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Abstract: Fault detection and location is one of the critical issues in engineering applications of
modular multilevel converters (MMCs). At present, MMC fault diagnosis based on neural networks
can only locate the open-circuit fault of a single submodule. To solve this problem, this paper proposes
a fault detection and localization strategy based on a depthwise separable convolutional (DSC) neural
network. By inputting the bridge arm circulating current and the submodule capacitor voltage
into two serially connected neural networks, not only can this method achieve the classification of
submodule open-circuit faults, submodule block short-circuit faults, and bridge arm inductance
faults in MMCs, but it can also locate the switch where open-circuit faults occur. The simulation
experimental results show that the proposed method achieves fault classification and locates multiple
submodule open-circuit faults in the same bridge arm. This method achieves accuracies of ≥99%
and 87.7% for the single-point and multi-point open-circuit fault localization in MMCs, respectively,
which is better than some benchmark achievements in the current literature in terms of detection
accuracy, and speed, and it has fewer model parameters and better real-time performance.

Keywords: MMC; fault detection; fault location; DSC

1. Introduction

Due to their modular design and good expansion characteristics, modular multilevel
converters (MMCs) can be adjusted by changing the number of submodules in series
to achieve flexible changes in voltage and power levels, and, with a lower switching
frequency, they can produce an output close to the ideal waveform, resulting in a reduced
output voltage and current harmonic content, a higher conversion efficiency, and a smaller
and lighter converter [1–3]. Based on these advantages, MMCs are widely used in high-
voltage direct current(DC) transmission systems [4,5], power quality controllers [6], high-
voltage electric drives [7,8], etc. In these high-power applications, the reliability of MMCs
that integrate a large number of submodules and switch structures cannot be ignored.
Overvoltage, overheating, thermomechanical fatigue, or command signals losing during
operation can cause switching faults in semiconductor switching devices [9], and each
switching unit is a potential point of failure, where the occurrence of an open-circuit fault
can distort the voltage and current and even cause damage to the MMC [10]. Therefore,
a reliable, real-time fault detection and location method is critical for the safe operation
of MMCs.

Generally, the research on fault detection and localization in MMC applications can be
broadly categorized into three basic approaches. The first category comprises model-based
approaches. These methods require an accurate mathematical model that can make full
use of the detailed information within the system and effectively reflect the essential fault
characteristics of the physical system. For instance, References [11–13] proposed a fault
diagnosis method based on a sliding mode observer and analyzed the robustness of the
method. In these papers, the author used high-gain feedback in the observer vector to
force the observed output to converge to the actual output, and they used several empirical
thresholds that were manually set according to the MMC topology used in the study. Thus,
fault detection was achieved. Deng et al. [14] proposed a method based on Kalman filtering.
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This method determines the occurrence of faults and locates open-circuit faults based on
manually set deviation thresholds for loop current and capacitor voltage. A single-ring-
theorem-based method for locating open-circuit faults in MMC switches was proposed in
Reference [15], and similar model-based methods are also available in References [16–19].
The diagnostic time of such methods is determined by the threshold value set by the system,
but MMCs are high-order, nonlinear, strongly coupled systems, which makes it difficult to
set empirical thresholds manually, and knowledge of the detailed parameters of the system
operation is required when setting the thresholds. Moreover, variations in the operating
parameters are not conducive to threshold determination.

The second category comprises sensor-based methods. These methods use additional
sensors to detect and identify faults, and they have a good accuracy and simple principles.
For instance, References [20–22] proposed a method to determine fault locations in MMC
models based on monitoring sensors and additional drive modules with integrated detec-
tion functions; however, on the one hand, such methods increase the cost of the system,
and, on the other hand, they increase the complexity of the system due to the need to add
additional hardware devices.

