features and
prevents overfitting by reducing the co-adaptation of neurons [74].

3. Fault Detection Framework

The key component of the fault detection framework is the multiple coupled circuit
model in combination with the modified winding function method, which is used to
calculate the inductances. The modeling is primarily used to simulate the stator currents
that are later used by the neural network as the basis for fault detection. The inputs to the
model are the voltages US applied to the motor and the torque of the load machine TL. The
outputs are the rotor speed ω and the aforementioned stator currents iS. An overview of
the modeling inputs and outputs is shown in Figure 4.

Voltages        

Rotor speed

Currents
Multiple coupled  

circuit model 

Inputs

Load torque

Outputs
<latexit sha1_base64="gdFFrsd/8iYEwdqKnysMnrEz0Lw="></latexit>

US

Figure 4. Structure of multiple coupled circuit modeling with inputs (voltages US and load torque TL)
and outputs (stator currents iS and rotor speed ω).

The fault detection framework consists of several steps (see Figure 5), which are
presented in the following. First, the model parameters for the multiple coupled circuit
model are identified by the differential evolution algorithm. The model with the identified
parameters is then used to create a data set of healthy and faulty states. This data set, in
turn, allows the learning of fault characteristics by a neural network, which ultimately
enables fault detection based on real stator currents.
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Identification of  
model parameters

Creation of  
simulated dataset

Training of  
neural network

Fault detection with  
measurement data 

Framework for fault detection

Figure 5. Sequence of the individual steps of the fault detection framework up to the application
with real measurement data.

3.1. Parameter Identification

An important condition for the identification of model parameters for use in fault
detection is high practicability. Therefore, the basic idea of parameter identification is to
use only easily obtainable measurement data and information from the nameplate of the
motor (see Figure 6).

Definition of parameters  
and search space by 
design guidelines

• Stator voltages 
• Stator currents  
• Load Torque 
• Rotor speed Parameter identification 

with differential evolution 
algorithm

Fingerprint measurement 
of currents and voltages 

(startup process)

Nameplate data

<latexit sha1_base64="gdFFrsd/8iYEwdqKnysMnrEz0Lw="></latexit>

US

+

Figure 6. Sequence of the individual steps of the parameter identification from the fingerprint measure-
ment (startup process from standstill to rated operation) and nameplate data to the identification process.

The parameters of the modeling are adjusted over a large number of iterations until
the simulated results of the modeling match the real measured data as closely as possible.
Consequently, measured data for the inputs and outputs of the modeling are needed to
compare the model to reality. For this purpose, a time-based measurement of the stator
currents iS and the applied voltages US for the startup process of the motor from standstill
to rated load in the healthy state is performed, which serves as a fingerprint for the motor
under investigation. From the stator currents iS, the rotor speed ω is determined by
frequency analysis. This is performed indirectly by calculating the slip s from the frequency
of the principal slot harmonics (PSH) with the number of rotor bars NR, the number of pole
pairs p, and the supply frequency fS [28]:

fPSH =

(
1± k · NR ·

1− s
p

)
· fs

with k = 0, 1, 2, . . .
(20)

Using the rotor speed ω, the currents iS, and voltages US, the load torque TL is
estimated via the efficiency η from the nameplate using the following equation (valid for
rated load):

TL =
3 ·US · iS

η ·ω (21)

Thus, all modeling inputs and outputs are known. The parameters required for the
modeling are the resistances RS, Rb, and Re and the leakage inductances LS, Lb, and Le of the
stator phases, cage bars, and end ring segments. In addition, the length of the motor l, the
radius of the stator core r, the air gap thickness g, the number of bars in the rotor NR, and the
number of windings in the stator wS with the corresponding winding distribution are required
for the calculation of the self and mutual inductances. Upper and lower limits for the search
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space are defined for these parameters. For this purpose, a rough estimation of the parameters
is made based on design guidelines for the respective power class of the motor.

