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Abstract: This research work aims to develop a fault detection and performance monitoring system
for a photovoltaic (PV) system that can detect and communicate errors to the user. The proposed
system uses real-time data from various sensors to identify performance problems and faults in the
PV system, particularly for encapsulation failure and module corrosion. The system incorporates
a user interface that operates on a micro-computer utilizing Python software to show the detected
errors from the PV miniature scale system. Fault detection is achieved by comparing the One-diode
model with a controlled state retrieved through field testing. A database is generated by the system
based on acceptable training data and it serves as a reference point for detecting faults. The user is
notified of any deviations based on the threshold value from the training data as an indication of
an error by the system. The system offers real-time monitoring, easy-to-understand error messages,
and remote access capability, making it an efficient and effective tool for both users and maintenance
personnel to manage and maintain the PV system.

Keywords: PV system; PV monitoring; fault detection algorithm; module corrosion; encapsula-
tion failure

1. Introduction

As many countries progress towards becoming developed nations, the exponential
increase in global energy demand is inevitable. The predominant method of generating
electricity at present is through fossil fuel combustion which includes petroleum, coal,
and natural gases [1]. In line with the increase in consumer demand for these resources,
the possibility of depletion and an increase in environmental pollution has dawned upon
us. Thus, renewable energy is the best solution to provide and meet the growing energy
demand. Among the available energy sources, solar energy provides a promising energy
source as it can be considered an infinite energy source that can be harvested almost
everywhere in the world [2]. Moreover, about 8.3 × 1017 kWh of energy received from
the Sun can penetrate the atmosphere onto the Earth’s surface which is approximately
104 times more than the current global energy demand.

Solar power is harnessed through photovoltaic (PV) cells, which are composed of
P-N junctions. When sunlight falls on these junctions, electrons in the N-layer move to
the P-layer of the junction diode, generating electricity. For effective use, solar power
generation requires conditioning circuits and storage banks, which are incorporated into
Solar Electricity Generating Systems (SEGSs). These systems consist of battery banks,
charge controllers, and inverters, and are essential components for both standalone and
grid-tie systems. Standalone systems are designed for small-scale applications such as
domestic usage or emergency lighting in buildings during power outages, while grid-tie
systems focus on power generation that is fed back into the grid.

The effectiveness of solar power generation depends not only on the efficiency of
the PV panels but also on the efficiency of the entire power generation system. Many
factors can affect the generation of power in SEGS, including module defects, electrical

Energies 2023, 16, 3391. https://doi.org/10.3390/en16083391 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16083391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en16083391
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16083391?type=check_update&version=3


Energies 2023, 16, 3391 2 of 12

losses, faults in the power lines and inverters, cloudy weather, dust accumulation, and local
weather conditions [3]. These factors can significantly affect the ability of the PV system to
generate power continuously, resulting in significant energy losses and substantial financial
losses. The scope of this research is confined to small-scale off-grid connected phot PV
systems, which emphasize the importance of monitoring systems with fault diagnostic
abilities to promote long-lasting power generation and maximize their electrical output by
detecting and communicating faults.

1.1. Photovoltaic Monitoring and Diagnostic Mechanism for Predictive Fault Detection

The significant expansion of PV generation facilities around the globe has led to a
notable surge in the number of monitoring systems available. These systems are designed
to efficiently deliver essential data to end-users, enabling them to plan for preventive
maintenance and track the return on investment. Typically, the information conveyed by
monitoring systems includes the output voltage and current of the PV, solar irradiance,
relative humidity, and ambient temperature. As PV-based systems have become increas-
ingly complex, it has become essential to add multiple sensors to measure the system’s
performance. The power generation of PV modules is critical, and failures in any subsystem
can have adverse effects on the overall efficiency of the PV system [4]. All systems have a
lifespan that is typically indicated by the manufacturer’s specifications or experience gained
from using the system or device. Despite the indicated lifespan, regular maintenance can
improve the system’s performance and extend its lifespan. Additionally, maintaining a
maintenance record can help ensure the accuracy of measurements and system output.
However, it can be challenging to determine the optimal time for maintenance when there
is no previous record of the panel’s output power under specific irradiation values.