The third category comprises data-driven methods. Such methods extract fault features
from historical data, fit the mapping relationship between the fault features and fault modes,
and then achieve fault location. Compared with the two previously discussed types of
methods, not only do these methods not require complex mathematical models, but they
also do not require the setting of empirical thresholds. They can be well-applied for the
fault diagnosis of switches and are suitable for solving fault diagnosis problems in complex
nonlinear systems. The current data-driven methods can be further subdivided into two
subcategories: one category is based on machine learning approaches and the other category
is based on deep learning approaches. The former requires two steps to diagnose the fault:
the first step is the feature extraction process of the data, and the extraction methods mainly
include time-domain and frequency-domain correlation analysis methods, such as the
principal component analysis, fast Fourier transform, and the wavelet analysis. Then, the
classification algorithms in machine learning, such as correlation vector machines, limit
learning machines, and K-means clustering, are used to establish the mapping relationship
between the fault features and fault modes. For example, a cascaded H-bridge multilevel
inverter fault detection strategy based on the principal component analysis and multiclass
correlation vector machines was proposed in Reference [23]. Reference [24] proposed
a method based on discrete wavelet transform combined with the principal component
analysis to extract open-circuit fault features, and then a fuzzy logic system and a correlation
vector machine were used to classify the faults. Such shallow machine-learning-based
approaches often have difficulties in automatically extracting effective features from raw
data, relying more on human-selected feature extraction methods. In contrast, deep-
learning-based approaches can combine feature extraction and fault classification into
a single model using multilayer neural networks to directly classify and locate faults
based on raw data [25]. For example, Reference [26] proposed an isolation forest-based
fault localization method that only requires submodules (SM) capacitor voltages in the
MMC to construct concise low-data-volume tree models, and uses sparsity and difference
properties of outlier data to localize faults. Reference [27] proposed an open-circuit faults
diagnosis method for MMC based on extreme gradient boosting. A one-dimensional
convolutional-neural-network-based open-circuit fault localization method was proposed
in Reference [28], and it achieves the fast and accurate localization of open-circuit faults.
However, the deep-learning-based approaches have too many parameters, and only the
case of an open-circuit fault in a single submodule was discussed, failing to consider
the effect on neural network localization when a submodule short-circuit fault, a bridge
arm inductor short-circuit fault, and multiple submodule open-circuit faults occur in an
MMC system.

In summary, the deep-learning-based approach has become a current research hotspot
in the field of MMC fault detection and localization because of its advantages; for example,
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it does not require complex mathematical models to be built, it does not require empirical
thresholds to be manually set, and the process of feature extraction and fault classification
can be fused. However, the current research fails to consider the impacts of various con-
ditions, such as the short-circuit faults of submodules and the inductive faults of bridge
arms occurring in MMC systems based on fault location neural networks; it rarely locates
multi-point open-circuit faults occurring in submodules; and the diagnostic models have
a large number of parameters and a poor diagnostic real-time performance. Therefore,
this paper proposes a fast MMC fault detection and identification method based on a
depthwise separable convolutional neural network (DSCNN) [29]. To address the problem
of previous methods, where the neural network can only locate the open-circuit fault of a
single submodule, this paper adopted a diagnostic model consisting of a one-dimensional
convolutional neural network and a DSCNN connected in series to complete the classifi-
cation of submodule short-circuit faults, submodule open-circuit faults, and bridge arm
inductance faults using bridge arm circulating current data. Then, the submodule capacitor
voltage data were used to locate open-circuit faults, and, to solve the problem observed
in previous studies of not being able to locate multi-point open-circuit faults, multi-label
classification algorithms were used. In order to reduce the number of parameters in the
network, DSC was used instead of the traditional one-dimensional convolutional neural
network (1D-CNN), and the DSC in the first layer of the network was improved to reduce
the number of parameters and improve the real-time performance of the model. Compared
with the existing methods, the contributions of this paper are as follows:

(1) The diagnostic model used in this paper consists of a combination of a convolutional
neural network and a DSCNN, and these are applied to classify several common
faults in MMCs and to locate open-circuit faults, respectively. This makes up for
the shortcomings of previous research methods that only consider the occurrence of
submodule open-circuit faults.

(2) The diagnostic model used in this paper uses a multi-label classification algorithm,
which solves the problem in previous research of neural-network-based methods not
being able to locate multiple submodules with simultaneous open-circuit faults.

(3) In this paper, we use DSC instead of the traditional 1D-CNN to reduce the number of
parameters in the neural network.

2. Operation Principles and Fault Characteristics of MMCs
2.1. MMC Topology

A three-phase MMC is shown in Figure 1. Each phase consists of two bridge arms:
one upper bridge arm and one lower bridge arm. Each arm consists of N1 submodules of
the same structure and a bridge arm inductor, L0, connected in series. The midpoint of the
upper and lower bridge arms is connected to the load or the power grid as its alternating
current (AC) outlet. The submodule topology is the half-bridge submodule topology that
is widely used today. Each submodule has two connection terminals, as shown in Figure 1,
and consists of two insulated-gate bipolar transistors (IGBTs) with anti-parallel connections
and a capacitor, C. In Figure 1, Udc is the DC side voltage, ui is the SM output voltage, uc is
the voltage across the capacitor, and O is the reference point of zero potential.