The differential evolution algorithm with the mutation scheme DE/rand-to-best/1
from Algorithm 1 is used to iteratively determine the parameters. The algorithm is not
based on the derivative of a function, but instead uses a fitness function. This is an
important aspect because the modeling is not differentiable due to the discrete calculation
of the inductances. A two-part approach is used for the fitness function, which utilizes
the data after the machine achieved continuous operation. First, whether the deviation
between the simulated rotor speed ωsim and measured rotor speed ωmeas is less than 1%
is checked. If this condition is met, only the mean squared error (MSE) between the fast
Fourier transforms (FFTs) of the simulated stator currents isimFFT and measured stator
currents imeasFFT is used for the fitness function; otherwise the mean squared error is
multiplied by a penalty term:

fitness =

{
MSE(imeasFFT, isimFFT) if |ωmeas−ωsim

ωmeas
| ≤ 0.01

MSE(imeasFFT, isimFFT) · 1010 if |ωmeas−ωsim
ωmeas

| > 0.01
(22)

Comparing the currents at the level of the frequency spectra has the advantage of
reflecting specific characteristics of the motor that can be used later for fault detection.
Although the rotor speed information is also included in the frequency spectrum, an
additional check is made because this component has a comparatively small value.

3.2. Creation of the Data Set

The identified parameters allow the simulation of the motor behavior in a healthy
state. To generate data for fault conditions, the modeling is adapted according to the
explanations in Section 2.1.3. Depending on the fault case, it is possible to simulate different
fault severities. For example, the number of short-circuited windings or the number of
broken bars can be varied, and the magnitude of the deviations from the normal value
can be varied for the eccentricity and the faulty voltage supplies. With the voltages and
the load torque, changing the input variables to the model is also a way to generate more
various states and a larger data set.

3.3. Training of the Neural Network

A data set of healthy and faulty states enables the training of a neural network for fault
classification. The fault detection is based on the fast Fourier transform of all three stator
currents. This has the advantage that the characteristics of the faults are clearly visible in
the frequency domain and that a time offset between individual samples is not significant.
The frequency spectra are limited to a range of 0 to 1000 Hz, which contain the critical
information. In addition, a subtraction with the average of the simulated healthy stator
currents is formed for the entire data set (see Figure 7). With this type of normalization, the
deviations from the healthy state are learned more sensitively.

Stator currents with  
sample time t

Frequency spectrum of  
stator currents (0-1kHz)

Normalized frequency 
spectrum of stator 
currents (0-1kHz)

FFT  
+  

Clipping

Normalizing  
with  

healthy state

Figure 7. Sequence of the individual steps of the preprocessing with fast Fourier transformation,
clipping, and normalization via the subtraction with the healthy state.

An important aspect of the training process is to ensure the best possible generaliza-
tion. Despite the individually identified parameters, an ideal representation of the motor,
especially in the fault cases, cannot be guaranteed. The neural network is considered to be
well generalized if the loss for the test data is lower than for the training data. Thus, the goal
in training the neural network is to minimize the loss function while maintaining a lower
loss for the test data than for the training data. As an additional aspect of generalization,
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the data set is split into 50% training data and 50% test data, which allows the accuracy
and loss results to be compared using the same sample size.

The structure of the feedforward neural network for fault detection consists of an
input layer, several hidden layers, and an output layer. The number of neurons of the
input layer corresponds to the number of data points of the frequency spectra of the three
stator currents (depending on the sampling rate), and the number of neurons of the output
layer corresponds to the number of healthy and faulty states. The ReLU activation function
is used for the hidden layers, while the softmax function is used for the output layer to
generate probabilities. The Adam algorithm is used as an optimizer. In addition, for the
purpose of generalization, different regularization techniques are implemented with the
L1 and L2 regularization and the dropout technique.

4. Experimental Setup

To prove the functionality, the method is run once completely for an exemplary motor.
The motor under investigation is a squirrel cage induction motor with two pole pairs and
1.1 kW of power. The motor is coupled to a controllable load machine and is directly
connected to the mains (230 V) in a delta connection. The nameplate data are given in
Table 1. Current transformers are used to measure the stator currents. The outputs of
the current transformers and the voltages are connected to an analog-to-digital converter,
which acquires the analog signals at a sampling rate of 10 kHz.

Table 1. Nameplate data of the examined 1.1 kW squirrel cage induction motor for a delta connection.