To address this issue, a reference database of logged values must be utilized to en-
able the system to detect any deviation from previously achieved values. If a deviation
is detected, the system alerts the user, who can then determine if maintenance activities
are necessary or if the problem merely requires investigation at the affected panels. This
approach is grounded in model-based techniques where the measured parameters are
compared with theoretical data based on the One-diode equations. In this paper, the mea-
sured parameters are the controlled field data (training data) obtained by the PV miniature
system. Many model-based techniques utilize power loss analysis, which employs solar
irradiance and cell temperature to estimate the PV system’s output power. Alternatively,
empirical parameters such as fill factor, (FF), current short circuit (Isc), voltage open circuit
(Voc), etc., which are calculated based on the shape of IV curves, can also be used [5].

The main focus of this research paper is to detect faults that commonly occur in PV
systems, specifically encapsulation failures and module corrosion failures. Encapsulation
failures happen when moisture and foreign materials enter the PV module’s inner cavity
due to the encapsulant material’s degradation [6]. The most significant cause of this
failure is discoloration and delamination (D and D), which is prevalent in areas with high
temperatures and humidity. D and D leads to a poor conversion efficiency of solar energy
to electricity by the PV modules [7]. Module corrosion, on the other hand, is caused by
damage to the conductive surfaces of the PV module. The presence of a laminate edge can
allow moisture to enter the module and lead to corrosion. When moisture is retained, it
can increase the electrical conductivity of the materials used [7]. Corrosion can specifically
target the metallic connections of PV cells, which can result in a leakage current and reduced
performance. Additionally, corrosion can impact the adhesion between the metallic frame
and the cells which leads to a reduction in series resistance [8].

1.2. Fault Detection Mechanisms

A few previously proposed fault detection mechanisms are presented. Several authors
have been using model-based approaches that compare the analytically computed outputs
with measured values and prompt a signal as an alarm [9]. Gagliarducci et al. proposes a
cost-effective and flexible system for PV monitoring with the use of Global System for Mo-
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bile (GSM) communication, which is also integrated with a PC that runs LabVIEW software.
However, with the technology advancement, it has phased out the GSM technology [10].
Hazarika et al. proposed a solar PV system with an AT89S52 microcontroller to mitigate
the efficiency drop due to factors such as dust or temperature increase. They added an
automatic water-cooling system to address these issues, but it may require large volumes of
water for high-voltage setups [11]. Chouder and Silvestre [12] utilized MATLAB/Simulink
to create a model that detects and categorizes faults in a PV system by analyzing the DC
power output, including thermal capture losses, miscellaneous losses, and current–voltage
ratio. Silvestre’s method involved comparing simulated and measured losses for detection,
and error deviation between normal and faulty conditions for classification [13]. Stauffer
et al. used measured and modeled DC power outputs to detect faults, but could not classify
or locate them accurately, and false alarms can occur due to changes in irradiance [14].
Shimakage et al. used a comparison of past and present PV array conditions to detect
partial shading and other faults [15].

In [16], the authors proposed a diagnostic theory to detect faults in PV systems
based on three stages: data nodes with sensors, data acquisition, and data analysis. The
parameters monitored during this process are voltage, current, and solar irradiation. To
detect encapsulation failure, the actual maximum power point (MPP) value is compared
with the value calculated by the reference PV module. If the actual MPP value is below the
reference value, the PV panels should be cleaned and checked for damage. For module
corrosion, the series resistance is compared between the actual and reference PV modules.
The authors’ proposal does not rely on any electronic controller or software. However,
the algorithm used in the model must be able to evaluate the parameter of the electrical
model to detect the failure mode. The authors of [17] proposed a simple and cost-effective
method for diagnosing open-circuited and short-circuited PV modules in a string, which
only requires temperature and irradiance sensors, as well as a power meter per string. The
method uses a relative power value to compute an irradiance coefficient and compare the
relative power of PV strings under different fault conditions. The study was conducted
under controlled laboratory conditions and further field testing is needed to verify its
effectiveness. Based on past research, the authors identified significant factors that affect
relevant faults and plan to simulate them during field testing for an integrated performance
monitoring system and fault detection in PV-based SEGS.

2. Methodology

This section discusses the components used for the assembly of the data-taking board,
the diagnostic algorithm used in fault detection and preliminary fault classification, and
experimental validation using an industrial device that was calibrated. The complete system
can be categorized into two different units, namely the monitoring and data acquisition
unit and the fault detection unit [18].