There are two operating states for the normal operation of the submodule, as shown
in Figure 2. At any moment, S1 and S2 are complementary conduction states. When S1
is the turn-on signal and S2 is the turn-off signal, the submodule output voltage is the
capacitor voltage, uc, which is called the input state. This operating state is divided into two
operating modes according to the direction of the submodule current flow, corresponding
to mode 1 and mode 2 in Figure 2. In mode 1, the current flows through diode D1 to charge
the capacitor. In mode 2, the current passes through S1 to discharge the capacitor. This
state is also divided into two operating modes according to the direction of the submodule
current flow, corresponding to mode 3 and mode 4 in Figure 2. When the submodule is
in mode 3, the current passes through S2 to bypass the capacitor. In mode 4, the current
passes through diode D2 to bypass the capacitor.
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2.2. Selection of Fault Parametric Signals

When an MMC adopts the phase-shifted carrier (PSC)-pulse width modulation (PWM)
strategy, each phase can be controlled separately without interfering with each other.
Therefore, each phase can be analyzed separately for faults. MMC internal faults usually
contain submodule IGBT open-circuit faults, submodule IGBT short-circuit faults, and
bridge arm inductor short-circuit faults. For IGBT open-circuit faults, it is also necessary
to determine the exact submodule in which the fault occurs. Therefore, the parametric
signals for fault type classification and open-circuit fault location are selected separately.
The coupling analysis of the fault parametric signals is outlined below.

2.2.1. Selection of Fault Classification Parametric Signals

In the three-phase MMC, for phase j, the Kirchoff’s voltage law (KVL) equations are
written in the upper and lower bridge arms, respectively:

Uvj + L0
dipj

dt
+ Upj =

Udc
2

(1)
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Uvj − L0
dinj

dt
−Unj = −

Udc
2

(2)

The mathematical expression used to characterize the dynamic characteristics of the
AC and DC sides of the MMC is obtained by simplifying the difference between the
two equations:

L0
dicirj

dt
=

Udc
2
− (Upj + Unj) (3)

icir is the circulating current in the following equation:

icirj =
ipj + inj

2
(4)

In the above equation, it can be seen that the circulating current is related to the voltage
and inductance of the upper and lower arms, which can reflect the operating state of the
bridge arm. Therefore, the circulating current can be selected as the parametric signal for
classifying submodule IGBT short-circuit faults, submodule IGBT open-circuit faults, and
bridge arm inductor short-circuit faults.

2.2.2. Selection of Fault Location Parametric Signals

For submodule open-circuit fault location, the analysis outlined below is carried out.
There are three types of open-circuit faults: an upper bridge arm IGBT fault (type

I fault), a lower bridge arm IGBT fault (type II fault), and two IGBT faults that occur at
the same time (type III fault). It is only in mode 2 and mode 3 that the operating state is
affected by an IGBT open-circuit fault and that it changes the current flow. In order to
clearly understand the operation of the submodule voltage and current under open-circuit
fault types I, II, and III, Figure 3 shows the submodule current path and output voltage for
each operation mode when a fault occurs.
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In summary, the voltage characteristics of the submodule can be represented by the
equation below.
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Under normal conditions, the output voltage of the submodule is

ui =

{
S1(i) ∗ uc(i), iarm ≥ 0
S1(i) ∗ uc(i), iarm < 0

(5)

where S1(i) is the conduction state of the bridge arm IGBT on the ith submodule, ui is the
output voltage of the ith submodule, and uc(i) is the capacitor voltage of the ith submodule.

In a type I fault, when the operating state of the submodule is mode 2, the current
flows through D2 due to the S1 open-circuit fault. The output voltage of the submodule
changes from ui = uc in the normal case to ui = 0. The remaining three modes of operation
are not affected by such a fault. The submodule output voltage can be expressed as

ui =

{
S1(i) ∗ uc(i), iarm ≥ 0

0, iarm < 0
(6)

In a type II fault, when the operating state of the submodule is mode 3, the current
flows through D1 due to the S2 open-circuit fault. The output voltage of the submodule
changes from ui = 0 in the normal case to ui = uc. The remaining three modes of operation
are not affected by such a fault. The submodule output voltage can be expressed as

ui =

{
uc(i), iarm ≥ 0

S1(i) ∗ uc(i), iarm < 0
(7)

When a type III fault occurs, because all IGBTs are in the open-circuit fault state, the
current in the submodule can only flow through the diode. Mode 1 and mode 4 are not
affected, but the submodule output voltage of both mode 2 and mode 3 changes due to the
fault, and the voltage can be expressed as

ui =

{
uc(i), iarm ≥ 0

0, iarm < 0
(8)

In the above equation, it can be seen that an open-circuit fault in a submodule can lead
to capacitor overvoltage problems, and the voltage of the faulty submodule is always higher
than the capacitor voltage of the normal submodule. Therefore, the submodule capacitor
voltage can be selected as the parametric signal to locate submodule open-circuit faults.

3. Proposed DSCNN-Based Fault Detection and Identification Methods

The fault characterization shows that the fault phase circulating current can be used to
differentiate between submodule open-circuit faults, submodule short-circuit faults, and
bridge arm inductive short-circuit faults. Submodule capacitor voltage data can be used to
locate submodule open-circuit faults. Therefore, the mapping relationship between fault
data and fault patterns can be learned by neural networks to complete the fault detection
and location in MMCs. A DSCNN is introduced and improved in order to reduce the
number of parameters and the computation burden of the neural network.

