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Abstract: The structure of large biomass circulating fluidized bed (BCFB) boilers is complex, and
control schemes for coal-fired boilers cannot be simply applied to biomass boilers. Multivariable
coupling and operational disturbances are also common issues. In this study, a state space model of a
130 t/h BCFB boiler was established under different operating conditions. Using the 100% operating
point as an example, a model predictive controller was designed and tested under output disturbance
and input disturbance conditions. The results show that the predictive control system designed in
this study has a fast response speed and good stability.

Keywords: biomass; circulating fluidized bed; combustion system; dynamic simulations; subspace
identification; model predictive control

1. Introduction

Currently, the use of green renewable energy for power generation has become a
crucial concern worldwide due to the issue of environmental protection and the grand
vision of achieving carbon peak and carbon neutrality [1]. Biomass resources, such as crop
straw and forestry waste, have carbon neutrality during their life cycles [2]. It is anticipated
that when advanced Carbon Capture, Utilization, and Storage (CCUS) technologies are
combined [3-5], it will be possible to achieve negative carbon emissions at an economically
feasible scale. Therefore, the development of biomass fuels for the production of the power
industry has become an indispensable part of the technological path to achieve carbon
neutrality. Developed European countries, including France, the United Kingdom, and
Germany, have established distinct targets and strategies for reducing emissions from
coal-fired power plants [6]. Their plans involve the gradual phase-out of coal-fired power
generation, with the aim of complete elimination by 2022, 2025, and 2050, respectively.
Instead, they plan to transition to biomass power plants. Recently, the International
Renewable Energy Agency (IRENA) released data showing that the globally installed
capacity of biomass has exceeded 120 GWe [7].

However, due to the variety of biomass species, the physicochemical properties vary
widely. Biomass means that most alkali are released during combustion of biomass fuels,
whereas in the case of coal at least the potassium tend to be bound in the ashes in the
temperature range of circulating fluidized bed (CFB) combustion [8]. In addition, biomass
fuel typically has a high moisture (20~50%) content with a large range of variation. As
a result, directly burning biomass in coal-fired boilers often leads to issues such as poor
combustion, high levels of pollutant emissions, and severe ash slagging, as noted in
previous studies [9-11]. Currently, CFB boilers are extensively utilized to combust low-
quality, substandard fuels. CFB boilers offer numerous benefits, including broad fuel
adaptability, high combustion efficiency, easy temperature regulation of the furnace, and
excellent load regulation performance [12]. In the current field of biomass power generation,
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circulating fluidized bed boilers are also one of the most widely used mainstream furnace
types.

BCEFB boilers are more complex in structure than ordinary boilers. Changes in biomass
type and combustion rate can cause disturbances in CFB boiler combustion. The composi-
tion of the biomass, including calorific value and water content, can have an impact on the
furnace combustion and ultimately affect the heat load, steam output, and fluidized bed
temperature. Especially in the variable load operation of the unit, the conventional PI, PD,
and other control methods will cause large fluctuations in the furnace pressure and steam
pressure, which will affect the safe, stable, and economical operation of the unit. This is
because the BCFB has characteristics of strong nonlinearity, large inertia, and is multivari-
able and time-varying. Moreover, the coupling between multiple input multiple output
variables is stronger than that of traditional pulverized coal furnaces. The combustion
process in the furnace of a BCFB boiler is complex, involving many scientific fields such as
combustion, fluid mechanics, thermodynamics, and heat transfer [13-15]. It is an important
basis for the design of high precision and high reliability combustion process automatic
control systems to deeply understand and master the overall dynamic characteristics of
high parameter and large capacity BCFB boiler combustion systems. There have been
a lot of fruitful studies on the heat transfer, mass transfer, and combustion processes in
the boiler by computational fluid dynamics. Therefore, the dynamic mathematical model
of the furnace combustion system is obtained through data recognition or mechanism
modeling. Through reasonable simplification, the control-oriented simple mathematical
model is obtained. Based on this, designing the controller has become a common approach
for designing complex industrial thermal control systems.