2.1. Monitoring and Data Acquisition Unit

The first stage was to determine the suitable meteorological and electrical parameters
that needed to be monitored, followed by selecting the appropriate sensors capable of
generating precise data for these identified parameters. Table 1 shows the detailed justifi-
cation for the sensor selection [19]. Subsequently, an interfacing board was developed to
effectively accommodate the necessary sensors and communicate with auxiliary devices via
a serial communication protocol (SPI). This interfacing board serves as the monitoring and
data acquisition unit that consisted of three separate modules, namely the main module,
the sensor module, and the data storage module.
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Table 1. Sensor selection criteria [19].

No. Controlling Factor Sensor Description

1 Solar Radiation (W/m2) PV Cell 6 VDC rating
Using a reference cell to mimic a pyranometer by measuring
the output DC voltage of the reference cell and a given
pyranometer reading.

2 Output DC voltage (VDC) Voltage divider circuit
The output voltage of the solar PV is much higher than that of
what any controller can process. A voltage divider can parse the
total voltage and make a portion of it smaller and thus readable.

3 Output DC Current (Amp) ACS712 hall effect sensor The sensor can measure up to 30 Amps and is a hall effect sensor
thus making the electrical circuitry less invasive and modular.

4 Time (GMT+8) DS1302 real-time
clock module

This sensor is a clock chip that has an uninterrupted power
supply in the form of a lithium cell thus being able to track time
even when the power is switched off.

5 Light intensity
(0~1023)

Light-dependent
resistor (LDR)

This is the simplest and lowest costing light sensor that varies its
resistance concerning the light intensity.

6 PV incline angle (◦) Potentiometer
Potentiometer or rheostat is a device with a rotating pot that at
different positions provides different resistance values thus
enabling the position to be controlled.

7
Temperature (◦C) DHT11 temperature and

humidity sensor

This circuit uses a temperature and humidity sensor multiplexed
together to form the DHT11. The sensor returns 5 V data that
requires a special library to process.

Humidity (%)

The main module is an ATMega 328 interfacing board that functions as the backup
storage, display, and transfer unit. It retrieves data from the sensor module via the I2C
communication protocol. The board is also equipped with a 16 × 2 LCD that can show
sensor data, meteorological data, error messages, and the current time. Moreover, an
SD card reader is included on the main module to provide a backup storage option for
sensor information, error logs, and other customized user settings in situations where
there is a Wi-Fi signal loss or disconnection. The sensor module contains all the required
sensors to capture and interpret the meteorological and electrical data. An independent
ATMega328 chip is utilized in this module solely to acquire and transmit the sensor data to
the main module. The main module requests the specific sensor information required, and
the sensor module maintains a queue to retrieve and execute the tasks in the designated
sequence. The data storage module is designed to support the processing capability of both
the main and sensor modules. Each ATMega chip has an integrated 1 KB EEPROM that is
utilized for storing the program code. However, more complex processing tasks require
larger code sizes, which can overload the chip and cause it to heat up quickly, increasing the
likelihood of malfunction. To minimize the frequency of malfunctions, two extra EEPROMs
were incorporated into the main module for storing codes in case additional sensor modules
were added. Figures 1 and 2 show the complete monitoring system and its assembled
miniature tracking system.
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2.2. Fault Detection Unit
2.2.1. One-Diode Model

The one-diode model is always used to understand the electrical behavior of a PV cell
and is also the preliminary step of fault detection [20]. The one-diode model is generally
considered simpler and more computationally efficient compared with the two-diode
model, which makes it more suitable for real-time monitoring and fault detection. In
addition, the one-diode model is often sufficient for practical purposes and can provide a
good approximation of the behavior of the PV system under various operating conditions.
The relation between the environmental factors and the various parameters of the PV
cell can be modeled mathematically using Equations (1)–(5), as shown in Figure 3. These
equations show the module output current, I; photocurrent, Iph; saturation current, I0;
reverse saturation current, Irs; and current through the shunt resistor, Ish [21].

I = Np Iph − Np I0

[
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nKNsT ) − 1

]
− Ish (1)
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Figure 3. Cell equivalent model [22]. 