3.1. 1D-CNN Overview

1D-CNN is a feedforward neural network containing one-dimensional convolutional
operations. In this paper, a 1D-CNN is used to process time-series signals, and the basic
structure consists of an input layer, a convolutional layer, a pooling layer, and a fully
connected layer. The convolution operation process is shown in Figure 4. Each neuron in
a single-feature mapping plane is connected to part of the region of the forward layer by
a set of identical weights. A set of shared weights is called the convolutional kernel, and
the nth feature mapping output via convolutional layer l is xl

n. The 1D-CNN layer can be
expressed as follows [28]:



Energies 2023, 16, 3427 7 of 17

xl
n =

Ct

∑
c=1

kl
n,c ∗ xl−1

c + bl
n (9)

where xc
l−1 is the input; bn

l is the bias of the nth neuron at layer l; and Ct is the total number
of input channels, which is the total number of neurons in the previous layer. kl

n,c is the
1-D kernel from the cth neuron at layer l − 1 to the kth neuron at layer l.
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3.2. DSC Overview and Improvement

In order to reduce the network parameters and computation burden and increase the
network operation speed, this paper uses DSC, the core component of the MobileNet [30]
lightweight network. DSC decomposes the standard convolution into two parts, namely,
depthwise convolution and pointwise convolution, as shown in Figure 5 [29]. First, the
depthwise convolution assigns a separate filter to each input channel, mapping the temporal
correlation of each channel sequence separately. The pointwise convolution then produces
a linear combination of the depthwise convolution outputs via 1 × 1 convolution to map
cross-channel correlations. With the above two independent steps, the temporal correlation
and cross-channel correlation can be fully decoupled. The following equation is used to
represent the two steps of DSC:

zl
n =

Ct

∑
c=1

Pn ∗ (Rn,c ∗ xl−1
c + bl

c) + bl
n (10)

where zn
l is the output, and Rn,c and Pn are the depthwise convolution kernel and pointwise

convolution kernel, respectively.
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In the process of DSC, the depthwise convolution uses a separate filter for each input
channel, mapping the temporal correlation of each channel sequence separately. In the
fault location neural network, the data of each channel comprise the capacitor voltage of
each submodule. The time-domain characteristics of the capacitance voltage are basically
the same for each submodule after an open-circuit fault. Therefore, each channel in the
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first layer has the same time correlation. In the first layer of the depthwise convolution,
a stationary kernel can be chosen to extract features from the time series of each channel,
and its structure is shown in Figure 6. This structure can obtain more stable and reliable
kernel parameters to extract the features of the first layer’s time-series data during the
training process, and it can further streamline the number of parameters in the network.
The process can be expressed using the following equation:

zl
n =

Ct

∑
c=1

Pn ∗ (Rn ∗ xl−1
c + bl

c) + bl
n (11)

where the convolution kernel Rn performs the convolution operation for the different channels.
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3.3. The Process of DSCNN-Based Fault Detection and Localization Method

A DSCNN-based fault detection and localization strategy is proposed for MMCs, as
shown in Figure 7.
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• Step 1: Data Acquisition. The MMC system is simulated in Simulink with a bridge arm
inductor short-circuit fault, a submodule IGBT open-circuit fault, and a short-circuit
fault, and the data of the bridge arm circulating current and each capacitor voltage
sensor are collected as sample data.

• Step 2: Data Preprocessing. First, the data are segmented using sliding windows, as
shown in Figure 8. The size and step of the window directly affect the amount of
feature information in the sample, the time delay of diagnosis, and the time node
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at which a fault is detected. Usually, the larger the time window, the more feature
information each sample contains and the higher the accuracy of the diagnosis, but
the total time for diagnosis is correspondingly longer, and more memory space is
required. The smaller the sliding step, the more precise the point in time when a fault
is detected and the higher the requirements for data transfer and hardware memory. In
order to fully extract the characteristic information contained in each capacitor voltage,
the sample should contain at least one full cycle in normal and fault conditions; for
balance, the size of the sliding window kernel step is set to 200 and 50, respectively.
Since the voltage data will gradually deviate from the normal value after a fault occurs,
the data are normalized using Equation (12) in order to eliminate the effects of local
amplitude variations.

X′ =
X− Xmin

Xmax − Xmin
(12)

Here, X and X′ are the original data and the normalized data, respectively; Xmax and
Xmin are the maximum and minimum values in data X, respectively.

Energies 2023, 16, x FOR PEER REVIEW 10 of 18 
 

 

1 2 3 4 5 6 7 .. .. ..

1 2 3 4 5 6 7 .. .. ..

1 2 3 4 5 6 7 .. .. ..

Window size Strides

Sample 1

Time

Variable  1

Variable  n 

Variable  2 

Sample 2 

..

..

..

Sampling point

 

Figure 8. Illustration of data sliding window. 