Compared with pulverized coal boilers of the same scale, the structure of BCFB boilers
is mostly more complicated because it includes additional components such as cyclone
separators and feeding devices. The combustion system has a notable time delay, which
can create difficulties in precisely controlling critical parameters, such as bed temperature
and pressure in a CFB boiler. Valsalam et al. [16] developed a state predictive controller
using a Kalman filter to achieve accurate control of the main steam temperature and
improve boiler efficiency. This controller was designed based on a comprehensive eighth
order mathematical model. Zhu et al. [17] used multi-model predictive control for CFB
bed temperature regulation, which solved the bed temperature control problem of CFBs
in a wide operating range and obtained satisfactory control performance. Tomochika
et al. [18] developed an energy recovery system for fluidized bed incinerators that utilizes
a multivariable model predictive control (MPC). This system can maintain stable control of
the generation rate, temperature, and pressure of superheated steam by adjusting the steam
flow valve and primary air flow entering the energy recovery zone. Zlatkovikj et al. [19]
developed a dynamic model of a biomass bubbling fluidized bed cogeneration power
plant based on Dymola‘s mass and energy balance. The state space model of the object is
obtained by system identification (SID), and the feedforward and predictive controller is
designed. The superiority of feedforward model predictive control in parameter control
has been demonstrated when compared to proportional integral, feedforward proportional
integral, and model predictive control.

The precise model of the heat-work processing object is the key to designing and
guaranteeing a controller, and it seems more important. With the ongoing advancements
in control techniques, such as predictive control, there has been continuous development
in the field of process control. Identification modeling has also transformed from simply
pursuing accuracy, and towards higher targets suitable for controller design. Subspace
identification [20-23], as a new state space model identification method, was proposed in
the late 20th century. Since the state space model is suitable for the application of advanced
control theory and the expression of advanced multivariable controller design, subspace
identification has quickly attracted wide attention in the field of system identification and
control. The difference between subspace identification and traditional identification is
shown in Figure 1. SID extracts models from data Hankel matrices [24] using computa-
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tional tools like QR decomposition and singular value decomposition (SVD) [25,26], and
thus offers several advantages over traditional optimization-based methods [27,28]. These
advantages include high computational efficiency, avoidance of local minimum and conver-
gence problems, no requirement for initial conditions, and ease of selection for the system
order.

Input and output data
Subspace identification Traditional
methods identification methods
Projection Prediction error method
and SVD or least squares method
Kalman state sequence System matrix
LS Kalman filtering
System matrix A sequence of states

Figure 1. The difference between subspace identification methods and traditional identification
methods.

Currently, the 130 t/h BCFB boiler is widely used in biomass power generation, but
there is a lack of research on its dynamic characteristics, and the application of advanced
control methods remains limited. Limited research has been conducted on the dynamic
characteristics and control of thermal biomass plants, as noted in a review paper by Atsonios
et al. [29]. However, Kortela and Jams&-Jounela were able to develop an MPC system for a
biomass CHP plant’s grate boiler, which was reported to achieve a shorter settling time
compared to the traditional PI control [30]. Therefore, based on Modelica language and
MWorks platform, a 130 t/h BCFB whole system mechanism model is established. The state
space model of different load conditions of BCFB boiler combustion systems is obtained
based on subspace identification method. On this basis, the MPC theory is used to design
the predictive controller, and the effectiveness of the designed predictive controller is
verified when the bed temperature and bed pressure requirements change. The research in
this paper has important guiding significance for improving the actual industrial operation
level of BCFB boilers. On this basis, the MPC theoretical design predictor controller
is adopted, and the effectiveness of the predictive controller is designed when the bed
temperature and bed pressure requirements are changed. The relevant research in this
work has certain guiding significance for improving the industrial operation level of BCFB
boilers.