 

Figure 3. Cell equivalent model [22].

This research involved connecting three 5-V PV cells in a series to create a string,
which was then connected in parallel to form a PV array as illustrated in Figure 2. When
modeling a PV cell, it is typically assumed that the RSH has a value approaching infinity
and RS is zero. However, a practical model must consider both series and shunt resistance
to accurately represent the system. By simulating the PV cell using an equivalent circuit in
MATLAB/Simulink, researchers aimed to obtain reference values that can be compared
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with real-time measurement to achieve the most accurate results. The descriptions of each
mathematical symbol are depicted in Table 2, while the datasheets of the reference PV
module for this simulation are provided in Table 3.

Table 2. Details of mathematical symbols.

Symbol Name Value

ki Short-circuit current of a cell 0.0032
T Operating temperature (K) T
Tn Nominal temperature (K) 298
G Solar irradiance (W/m2) 1000
q Electron charge (C) 1.6 × 10−19

n The ideality factor of the diode 1.3
K Boltzmann’s constant (J/K) 1.38 × 10−23

Eg Band gap of semiconductor (eV) 1.1
Rs Series resistance (Ω) 0.538
Rsh Shunt resistance (Ω) 24.18

Table 3. Electrical characteristics data of reference PV module.

Symbol Name Value

Isc Short circuit current (A) 0.6 A
Voc Open circuit voltage (V) 5 Vdc
Pmax Rated power (W) 3.6 W
Ns Number of cells in series 3
Np Number of PV modules in parallel 4

2.2.2. The Diagnostic Algorithm

The process of developing the algorithm begins by identifying the frequently occur-
ring faults in PV that are often overlooked. A detailed analysis of these faults is carried
out to understand their impact on PV’s electrical parameters. The developed algorithm
is incorporated into the data acquisition unit, which acts as a guideline for selecting ap-
propriate sensors and programming codes to detect specific faults following a defined
procedure. Fault detection and analysis were established using Human Machine Interface
(HMI) through the Python™ programming platform. The embedded system with sensor
networks collects data, which are sent to the Python™ program. Initially, training data
are collected when the PV miniature system is in its initial state with optimal weather
conditions. The training data aims to obtain values that closely match the simulated values
obtained through MATLAB/Simulink. These simulated values serve to indicate how much
the actual PV panel deviates from the ideal condition, allowing for manufacturing defects
to be accounted for. If the user determines that the variance between the training data and
simulated data is acceptable, the system then proceeds to record the training data to create
a database, in which simulation values are no longer being used. The Python™ program
then compares the real-time data with the previously collected training data to obtain the
threshold value. The data are calculated using the mean difference in MPP between the
training data and faults, as indicated in the Equation (6). The threshold value then can
be set in the HMI. By following the sequence of the algorithm, the software constantly
compares the threshold value with the MPP difference of the monitored data and signals
an error if it detects any deviations. The MPPTD and MPPf are the MPP of training data
and with fault.

MPPTH =
∑(|MPPTD1 −MPP f 1|+ |MPPTD2 −MPP f 2|+ · · · |MPPTDn −MPP f n|)

n
(6)

2.2.3. Encapsulation Failure and Module Corrosion

The experiment was configured by linking the interfacing board to the PV tracking
system. The load used in this experiment was a 5-Vdc exhaust fan and data logging
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time was limited between 9:00 a.m. and 3:30 p.m. where the Sun’s light exposure and
temperature are the highest and the best data would be able to be retrieved. The study
aims to successfully detect two primary fault types: encapsulation failure and module
corrosion. One way to detect errors caused by encapsulation failure is to compare the MPP
obtained from training data with current data using solar irradiation as a reference point.
Encapsulation failure can be detected by observing two conditions: (a) a single PV string
covered with a translucent sheet, and (b) two PV strings covered with a translucent sheet,
which are illustrated in Figure 4.
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To understand module corrosion, the crucial factor affecting current output is an in-
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using a 5 Vdc exhaust fan as the load to observe how changes in series resistance affect 
the amount of current received. Although the generated voltage remains constant, both 
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To understand module corrosion, the crucial factor affecting current output is an
increase in series resistance, as noted in [23]. Therefore, the experimental setup involves
using a 5 Vdc exhaust fan as the load to observe how changes in series resistance affect
the amount of current received. Although the generated voltage remains constant, both
power and current experience a drop, which is measurable by the monitoring system’s
ability to read both current and voltage. It should be noted that the crucial factor leading to
a decrease in the MPP value when this fault occurs is the increase in series resistance across
the entire PV array. Similarly, the IV and PV curves of the current data were compared
with simulation curves to characterize this fault. Resistors were soldered in series to the PV
cells in string to simulate the increase in the resistance of the string. Figure 5 displays two
conditions that were observed: (a) modules using a 1-Ω resistor, and (b) PV modules using
two 1-Ω resistors.
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3. Results and Discussions