• Step 3: Set the Sample Label. The data contain four conditions: a submodule open-

circuit fault, a submodule short-circuit fault, a bridge arm inductance fault, and nor-

mal conditions. Since the bridge arm circulating current does not change much when 

a submodule open-circuit fault occurs, submodule open-circuit faults and normal 

conditions are grouped into one category. The internal operating states of the MMC 

are classified into three categories using a binary vector with a length of 3: (1, 0, 0) 

represents normal conditions and a submodule open-circuit fault, (0, 1, 0) represents 

a submodule short-circuit fault, and (0, 0, 1) represents a bridge arm inductor short-

circuit fault. For the submodule open-circuit fault location, a binary vector of length 

4N1 is used to represent the state of the 4N1 switch. The label of the switch is set to 0 

in the normal state and 1 when an open-circuit fault occurs. After labeling, the dataset 

is divided into training and test sets according to a ratio of 9:1. 

• Step 4: Training Phase. The fault classification neural network is trained using the 

bridge arm circulating current data in the training set, and the submodule capaci-

tance voltage data are trained for the submodule open-circuit fault location neural 

network. The network parameters are adjusted to obtain the optimal model of the 

network. 

• Step 5: Testing Phase. The test samples are input into the trained optimal model, and 

the fault classification neural network classifies the MMC operation conditions ac-

cording to the circulating current. When the sample label output is (1, 0, 0), the sub-

module voltage data at the same moment are input into the submodule open-circuit 

fault location neural network to complete the determination of the submodule open-

circuit fault location. 

4. Performance Evaluation and Experimental Validation 

4.1. Data Acquisition 

In order to verify the feasibility of the proposed method, an MMC simulation model 

is built in the MATLAB/Simulink environment according to the topology in Figure 1 [31], 

with the parameters shown in Table 1. 

Table 1. Parameters of MMC circuit. 

Parameters Values Parameters Values 

Number of cells per arm N1 5 Capacitor C 4.7 mF 

Voltage Vdc 5 kV Inductor arm L 5 mH 

Fundamental frequency 50 Hz Load Resistor R 5 Ω 

Carrier frequency 750 Hz Load Inductor LL 10 mH 

To ensure that the neural network is not affected by the moment of fault occurrence 

in the process of fault type identification and open-circuit fault localization, this paper sets 

the fault onset time to 1 s for data acquisition and it sets four time biases in a 20 ms period 

with 5 ms steps (Δ1 = 0 ms, Δ2 = 5 ms, Δ3 = 10 ms, andΔ4 = 15 ms). The bridge arm inductor 

short-circuit fault, the open-circuit fault, and the short-circuit fault of each submodule are 

Figure 8. Illustration of data sliding window.

• Step 3: Set the Sample Label. The data contain four conditions: a submodule open-
circuit fault, a submodule short-circuit fault, a bridge arm inductance fault, and normal
conditions. Since the bridge arm circulating current does not change much when
a submodule open-circuit fault occurs, submodule open-circuit faults and normal
conditions are grouped into one category. The internal operating states of the MMC
are classified into three categories using a binary vector with a length of 3: (1, 0, 0)
represents normal conditions and a submodule open-circuit fault, (0, 1, 0) represents
a submodule short-circuit fault, and (0, 0, 1) represents a bridge arm inductor short-
circuit fault. For the submodule open-circuit fault location, a binary vector of length
4N1 is used to represent the state of the 4N1 switch. The label of the switch is set to 0
in the normal state and 1 when an open-circuit fault occurs. After labeling, the dataset
is divided into training and test sets according to a ratio of 9:1.

• Step 4: Training Phase. The fault classification neural network is trained using the
bridge arm circulating current data in the training set, and the submodule capacitance
voltage data are trained for the submodule open-circuit fault location neural network.
The network parameters are adjusted to obtain the optimal model of the network.

• Step 5: Testing Phase. The test samples are input into the trained optimal model,
and the fault classification neural network classifies the MMC operation conditions
according to the circulating current. When the sample label output is (1, 0, 0), the
submodule voltage data at the same moment are input into the submodule open-
circuit fault location neural network to complete the determination of the submodule
open-circuit fault location.
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4. Performance Evaluation and Experimental Validation
4.1. Data Acquisition

In order to verify the feasibility of the proposed method, an MMC simulation model is
built in the MATLAB/Simulink environment according to the topology in Figure 1 [31],
with the parameters shown in Table 1.

Table 1. Parameters of MMC circuit.