2. Controlled Object and Raw Material
2.1. Boiler Physical Object

The research boiler is a 130 t/h biomass direct combustion circulating fluidized bed
boiler produced by a boiler company in Jinan. The main design and operating parameters
are shown in Table 1. The main layout is shown in Figure 2. The combustion system of a
BCEFB boiler comprises a combustion chamber, which includes dense phase, dilute phase,
and suspension zones, as well as a circulation circuit, which includes a high-temperature
gas-solid separator and a return material system. The primary air and secondary air
required for the combustion of a CFB boiler are fed from the bottom and side wall of the
furnace, respectively. The combustion of fuel is mainly completed in the furnace, and
the water wall is arranged around the furnace to absorb part of the heat generated by
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combustion. The solid materials brought out of the furnace by the air flow are collected
in the gas-solid separation device and sent back to the furnace through the return device.
The boiler has a rated evaporation capacity of 130 t/h and a maximum continuous rating
of 143 t/h, with a rated steam pressure of 9.2 MPa and a rated steam temperature of 540
°C. Its thermal efficiency is 90.3%. It is also equipped with a 30 MW high-temperature and
high-pressure extraction-condensing turbine generator set.

Table 1. BCFB Boiler design and operation parameters.

Design and Operation Parameters Numerical Value
Furnace size (width x depth x height) 876 m x 54m x 30 m
Primary air temperature (Air preheater outlet) 175 °C
Secondary air temperature (Air preheater o
175°C
outlet)
Fuel flow 35.286 t/h
Primary air flow (Air preheater outlet) 101,974 m®/h
Secondary air flow (Air preheater outlet) 101,974 m3/h
Fuel particle size 0-100 mm
Bed material particle size (River sand) 0-2 mm
Boiler maximum continuous rate (BMCR) 143 t/h
T —
o Steam
I—g |:> Turbine
e || s -
Phase Zone
\ = | 4
—o

::::: p— l

Limestone —_—
Suspension
Region
_— | o
Secondary  _____\_ _ _ _ _ _____
Air Air
4 Returner Preheater .
Electrostatic
Dense Precipitator
L/~ Phase Zone
Biomass
Fuel

Primary Air
Figure 2. Schematic diagram of 130 t/h BCFB boiler structure.

2.2. Boiler Physical Object

The main fuel used in the power plant comes from the debris generated by the
production of furniture and the surrounding crop straw. The blended fuel includes 40%
bark, 30% sawdust, 20% wood, 5% wheat straw, and 5% corn straw. It is worth noting
that compared to coal, solid biomass fuels provided to power plants exhibit significant
characteristics, such as high oxygen content and high volatile matter, as well as low carbon
content and low ash content [31].
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2.3. BCFB Boiler Combustion System Model Based on Mworks

Our research group established a dynamic model of a 130 t/h BCFB boiler combustion
system through MWorks [32]. The model proposed in this study is composed of different
modules, namely the input module (for feeding biomass fuel, primary air, and secondary
air), combustion chamber module (including the dense phase zone, suspended phase zone,
and dilute phase zone), cyclone separator module, and loop seal module. A series of
characteristic tests of relevant parameters (the biomass feed rate, limestone amount, excess
air co-efficient, and different ratios of primary air and secondary air) on the operation of
biomass circulating fluidized bed were carried out, and the influence of different input
operating conditions on the biomass circulating fluidized bed boiler was obtained. The
ratio of primary air to secondary air had a considerable impact on the composition of the
flue gas [33]. Additionally, during the normal operation of the boiler, the bed pressure
should be controlled between 5000 and 7000 Pa. Excessive bed pressure may bring a good
load to the boiler, but it will aggravate the change of the furnace bed temperature and the
wear of the inertia return chamber, which is not conducive to safe operation. Therefore,
bed pressure is also a very important variable in boiler control.