The controlled state from the PV miniature system is first obtained and reported. Figure 6
shows the reading of solar radiation of the PV reference cell and recorded maximum solar
radiation of 850 W/m2. The IV and PV curves of the controlled state were generated based
on the amount of solar radiation and displayed in Figures 7 and 8. These data were
then compared with the ideal model that had been simulated using MATLAB/Simulink
software. Subsequently, the controlled state was compared with data retrieved from
encapsulation failures and module corrosion faults. At the maximum solar radiation, the
peak V and I obtained from the system were 12.11 Vdc with only 25 mA current, which
differed from the ideal model. This discrepancy may be attributed to losses through wires
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and manufacturing defects in the PV cell itself, which are not accounted for in the ideal
one-diode model. Figure 7 enables the retrieval of the MPP value at a given radiation point,
and any deviation from this value indicates the occurrence of an error.
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3.1. Characterization of Encapsulation Failure

The characterization of encapsulation failures centers around the MPP value of the
PV curve, which is derived from data obtained during field testing. For Case 1 (single
string covered with translucent sheets) and Case 2 (two strings covered with translucent
sheets), solar radiation levels were initially determined on two different days by the PV
reference cell attached to the PV miniature system. This results in two different solar
radiation curves. Table 4 displays the values of solar radiation and the corresponding
voltages generated by the controlled state and the two cases. These values were chosen
because, during the experiments, the system generated two different voltages at a given
radiation value. The reason for the variation is that the PV reference cell is located at the far
end of the setup, and as clouds move non-linearly, fluctuations in values occur. To address
this issue, the monitoring software automatically replaces the daily electrical parameter
values with the highest recorded value. In this case, among the three conditions, Case 1
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recorded the highest set of voltages, with readings of 8.84 Vdc and 8.71 Vdc at 660 W/m2.
In this scenario, even though a drop in the generated value may have signaled an error, the
software ignores the new value of 8.71 Vdc while diagnosing for other potential faults. If no
other faults are detected, the older value of 8.84 Vdc is used as the reference for comparison.

Table 4. Comparison of voltage generated at similar radiation values for three different states.

Experiment Time Solar Radiation (W/m2) Voltage (V)

Controlled state
10:25 580 8.06
15:20 580 8.27

Case 1
11:10 660 8.84
15:05 660 8.71

Case 2
11:20 612 7.43
13:15 612 7.75

Table 5 provides proof that the current produced decreases as the amplitude of encap-
sulation failures increases. For encapsulation specifically, a decrease in voltage is always
associated with a decrease in current. For fault detection, the software first verifies whether
there is a decline in current, and if so, it then proceeds to monitor the voltage. If there is a
significant drop in voltage, the software then compares the real-time MPP difference with
the threshold MPP obtained from Equation (6). When the PV monitoring system detects a
drop that goes beyond the threshold value, the HMI screen displays an error message, as
shown in Figure 9, which indicates an encapsulation failure. It is important to note that the
threshold is only used to determine the occurrence of fault if there is a significant voltage
drop, in accordance with the sequence.

Table 5. Comparison of the current and power output of the PV miniature system for the three
conditions at different solar radiations.