Parameter Value

Rated power PN 1.1 kW
Rated voltage UN 400 V
Rated current IN 2.5 A

Rated rotor speed nN 1445 1/min
Frequency f 50 Hz

Power factor cosϕ 0.75
Efficiency η 84.4%

To identify the model parameters, the stator currents and applied voltages are mea-
sured for 10 s for the startup process from standstill to rated operation in the healthy state.
This measurement serves as fingerprint and is used to compare the model with the real
motor.

To verify the accuracy of the neural network, additional measurements of the motor in
different fault conditions are required. These measurements are for validation purposes
only and are used to verify the detection capability of the neural network. The nine different
fault conditions from Table 2 are applied to the motor. A total of 3 measurements of the
stator currents, each lasting 10 s, are taken in rated operation for the healthy state and each
fault state. Splitting the measurements into 0.2 s intervals results in 150 samples per fault
case for validation. The measured data in this step are not used for training.

The insertion of each fault into the motor is very different: For the undervoltage and
unbalance faults, a variable transformer is used to regulate the input voltages to the motor.
For the open phase, the motor is disconnected from one of the three phases during operation.
The stator winding is short-circuited by stripping the insulation from two adjacent windings
and pressing the resulting contacts directly against each other. For the broken rotor bar, a
hole is drilled in the cage bar. Bearing faults in the outer and inner ring are caused by laser
cutting. In the case of a global bearing fault, grit is inserted into the bearing (grit size: 0.05 mm,
amount: 0.25 g) , which is equivalent to heavy contamination or poor lubrication.
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Table 2. List of inserted fault cases on the examined induction motor with 150 samples each with a
length of 0.2 s for the validation of the neural network for fault detection.

Motor State Number of Samples

Healthy state 150
Undervoltage 150

Unsymmetrical Voltage 150
Open phase 150
Broken bar 150

Winding short circuit 150
Mixed eccentricity 150

Bearing—Outer ring fault 150
Bearing—Innen ring fault 150

Bearing—Global fault 150

5. Experimental Results
5.1. Parameter Identification

The fingerprint measurement of the voltages and stator currents is used as the basis for
the parameter identification. The speed of the rotor (ω = 153.12 rad/s) is determined from the
frequency spectrum of the stator current, and the load torque (TL = 7.13 Nm) is estimated using
the stator currents iS and the voltages US together with the efficiency η from the nameplate. The
measured values for the inputs and outputs of the model are thus fully available. Of the required
parameters, the length of the motor (l = 0.11 m) and the radius of the stator core (r = 0.04 m)
are already known. The number of cage bars (NR = 28) is also determined from the frequency
spectrum of the stator currents. For the winding distribution in the stator, a single-layer winding
with a total of 36 slots (3 slots per phase and pole pair) is assumed. If this assumption is wrong,
it is compensated by adjusting the remaining parameters accordingly. The required parameters
are shown in Table 3 together with the estimated search space.

Table 3. Required parameters for the modeling of the examined induction motor with lower and
upper limit of the search space (source of limits: power of considered machine) as well as the value
identified via the differential evolution algorithm.

Parameter Lower Limit Value Upper Limit Unit

Air gap thickness g 10−4 1.68× 10−4 10−2 m
Number of stator windings per slot wS 101 48 103 -
Moment of inertia J 10−3 6.27× 10−3 10−1 kg m2

Stator Resistance RS 100 5.25 102 Ω
Stator leakage inductance LS 10−2 1.29× 10−1 100 H
Cage bar resistance Rb 10−5 3.27× 10−5 10−3 Ω
Cage bar leakage inductance Lb 10−8 9.44× 10−7 10−6 H
End ring segment resistance Re 10−5 2.90× 10−5 10−3 Ω
End ring segment leakage inductance Le 10−9 3.45× 10−9 10−7 H

For the hyperparameters of the differential evolution algorithm, default values are
chosen so that the difference weight is F = 0.95, and the crossover probability is CR = 0.7.
The population size NP and the number of iterations are both set to 50. The parameter
values identified with the algorithm are listed in Table 3. The simulated stator currents
with the parameterized model are compared to the real stator currents at the frequency
level in Figure 8. The agreement in the basic appearance is very high; yet certain deviations
can be seen. These primarily affect the harmonics of the fundamental frequency. Especially
the third harmonic, which is influenced by the saturation behavior of the motor, cannot be
reproduced with the linear multiple coupled circuit modeling.
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Figure 8. Comparison of the frequency spectra for one of the three stator currents from the fingerprint
measurement and the simulation with the parameterized model: (a) complete frequency spectrum;
(b) zoom of the frequency spectrum into the significant range (0 to 1000 Hz).