Parameters Values Parameters Values

Number of cells per arm N1 5 Capacitor C 4.7 mF
Voltage Vdc 5 kV Inductor arm L 5 mH
Fundamental frequency 50 Hz Load Resistor R 5 Ω
Carrier frequency 750 Hz Load Inductor LL 10 mH

To ensure that the neural network is not affected by the moment of fault occurrence in
the process of fault type identification and open-circuit fault localization, this paper sets the
fault onset time to 1 s for data acquisition and it sets four time biases in a 20 ms period with
5 ms steps (∆1 = 0 ms, ∆2 = 5 ms, ∆3 = 10 ms, and ∆4 = 15 ms). The bridge arm inductor
short-circuit fault, the open-circuit fault, and the short-circuit fault of each submodule are
simulated. Then, the voltage and current data are collected at a sampling frequency of
10 kHz for 0.5 s after the fault occurs for network training and testing. After the raw data
are preprocessed and divided into training and test sets, 46,698 samples are finally obtained
for training the fault classification neural network, 39,646 samples are obtained for training
the fault localization neural network, and 4887 samples are obtained for testing the whole
diagnostic model.

The experimental environment in this paper is as follows: a Windows 10 operating
system, an Intel(R) Core(TM) i5-9400 CPU@2.9GHz processor, 16 GB RAM, and no GPU.

4.2. Model Parameter Setting

In the fault classification neural network, this paper uses a compactly structured 1D-
CNN for fault classification, mainly containing two 1D convolutional layers and one fully
connected (FC) layer. The convolutional layer is mainly used to process the raw data so
that it can be used by the FC layer for classification. By fusing the convolutional layer and
the FC layers together and optimizing them to maximize the classification performance, an
accurate classification of fault types can be performed with a relatively low computational
complexity. The structure is shown in Figure 9.

Energies 2023, 16, x FOR PEER REVIEW 11 of 18 
 

 

simulated. Then, the voltage and current data are collected at a sampling frequency of 10 

kHz for 0.5 s after the fault occurs for network training and testing. After the raw data are 

preprocessed and divided into training and test sets, 46,698 samples are finally obtained 

for training the fault classification neural network, 39,646 samples are obtained for train-

ing the fault localization neural network, and 4887 samples are obtained for testing the 

whole diagnostic model. 

The experimental environment in this paper is as follows: a Windows 10 operating 

system, an Intel(R) Core(TM) i5-9400 CPU@2.9GHz processor, 16 GB RAM, and no GPU. 

4.2. Model Parameter Setting 

In the fault classification neural network, this paper uses a compactly structured 1D-

CNN for fault classification, mainly containing two 1D convolutional layers and one fully 

connected (FC) layer. The convolutional layer is mainly used to process the raw data so 

that it can be used by the FC layer for classification. By fusing the convolutional layer and 

the FC layers together and optimizing them to maximize the classification performance, 

an accurate classification of fault types can be performed with a relatively low computa-

tional complexity. The structure is shown in Figure 9. 

1×200×16

1×3

1×66×16 1×66×32 1×66×16 1×11×16 1×176

1×15×32

1×6

Output

Input：
circulating current

Convolution 

layer

Pooling 
layer

FC layer
Convolution 

layer

Flatten 
layer

1×15

1×200

Pooling 
layer

Softmax

 

Figure 9. Schematic diagram of fault classification neural network. 

In the submodule open-circuit fault location neural network, the input is the sub-

module capacitance voltage. Using the improved DSC mentioned in this paper in the first 

layer of the neural network, the global core features can be extracted with a small number 

of parameters. Then, the features are extracted and optimized by the DSC and FC layers. 

Finally, the features are input to the flatten layer and the sigmoid activation function is 

used for multi-label classification. The structure is shown in Figure 10. 

1×200×10

1×15×10

1×200×32

1×3

1×66×32 1×66×32 1×52×16 1×17×16 1×17×16 1×5×16 1×80

1×15×32 1×3×16

1×3 1×3

Output

The improved 
DSC layerInput：submodule 

capacitance voltage

Pooling 
layer

FC layer DSC layer
Pooling 

layer
DSC layer Pooling 

layer
Flatten 
layer

Sigmoid

 

Figure 10. Schematic diagram of fault localization neural network. 

4.3. Model Evaluation Metrics. 

For the fault classification neural network, this paper mainly uses the accuracy rate 

to measure the classification results of the model. For the submodule open-circuit fault 
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In the submodule open-circuit fault location neural network, the input is the submod-
ule capacitance voltage. Using the improved DSC mentioned in this paper in the first layer
of the neural network, the global core features can be extracted with a small number of
parameters. Then, the features are extracted and optimized by the DSC and FC layers.
Finally, the features are input to the flatten layer and the sigmoid activation function is
used for multi-label classification. The structure is shown in Figure 10.
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4.3. Model Evaluation Metrics

For the fault classification neural network, this paper mainly uses the accuracy rate
to measure the classification results of the model. For the submodule open-circuit fault
location neural network, the data types are complex. Therefore, macro-P, macro-R, macro-
F1, and accuracy are chosen to measure the single-point open-circuit fault samples in the
test set. Accuracy(A), macro-P(P), macro-R(R), and macro-F1(Fmacro) are

A =

4N1
∑

i=0
pi,i

4N1
∑

i=0

4N1
∑

j=0
pi,j

(13)