Solar Radiation
(W/m2) Controlled State Case 1 Case 2

Current
(A)

Power
(W)

Current
(A)

Power
(W)

Current
(A)

Power
(W)

510 0.211 1.056 0.192 0.959 0.182 0.910
600 0.300 1.520 0.281 1.404 0.269 1.345
700 0.414 2.069 0.387 1.934 0.373 1.864
790 0.527 2.635 0.497 2.483 0.481 2.403
810 0.554 2.770 0.523 2.614 0.506 2.532
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3.2. Characterization of Module Corrosion

Module corrosion failure is closely related to the rise in the series resistance among
cells in a string [24]. As the MPP is a critical factor in measuring circuit resistance, the
main difference between this fault and encapsulation failures is a smaller decrease in the
current value with the voltage value remaining the same. The overall load resistance of the
entire PV array increases due to the rise in series resistance, which, according to Ohm’s law,
reduces the current value and thus the overall power. Consequently, the 5 Vdc exhaust fan
rotates more slowly than it would under ideal conditions. Similarly, solar radiation was
initially determined for the field testing that took place on two separate days. The highest
solar radiation values recorded were 813 W/m2 and 809 W/m2.

Table 6 displays a comparison between the generated current at specific solar radiation
levels. The data reveal that there is a consistent decline in current as the series resistance
increases at all radiation levels. The selected data were chosen to eliminate the effects of
clouds, which can cause non-uniform drops in current. The results show that the current
reduction is much smaller in Case 3 and Case 4 than in Case 1 and Case 2 for encapsulation
failure. To detect a fault, the software starts by checking for a drop in current value
and subsequently examines the voltage if a reduction is detected. In the absence of any
significant changes in voltage, the software proceeds to observe variations in resistance. If
there is a surge in the resistance value, the system calculates the real-time MPP difference
and compare it with the threshold, and if it surpasses the limit, the HMI exhibits an error
message indicating that module corrosion has taken place. The accuracy of obtaining the
threshold value is affected by a few reasons. One of these reasons is the size of the PV
system, which uses miniature cells that are only capable of generating a small amount
of power. As a result, a small mean difference in MPP is expected between the training
data and the faulty data. While the small threshold value and unpredictable changes in
irradiance may increase the likelihood of false alarms, the important factor in detecting
and distinguishing faults is the drop in electrical parameter values, which is unique to each
type of fault.

Table 6. Comparison of the current output of the PV miniature system for the three conditions at
different solar radiations.

Solar Radiation
(W/m2)

Controlled State
Current (A) Case 3 Current (A) Case 4 Current (A)

500 0.125 0.121 0.113
560 0.146 0.139 0.131
600 0.159 0.151 0.143
710 0.210 0.183 0.175
800 0.214 0.210 0.202

The fault detection algorithm of the python HMI uses a structured C-code with a top-
down execution approach. Figure 10 illustrates the flow chart for this algorithm. The system
collects data from the main module and checks for encapsulation failure continuously. If
this fault is detected, an error window appears, and the program proceeds to check for
module corrosion rather than rendering the PV array. If the system identifies a fault due
to module corrosion, it displays an error window in front of the previous one, as shown
in Figure 11. The detection of faults in the PV system alerts users to their occurrence and
prompts the need for appropriate actions. Users are responsible for deciding whether to
halt or proceed with power generation, as the system may operate with low performance
despite the faults present. Consecutively, if an encapsulation failure is not detected, the
program proceeds to check for module corrosion and follow similar steps to identify errors.
The program runs continuously in the system for fault detection.
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4. Conclusions

This study aimed to develop a monitoring system that can detect common faults that
are often overlooked in PV modules. The researchers designed a custom-fabricated PV
miniature system to test how module corrosion and encapsulation failure affect the PV’s
electrical parameters. Identifying faults and understanding their effect on the electrical
parameters is paramount in developing the diagnostic algorithm. The algorithm uses
training data to compare with simulation data obtained through MATLAB/Simulink.
The training data were collected when the PV panel was in its initial state and optimal
weather conditions. The comparison is expected to show deviations, and the HMI software
communicates the magnitude of these deviations to the user to determine whether they are
acceptable. The acceptable training data are used to create a database to compare against
real-time data (faults). The threshold value is determined by calculating the mean difference
in MPP between the training data and faults. Any deviations from the threshold value
signal an error to the user. Based on the experimental results, the proposed monitoring
system was effective in detecting faults through PV’s electrical parameters such as voltage,
current, and power of any PV module. However, there is room for improvement, such as
adding more sensors to detect other types of faults and improving the analysis tools to
provide more detailed information. Detecting faults early on can help ensure long-term
energy efficiency gains and cost savings, ultimately leading to a more sustainable and
reliable energy source.
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