5.2. Fault Detection

Using the parameterized modeling, 300 samples with a length of 0.2 s are generated
for each of the 10 motor states shown in Table 2. Different fault severities are simulated
depending on the fault case. In addition, the input voltage to the modeling is varied
randomly in the range of±4 V of the measured voltage. In the next step, data preprocessing
is performed. The stator currents are transformed into the frequency domain by a fast
Fourier transform and then clipped to the range between 0 and 1000 Hz. In the final step,
normalization is performed by subtracting the average of the simulated healthy states from
the entire data set.

The preprocessed, simulated data set with 300 samples per state is then used to train a
neural network with the highest possible generalization. The inputs to the neural network are
the preprocessed frequency spectra of the three stator currents (see Figure 7), and the outputs
are the probabilities for each of the ten fault types. The goal of the training process is to keep the
loss of the test data lower than the loss of the training data. This is accomplished by manually
tuning the hyperparameters of the neural network. The final hyperparameters are summarized
in Table 4. For the training data (loss = 1.1458, accuracy = 92.7%) and the test data (loss = 1.1455,
accuracy = 93.3%), the confusion matrices are obtained from Figure 9.
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Table 4. Tuned hyperparameters of the neural network with high generalization.

Hyperparameter Values

Hidden layers 3
Number of neurons [100, 50, 25]

Learning rate 0.001
Dropout 0.25

L1 regularization 0
L2 regularization 0.2

Batch size 32
Epochs 150

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.78 0 0 0 0.2 0 0 0 0 0.02

0 0.96 0 0 0 0 0 0 0 0.04

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0.19 0 0 0 0.78 0 0 0 0 0.03

0 0 0 0 0 1 0 0 0 0

0.08 0 0 0 0 0 0.92 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0.03 0 0 0.15 0 0 0 0 0.83

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9
Tr
ue

 la
be

l

0.81 0 0 0 0.17 0 0 0 0 0.02

0 0.95 0 0 0 0 0 0 0 0.05

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0.13 0 0 0 0.84 0 0 0 0 0.03

0 0 0 0 0 1 0 0 0 0

0.07 0 0 0 0 0 0.93 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0.02 0 0 0.18 0 0 0 0 0.8

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9. Confusion matrix with results of accuracy for each fault case for the training data (a) and
test data (b). 0: healthy state; 1: undervoltage; 2: unsymmetrical voltage; 3: open phase; 4: broken bar;
5: winding short circuit; 6: mixed eccentricity; 7: bearing—outer ring fault; 8: bearing—inner ring
fault; 9: bearing—global fault.

It can be seen that most faults can be classified with an accuracy of almost 100%. How-
ever, the neural network has difficulty in distinguishing between the cases of healthy state,
broken bar, mixed eccentricity, and global bearing fault. This is due to their high similarity
and the small deviation of these faults from the healthy state. In addition, the characteristics
of these fault cases are highly dependent on the values of the identified parameters, such
as the air gap thickness, the moment of inertia and the electrical and magnetic quantities.
To overcome this problem, the parameter identification and data set creation are performed
several times. This has the advantage that different sets of parameters are identified, pre-
venting the neural network from focusing on the characteristics of a single set of parameter
values. In addition, the repeated parameter identification multiplies the overall size of
the data set. The neural network is trained again with a data set simulated on the basis
of 10 different parameter sets (3000 samples per state in total), overcoming the previous
problems. The corresponding confusion matrices in Figure 10 show that all fault cases can
now be classified with an accuracy of over 90% (overall accuracy for training data: 96.9%,
for test data: 96.6%).