P =
1

4N1 + 1

4N1

∑
i=0

Pi (14)

R =
1

4N1 + 1

4N1

∑
i=0

Ri (15)

Fmacro =
1

4N1 + 1

4N1

∑
i=0

2PiRi
Pi + Ri

(16)

pi,j represents the number of samples of type i that are predicted to be of type j. Pi and
Ri are:

Pi =
pi,i

4N1
∑

j=0
pj,i

(17)

Ri =
pi,i

4N1
∑

j=0
pi,j

(18)

In addition, for multi-point open-circuit faults in the dataset, this paper uses the
evaluation metrics commonly used in multi-label classification [32] to evaluate the data
comprehensively, including the exact match ratio (MR), accuracy (Acc), precision (Pre),
Recall, and F1 value. These are calculated as follows:

MR =
1
T

T

∑
k=1

I(y(k) == ŷ(k)) (19)

Acc =
1
T

T

∑
k=1

∣∣∣y(k) ∩ ŷ(k)
∣∣∣∣∣y(k) ∪ ŷ(k)
∣∣ (20)
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Pre =
1
T

T

∑
k=1

∣∣∣y(k) ∩ ŷ(k)
∣∣∣∣∣ŷ(k)∣∣ (21)

Recall =
1
T

T

∑
k=1

∣∣∣y(k) ∩ ŷ(k)
∣∣∣∣∣y(k)∣∣ (22)

F1 =
1
T

T

∑
k=1

2
∣∣∣y(k) ∩ ŷ(k)

∣∣∣∣∣y(k)∣∣+ ∣∣ŷ(k)∣∣ (23)

T is the number of samples in the test set. y(k) is the true label of the sample, and ŷ(k) is the
predicted label of the sample.

4.4. Test Performance

In order to make a comparison with existing methods, Table 2 summarizes several
methods for the detection and identification of MMC submodule switching device open-
circuit faults. References [11,14] present model-based methods, which are influenced by
system parameters and have long diagnosis times. These types of methods can only be used
to locate open-circuit faults in MMC systems. Among them, the sliding-film-observer-based
method in Reference [11] cannot complete the localization of multi-point open-circuit faults
in the same bridge arm, while the Kalman filter-based method proposed in Reference [14]
can localize multi-point open-circuit faults in the same bridge arm. Reference [28] proposes
an open-circuit fault diagnosis method based on a one-dimensional convolutional neural
network. The deep-learning-based method in Reference [28], although less affected by
parameter uncertainty and having a shorter diagnosis time, can only locate submodule
open-circuit faults in MMC systems and cannot locate multi-point open-circuit faults in the
same bridge arm.

Table 2. Comparison of different diagnostic methods.

Methods
Ability to
Classify
Faults

Applicable to
Multi-Point

Open-Circuit Faults

Diagnosis
Speed

Influenced by
Parameter

Uncertainty

[11] No No ≥100 Yes
[14] No Yes ≥100 Yes
[28] No No ≈100 No

Our method Yes Yes ≤80 No

Compared with the existing methods, the fault detection and diagnosis method pro-
posed in this paper can classify bridge arm inductive short-circuit faults, submodule
open-circuit faults, and short-circuit faults in MMC systems with 100% accuracy and it can
locate multi-point open-circuit faults in the same bridge arm. At the same time, the method
is not affected by the uncertainty of system parameters, has good universality, and has a
short diagnosis time, completing fault classification within 50 ms and locating open-circuit
faults within 80 ms. A simulation verification of the three-phase MMC system when a fault
occurs is presented below.

The simulation results of a short-circuit fault in the upper bridge arm inductor of
phase A in a three-phase MMC system are shown in Figure 11. The bridge arm inductor
short-circuit fault occurred at 1 s, and after the fault occurred, the fault classification was
completed at 1.0483 s, taking 48.3 ms.
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The simulation results of a short-circuit fault in the upper bridge SM1 S1 of phase A
in a three-phase MMC system are shown in Figure 12. The S1 short-circuit fault was set
to occur at 1 s. After the fault occurred, the fault classification was completed at 1.0479 s,
taking 47.9 ms.
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The simulation results of an open-circuit fault in the upper bridge SM1 S1 of phase A
in a three-phase MMC system are shown in Figures 13 and 14. The S1 open-circuit fault
in the upper bridge arm SM1 occurs at 1 s. After the fault occurs, the fault classification is
completed and the open-circuit fault is located in S1 of submodule SM1 at 1.0762 s. The
fault classification takes 47.8 ms and the determination of the fault location takes 28.4 ms.
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Using the data in Section 4.1, the experiment was repeated 10 times with the method
proposed in this paper in order to verify its effectiveness in fault detection and identification
in MMCs. The training set and test set were randomly re-divided for each experiment.
The fault classification neural network was found to be capable of classifying bridge arm
inductor short-circuit faults, submodule open-circuit faults, and submodule short-circuit
faults with 100% accuracy. For the fault location neural network, the performance of the
network was evaluated using the metrics detailed in Section 4.3. For the single-point
open-circuit fault samples in the dataset, the methods in this paper were compared with a
deep neural network (DNN) [33], a long short-term memory (LSTM) neural network [34], a
CNN-LSTM [35], a Convlstm [36], and the method in Reference [28]. The test results are
shown in Table 3.