The simulated results of the model were compared with actual measured values and
the relative errors for bed temperature, flue gas oxygen content, and bed pressure were
found to be 6.99%, 3.80%, and 2.92%, respectively. It shows that the established 130 t/h
BCEFB boiler combustion system model has high reliability and can be used as a platform
for dynamic characteristic analysis of the system and controller performance test.

3. Results and Discussion
3.1. Subspace Identification Principle and Combustion System Subspace Model
3.1.1. Subspace Identification Algorithm

The BCFB boiler combustion system can be simplified to a three-input three-output
physical model (as shown in Figure 3). It is common to use bed temperature, bed pressure,
and oxygen content of flue gas as control parameters for furnace combustion processes.
These parameters can be manipulated to maintain optimal combustion efficiency and
minimize emissions. Proper control of bed temperature can prevent excessive temperature
fluctuations and ensure stable combustion. Control of bed pressure is important to prevent
bed defluidization and ensure adequate air supply for combustion. Oxygen content of flue
gas is an indicator of the combustion efficiency and can be used to optimize the fuel-to-air
ratio for optimal combustion. According to the control task, the three physical quantities
mainly adjusted, include fuel valve opening, primary air and secondary air valve opening.

Biomass Fuel ——————=szzz------------mmmooo- iz . Bed temperature
Primary Air ———————==i------- e R -oiiz - Bed pressure
Secondary Air e kit . Flue gas oxygen content

Figure 3. Structure diagram of combustion SID model.

3.1.2. Subspace Identification Test of Combustion System

The input signal used for SID plays a crucial role in determining the accuracy of the
identified model parameters. A well-designed input signal can provide enough information
for the identification algorithm to accurately estimate the model parameters, while a poorly
designed input signal may lead to inaccurate or unreliable results. The selection of the
identification input signal is a crucial factor in achieving accurate identification results
when using SID methods to establish mathematical models for systems [34]. While white
noise may result in better identification results, it is often not practical or feasible to use
in engineering applications as it is a theoretical concept and difficult to implement in
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practice. M sequence and inverse M sequence have the advantages of approximate periodic
white noise, simple structure, and easy implementation. They are often used as input
excitation signals for modal analysis and SID in control engineering, vibration engineering,
and other research fields [35]. Using it as the identification input signal is a practical and
effective approach that can achieve high identification accuracy and is easily implemented
in engineering.

The discrete time identification state space model of BCFB boiler combustion system

is expressed by Equation (1):
{x(t + Ts) = Ax(t) + Bu(t) + Ke(t) 1)
y(t) = Cx(t) + Du(t) +e(t)

where: x is state vector, Ts is sampling time, u is input vector, e is disturbance vector, y is
output vector, and A, B, C, D and K are state space matrices.

The subspace identification method is utilized to obtain the linear state space model,
which is subsequently employed as an internal model in the design of MPC. In order to
ensure high-quality model identification, it is crucial for the identified model to accurately
capture the process dynamics and fit well with the output data. The N4SID subspace
identification method [36] was used to identify the combustion system of a 130 t/h BCFB
boiler at operating points near 100%, 90%, 80%, and 70%, resulting in a local state space
model for each operating point. The model inputs in this case are the fuel valve opening
(KBio), primary air valve opening (KPA), and secondary air valve opening (KSA), while the
model outputs are the bed temperature in the furnace (T), oxygen content in the flue gas at
the furnace outlet (O;), and the bed pressure difference in the furnace (P). In order to obtain
sufficient identification input and output data, a set of inverse M sequences are designed for
the BCFB boiler at the above operating points as identification excitation signals (Figure 4).

KBio

1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time/s

5 T T T T T

KPA

-5t 1 I I 1 I 1 I I

|
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time/s

KSA

-5t 1 I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time/s

Figure 4. Inverse M sequence excitation signal.