To verify the trained neural network, the same preprocessing is applied to the mea-
sured validation data. The only difference is that the normalization of the data set is now
accomplished by a subtraction based on the fingerprint measurement. When the neural
network is applied to the validation data, the results turn out differently depending on
the fault case as can be seen on the left confusion matrix in Figure 11. It is not possible
to detect the three types of bearing faults. They are classified as healthy state. This is
due to the fact that the measured deviations of the bearing faults from the healthy state
are marginal, and furthermore, the fault features cannot be suitably represented by the
modeling. The classification of the remaining fault cases works very well with an overall
detection rate of 97.14%. Training the neural network without the bearing faults in the
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data set also produces a very high accuracy with 94.81% on the validation data (see right
confusion matrix in Figure 11).
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Figure 10. Confusion matrix with results of accuracy for each fault case for the training data (a) and
test data (b) with 10 different parameter sets. 0: healthy state; 1: undervoltage; 2: unsymmetrical
voltage; 3: open phase; 4: broken bar; 5: winding short circuit; 6: mixed eccentricity; 7: bearing—outer
ring fault; 8: bearing—inner ring fault; 9: bearing—global fault.
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Figure 11. Confusion matrix with results of accuracy for each fault case for the validation data (a) and
validation data without bearing faults (training data also without bearing faults) (b). 0: Healthy state;
1: undervoltage; 2: unsymmetrical voltage; 3: open phase; 4: broken bar; 5: winding short circuit; 6: mixed
eccentricity; 7: bearing—outer ring fault; 8: bearing—inner ring fault; 9: bearing—global fault.

6. Conclusions

The presented framework enables early detection of fault conditions in squirrel cage
induction motors while providing a high degree of practicability. The contribution of this
paper is a fault detection method for industrial applications with little prior knowledge of
the motor and low measurement effort. By combining analytical modeling with parameter
identification based on easily obtained data, the behavior of the monitored motor can be
well reproduced. The data set simulated by the modeling enables a neural network to
learn the characteristics of stator, rotor, mechanical, and voltage supply faults and to detect
them in real measured data. This demonstrates that the transfer of the simulated fault
characteristics to real fault cases is possible with the help of machine learning. A drawback
is that bearing faults are not detected. Furthermore, the severity of the faults cannot be
determined since only the major qualitative deviations have been examined so far.

The presented method combines the strengths of different approaches and mitigates
their disadvantages. The prior knowledge about the effects of the fault cases is already
included in the modeling and can be applied to the respective motor by means of the
parameter identification. Thus, no costly measurements are required to train a neural
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network, but only the simulation of different fault cases to generate a sufficiently large
data set. Possible inaccuracies of the modeling are concealed by the neural network by
learning the qualitative characteristics of the fault cases. Therefore, an exact quantitative
accuracy of the model is not necessary. These aspects clearly distinguish the presented
method from pure model-, signal- or data-based approaches. Another unique point is the
high practicability of the framework since the parameter identification with the differential
evolution algorithm can be performed based on easily obtained measurement data and
information from the nameplate.

Furthermore, the method offers a high degree of flexibility. On the one hand, this
applies to parameter identification, where the desired parameters can be selected depending
on the application. On the other hand, the modeling itself is also flexible so that for other
machine types, such as doubly-fed induction generators or synchronous motors with
permanent magnets, the model can be adapted accordingly, and the method can still be
carried out. Thus, the presented approach offers high transferability to different motor
types and applications.

Further work will apply more sophisticated machine learning methods to improve the
detection accuracy. This should also strengthen the robustness and generalization for the
transferability of the fault characteristics from the simulated data to real data. Additionally,
a method for the independent detection of bearing faults based on acoustic or vibration
data will be developed. In combination with the presented framework, this should cover
the detection of several possible fault cases for squirrel cage induction motors.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Autoencoder
AI Artificial Intelligence
ANN Artificial neural network
CNN Convolutional neural network
DBN Deep belief network
DE Differential evolution algorithm
DWT Discrete wavelet transform
FEM Finite element method
FFNN Feedforward neural network
FFT Fast Fourier transform
HHT Hilbert–Huang transform
kNN k-Nearest Neighbors
MCSA Motor current signature analysis
ML Machine learning
MSE Mean squared error
MWFM Modified winding function method
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PSH Principal slot harmonics
RNN Recurrent Neural Network
SVM Support vector machine
WFM Winding function method
WVD Wigner-Ville distribution
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