Table 3. Comparison of results of different neural networks in single-point open-circuit fault localization.

A P R Fmacro

[28] 0.9862 0.9749 0.9523 0.9579
LSTM 0.9794 0.9702 0.9286 0.9408
DNN 0.9588 0.9634 0.8658 0.8976
CNN-LSTM 0.9857 0.9681 0.9438 0.9519
Convlstm 0.9859 0.9713 0.9451 0.9564
Our method 0.9903 0.9791 0.9667 0.9691

The multi-point open-circuit fault samples and single-point open-circuit fault samples
in the dataset were tested and compared with a DNN, an LSTM, a CNN-LSTM, a Convlstm,
and a CNN [37]. The results are shown in Table 4.

As shown in Table 3, the method proposed in this paper is slightly better than the
method proposed in Reference [23] for the single-point open-circuit fault dataset in all
metrics, and it outperforms an LSTM and a DNN with the same number of layers as well
as CNN-LSTM and Convlstm, which have more complex structures. In Table 4, it can be
seen that, when the data contain multi-point open-circuit faults, the method proposed in
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this paper shows better performance than other models by considering the two aspects
of evaluation indexes and the number of parameters together. Compared with a CNN,
LSTM, and DNN, all the indexes of the method proposed in this paper are better than them.
And compared with CNN-LSTM and Convlstm, the indexes of the method proposed in
this paper are relatively close, but the proposed method is significantly advantageous in
reducing the number of parameters. As a result, the method proposed in this paper can
achieve fault detection and identification in MMCs with higher accuracy and lower number
of parameters.

Table 4. Comparison of results of different neural networks in open-circuit fault localization.

MR Acc Pre Recall F1
Number of
Parameters

CNN 0.7372 0.8497 0.8623 0.9517 0.8921 19060
LSTM 0.6088 0.7780 0.7971 0.9303 0.8409 60570
DNN 0.6881 0.8187 0.8347 0.9356 0.8682 34228
CNN-LSTM 0.8086 0.8848 0.9008 0.9457 0.9156 163704
Convlstm 0.7893 0.8801 0.8916 0.9543 0.9181 302408
Our method 0.7980 0.8770 0.8938 0.9415 0.9095 6308

5. Conclusions

Fault detection and location is one of the critical issues that need to be addressed in
the engineering application of MMCs. Therefore, a DSCNN-based MMC fault detection
and identification method is proposed in this paper. Moreover, to solve the problem
of the current neural-network-based MMC fault diagnosis only being able to locate a
single submodule when it is an open-circuit fault, a diagnosis model combining a 1D-
CNN and a DSCNN is designed. This method completes the classification of submodule
short-circuit faults, submodule open-circuit faults, and bridge arm inductance faults using
bridge arm circulating current data. Moreover, through the submodule capacitance voltage
data and a multi-label classification algorithm, it completes the localization of multi-point
open-circuit faults in the submodule of the same bridge arm. In this paper, the proposed
method is validated using a six-level MMC built in Simulink. The results show that the
proposed method achieves 100% accuracy for fault classification and it achieves accuracies
of ≥99% and 87.7% for single-point and multi-point open-circuit fault location in MMCs,
respectively. Compared to other methods, the method proposed in this paper makes the
following contributions.

(1) The diagnostic model used in this paper consists of a combination of two models. One
of them is used to classify submodule open-circuit faults, submodule short-circuit
faults, and bridge arm inductor short-circuit fault with 100% accuracy. The other
is used to locate open circuit faults in the submodule. In this way, we make up for
the shortcomings of previous neural-network-based methods that only consider the
occurrence of submodule open-circuit faults.

(2) Compared to other neural-network-based methods, the method proposed in this
paper adds samples of multi-point submodule open-circuit faults to the training
set and achieves the localization of multi-point submodule open-circuit faults in
the same bridge arm while ensuring the accuracy of the localization of single-point
open-circuit faults.

(3) By using DSC instead of the traditional one-dimensional convolutional operations,
this method reduces the number of parameters in the network and improves the
real-time performance compared with other neural-network-based methods.

The method proposed in this paper has only been presented using simulation results.
On the real-world practical applicability, there are some potential sources of error that may
affect the accuracy of the proposed method, such as measurement errors of sensors, delay
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of sampled signals, and harmonic signal, etc. The implementation and validation in the
actual MMC circuit will be the topic of our future work.
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