Because the BCFB boiler is a complex system with large delay and large time delay,
the inverse M sequence time interval is 100 s for the full excitation model. Under 100%
load condition, ug = (100, 100, 100), yo = (1112.3236, 5.0477, 5767.3460). In total, 1000 sets
of input and output data were collected, and the sampling time was Ts = 10 s. Using the
subspace identification method, the identification error curve of the model and the object is
shown in Figure 5.
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Figure 5. Identification results and identification error (In (a), the black dotted curve represents the
actual output of the system, while the red full curve represents the output of the identified model).

The subspace identification method (N4SID) was used to identify the combustion
system of the 130 t/h BCFB boiler at different operating points. The identified model
accurately predicted the bed temperature and bed pressure difference outputs as shown in
Figure 5a. However, the identified model deviated from the actual output of the system,
as shown by the error plot in Figure 5b. Nevertheless, the identified model can effectively
control the difference between the output of the identified model and the actual object
output. The error of bed temperature was controlled at +4 K, the oxygen content of flue
gas at the furnace outlet was controlled at +0.2 Vol%, and the bed pressure difference was
controlled at +40 Pa.

Under 100% operating conditions, the order of the state space model of the system is
four. The identified system model is as follows:

{ x(k+1) = Ax(k) + Bu(k) 2
y(k) = Cx(k) 4+ Du(k) + e(k)

In the formula

0.9901 0.0263  0.0032  0.9304
0.0078 —0.0071 0.0026  —0.0004

A= —0.1627 0.1987 —0.0205 0.0378
0.8999  0.0592  0.0445  0.9407
2.7574 x 107> —0.0001 —0.0003

B —3.5227 x 1075  0.0015 —0.0001

- 0.0033 —0.0138  0.0002
0.0017 —0.0078 —0.0004
—156.6167 —12.3466  0.4430 0.6473
C= 2.3148 1.5216 0.8283 —0.0227
1.1537 x 10> —2.9888 x 103> 7.5178 —8.8807
0 00
D=1{0 0 0
0 0 0

The purpose of using another set of inverse M sequences as the input signal, as shown
in Figure 6, is to further evaluate the accuracy of the identified model by comparing the
output results of the object and the state space model. Results are presented in Figure 7,
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6000

P/pa

5500

which shows the test results (a) and the error between the model output and the actual
output of the object (b). The results of the test depicted in Figure 7a show that the bed
temperature, bed pressure difference, and flue gas oxygen content at the furnace outlet
can be well identified using this set of data. However, in Figure 7, the test error for bed
pressure difference is larger than that in Figure 4, where it was mostly controlled within
+40 Pa. Combined with the boiler furnace whose pressure difference can reach more
than 5000 Pa, this deviation range can be accepted. This indicates that the identified
model can still maintain good identification accuracy and provide a basis for subsequent
controller design.

KBio

=l 1 I I 1 I 1 1 I 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time/s

KPA

1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time/s
5 T T T

KSA

1 I 1 I 1 I I 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time/s

Figure 6. Inverse M sequence test signal.
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(a) Test result (b) Test error

Figure 7. Identification results and identification error under test conditions (In (a), the black dotted
curve represents the actual output of the system, while the red full curve represents the output of the
identified model).

Repeat the above method under the load conditions of 90%, 80% and 70%, and the
biomass fuel flow, primary and secondary air, and related model parameters of the BCFB
established according to the load adjustment are determined. The inverse M sequence is
used to stimulate the model, and the input and output data are collected to further identify
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the state space model of the BCFB boiler furnace object under 90%, 80% and 70% load
operation.

3.2. MPC of BCFB Boiler Combustion System

Since the multi-model system obtained by subspace identification has a state-space
form, it is suitable for the design of various advanced controllers. The MPC method
is chosen in this paper to achieve control performance and impose constraints on input
variables, in order to ensure stable operation of the BCFB combustion system. Moreover, the
effectiveness of the MPC controller is verified by different parameter perturbations. There
are many forms of MPC control algorithm, and the technical details are also very different.
However, no matter which form is used, all kinds of MPC technologies have some common
points. The common features include prediction model, rolling optimization and feedback
correction. The main process is shown in Figure 8 [37]. The MPC designed by the MPC
Designer toolbox in MATLAB is based on the nonlinear model identified from the system
identification process. It has a three-input three-output structure and three controllable
variables. In order to verify the optimization performance of the MPC algorithm, the 100%
working condition is taken as an example for simulation, and the obtained state space
model is used to design the MPC controller. Under the premise of considering the actual
situation of the model and balancing the calculation and performance of the controller, the
following parameters are set for the MPC: sampling time Ts = 1 s, prediction time domain
Ny = 10, control time domain Nu = 1. Due to the physical characteristics of the valve, the
input amplitude and rate constraints are given as follows:

-1<u; <1
=5 < uy,u3 <5 3)
~0.01 < 11 < 0.01
—0.05 < 1iy, 1i3 < 0.05

where u; refers to the fuel valve opening, u, refers to the primary air valve opening, u3
refers to the secondary air valve opening. u; refers to the change rate of fuel valve, 1, refers
to the change rate of primary air valve, and 3 refers to the change rate of secondary air
valve.

A

Past Future

—=e— Reference Trajectory

—&—— Prediction Output
Measure Output

—*— Predicted Control Input

—* Past Control Input

w
LN

-
-
X
~
o
8]
~
T
w
~
T
=

Sample Time Prediction Horizon

Figure 8. MPC process.

3.2.1. Control System Simulation under Given Value Disturbance

The set values of bed temperature and pressure are not fixed and should be determined
based on the established boiler load conditions to maintain normal operation. However,
when changing the type or moisture content of biomass fuel, frequent adjustments are
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required to meet unit load and operating parameters, which may result in combustion
instability and large fluctuations in bed temperature and pressure, posing a safety risk to
the unit. Therefore, appropriate values for bed temperature and pressure are crucial for
achieving efficient combustion and combustion quality. The values of bed temperature
and pressure vary depending on the boiler load, ash particle size, fuel quality, and particle
size of the crushed fuel. In a circulating fluidized bed combustion process, there exists a
complex interaction and coupling relationship between input and output variables. For
example, fuel supply and air flow rate can affect output variables such as bed temperature,
bed pressure difference, and flue gas oxygen content, while bed temperature and pressure
difference can, in turn, affect the fuel supply and air flow rate, forming an interactive
and dynamic system. Therefore, it is necessary to comprehensively consider the impact
of various input variables on output variables to ensure stable operation and efficient
combustion of a circulating fluidized bed. In response to changes in key factors, such as bed
temperature and pressure set values, the controller needs to make corresponding parameter
adjustments accurately and in a timely manner.

Figure 9 is the simulation curve when the bed temperature is increased by 10 K. Under
the action of the control system, the amount of fuel, primary air, and secondary air act
rapidly, and the bed temperature can respond quickly. The bed temperature curve rises to
a given value in about 700 s and then slightly overshoots, slowly decreases in about 1000 s,
and stabilizes in about 2500 s. The variation range of bed pressure is about 300 Pa. Due
to the thermal inertia of the bed, the response time will be longer than that of pulverized
coal boilers [38]. It can be seen from the input curve under the action of the controller
that it is mainly achieved by increasing the amount of fuel. Firstly, the bed temperature is
rapidly increased to the target by increasing the biomass fuel and reducing the primary and
secondary air. Once the bed temperature reaches the desired level, the controller produces
the opposite response, but the primary and secondary air are reduced compared to their
initial values for the input fuel. Due to the change of input, the bed pressure and oxygen
content of flue gas changed slightly. The oxygen content of flue gas decreased by 0.3 Vol%,
and the bed pressure decreased by 13 Pa. It can be seen from the input and output curves
that it is mainly achieved by less primary wind. Firstly, the bed pressure can be increased
rapidly by reducing the amount of fuel and primary air, and increasing secondary air.
When it is stable, the biomass fuel and primary air are reduced compared to the initial
amounts, and the secondary air is basically unchanged. Figure 10 shows the input and
output response curves of the system when the given value of bed pressure increases by
500 Pa. The results indicate that the disturbance system can quickly respond to changes in
the set value of bed pressure, with a response time of approximately 1500 s. However, the
change in bed temperature is significantly different, with a difference of around 8 K.

3.2.2. The Influence of Key Disturbances on Controller Characteristics

Different disturbances such as changes in fuel quality, fluctuations in the air supply,
or changes in the load demand can all have an impact on the operation of the boiler. The
control quantity in the control system may fluctuate due to some factors, resulting in
interference. The emergence of interference will interfere with the role of the controller,
reduce the performance of the controller, and have a greater impact on the stability of the
control system. Affected by many factors such as equipment and environment, the input
will change constantly, so it is of great significance to study the controller to deal with
multiple interference scenarios to simulate and deal with practical problems. As shown in
Figure 11, it is assumed that the biomass fuel is reduced by 10% and then increased by 17%.
The primary wind decreases by 9% and then increases by 15%. The secondary air increased
by 9% and then decreased by 9%. In the face of complex input fluctuations, the goal of the
controller is to keep all outputs stable. According to the output curve, the controller should
take measures to reduce the heat in the system and increase the bed pressure. All outputs
are basically stable at about 4000 s.
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Figure 10. Bed pressure given value rise 500 Pa input and output response (In the figure, Bio is the
biomass fuel, PA is the primary air, and SA is the secondary air; T is the bed temperature in the
furnace, O, is furnace outlet flue gas oxygen content, P is the bed pressure difference in the furnace).
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Figure 11. Perturbation response to controller input and output. Bio is the biomass fuel, PA is the
primary air, and SA is the secondary air; t is the bed temperature in the furnace, O, is furnace outlet
flue gas oxygen content, P is the bed pressure difference in the furnace; the red full line represents the
curve under the action of the controller, and the black dotted line represents the role of no controller).

4. Conclusions

During the operation of biomass circulating fluidized bed boilers, various disturbances
can affect the system performance. Due to the characteristics of multiple variables, strong
coupling, and long response time, the combustion system itself is challenging to control
using conventional coal-fired boiler controllers. This study aims to investigate the impact
of biomass fuel, primary and secondary air flow rates on bed temperature, bed pressure,
and flue gas oxygen content in a BCFB boiler combustion system. To simplify the system ac-
cording to actual operational requirements, the subspace identification algorithm is applied
to develop a three-input three-output model, and the state space model is obtained for dif-
ferent operating conditions. The model output is verified and shows good agreement with
the actual data. A predictive controller is designed for 100% operating conditions, and its
performance is evaluated under step and disturbance conditions. The results demonstrate
that MPC is suitable for this system and has excellent steady-state performance.
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Nomenclature

BCFB Biomass circulating fluidized bed

CCUS Carbon Capture, Utilization, and Storage
IRENA International Renewable Energy Agency
CFB Circulating fluidized bed

PI Proportion Integral

PD Proportion Differential

MPC Model predictive control

SID System identification

SVD Singular value decomposition

LS Least square

BMCR  Boiler maximum continuous rate
KBio Biomass fuel valve opening

KPA Primary air valve opening

KSA Secondary air valve opening

T Bed temperature in the furnace

(O] Oxygen content in the flue gas

P Bed pressure difference in the furnace
op Bed pressure difference error

602 Oxygen content in the flue gas error
or Bed temperature error

Ts Sampling time

Ny Prediction time domain

Nu Control time domain

Uy Fuel valve opening,

up Primary air valve opening,

us Secondary air valve opening.

Uy Change rate of fuel valve,

) Change rate of primary air valve, and
13 Change rate of secondary air valve.
Bio Biomass fuel flow

PA Primary air flow

SA Secondary air flow
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