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Abstract: An oil recovery technique, different composition waterflooding (DCW), dependent on
the varying injected water composition has been the subject of various research work in the past
decades. Research work has been carried out at the lab, well and field scale whereby the intro-
duction of different injection water composition vis-a-vis the connate water is seen to bring about
improvements in the oil recovery (improvements in both macroscopic and microscopic recoveries)
based on the chemical reactions, while being sustainable from ease of implementation and reduced
carbon footprint points of view. Although extensive research has been conducted, the main chemical
mechanisms behind the oil recovery are not yet concluded upon. This research work performs a
data analysis of the various experiments, identifies gaps in existing experimentation and proposes
a comprehensive experimentation measurement reporting at the system, rock, brine and oil levels
that leads to enhanced understanding of the underlying recovery mechanisms and their associated
parameters. Secondly, a sustainable approach of implementing Machine Learning (ML) and Artificial
Intelligence Tools (AIT) is proposed and implemented which aids in improving the screening of
the value added from this DCW recovery. Two primary interaction mechanisms are identified as
part of this research, gaps in current experimentation are identified with recommendations on what
other parameters need to be measured and finally the accuracy of application of ML/AI tools is
demonstrated. This work also provides for efficient and fast screening before application of more
resource and cost intensive modeling of the subsurface earth system. Improved understanding,
knowledge and screening enables making better decisions in implementation of DCW, which is a
sustainable recovery option given the current state of affairs with zero carbon and net zero initiatives
being on the rise.

Keywords: waterflood; oil recovery mechanism; experimentation; artificial intelligence; machine
learning; sustainable development

1. Introduction

Different composition waterflooding (DCW) has been in the spotlight of intense
research as a potential Enhanced Oil Recovery (EOR) method. DCW research has panned
multi-scales from the core level to full field while covering pilots, and simulation modeling.
DCW leads to improved recovery from the oilfields through not only physical displacement
of the hydrocarbon but also chemical interactions between the rock and fluids leading to
improved displacement efficiency.

Different multi-scale experiments [1,2] have demonstrated the improved oil recov-
ery resulting from injecting water which is different in composition as compared to the
in-situ formation water. Despite multitude of research based investigations, the critical
chemical mechanisms for DCW aren’t confidently ascertained [3]. The initial research on
DCW started with coreflood experiments carried out on Berea sandstones. Morrow et al.
research [4] is one of the initial cited researches on sandstones. Ever since the research
based investigation of DCW has progressed from core plugs to composite cores and from
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sandstones to carbonates [5]. The research publications currently provide proof of research
at multi-scale levels from the core scale to wellbore, inter-well and field scale [6,7] where
the impact of DCW effects in terms of additional incremental cumulative volumetric oil
production/recovery and reduction in residual oil saturation were evidenced [2,8,9]. It is
hypothesized that the improved recovery of oil is a function of the interactions between the
rock, connate brine, injected brine and in-situ oil leading to changes in wettability [10] and
interfacial tension (IFT) [6,11–16]. Successful prediction of DCW hinges on the comprehen-
sion of the system (oil-brine-rock) interplay [17]. Therefore, understanding and screening
of the DCW EOR would involve taking into account multiple variables related to the rock,
fluids and the system, which poses a considerable challenge [18].

The main mechanisms identified from the decades of research and arguments contrary
are summarized as follows. McGuire et al. [19] posited that increment of pH and saponifi-
cation of the oil can generate natural-surfactants which improve recovery by lowering of
IFT. However, other investigators (Lager et al., 2006) [20] have stated, on the contrary, that
positive effect of DCW has been evidenced in cores with low acid-numbers (not conducive
to alkaline flooding) by lowering of the residual oil saturation. Lately, it has been demon-
strated by Al-saedi et al. [16] that pH change is observed with the incremental positive
change of volumetric cumulative oil production. Increased values of pH in both rock types
(sandstone & carbonate) corefloods from areas around North Sea and Middle East have
been reported where the value changes reported are from around 7–8 pH upto 9–10 pH.
During DCW, the cations attached to the clay are substituted by the protons present in
the water phase leading to an increase in the pH of the system due to release of hydroxyl
ions [21].

The migration of fines being impacted by salinity, rate of flow, pH, temperature, resid-
ual oil saturation, fractional flow of oil and water, polarity of oil and core wettability was
stated in the investigation by Sarkar et al. [22]. Tang et al. [23] purported that injection
of different composition water can initiate the detachment of particles of clay from the
rock surface. Boussour et al. [20] published results which exhibit incremental oil recovery
without permeability reduction and no fines-particles in the effluent stream [24,25] con-
tradicting the aforementioned research on fine migration being an important mechanism
for DCW. The authors posit that absence of fine-particles in the effluent doesn’t rule out
the release of fines which can be in part linked to the pressure difference increases and
warrants substantiation by scanning of cores at the end of the flooding experiment [26].
In carbonates the dissolution of the rock has been demonstrated through NMR (Nuclear
Magnetic Resonance) measurements indicating the change in the surface-relaxation of the
rock and improved connectivity among the porous system [5].

The exchange of cation and anions in sandstones and carbonates respectively is Multi-
component Ion Exchange (MIE). In sandstones, DCW desorbs the hydrocarbon from the
rock through lower valence cation substitution the higher valence cation (e.g., Ca2+ by
Na+) [27]. DCW results in the release of liquid hydrocarbons by replacing of ions [28] and
the system becomes more water-wet. Research done by Bourbiaux [29] demonstrates that
changing the salinity alone but not altering the divalent/monovalent cations ratio doesn’t
induce the desired DCW EOR effect.

Double Layer Expansion is the expansion of the Electrical Double Layer (EDL), charged
electrical envelope between the system which in this case comprises the hydrocarbon-water-
rock, as a result of ion exchange/interaction and/or pH related dissociation. It was posited
by Lee et al. [30]. The wettability alteration of the rock is due to an expanding/contracting
EDL. This can be measured with the zeta potential, the charges at the oil/brine and
rock/brine interfaces are the prime element that controls the water film stability between the
oil and the rock and hence the rock wettability. In many researches and investigation [31,32]
EDL was identified as a primary mechanism in DCW. Rezaei Doust et al. introduced the
concept of salt-in effect where desorption of the oil from the rock due to different and
lower salinity water presence occurs [33]. Akin to EOR mechanisms of alkaline/surfactant
techniques, surfactants are generated by DCW as a result of the oil-water interaction,



Energies 2023, 16, 3376 3 of 16

which causes release of oil from rock [19] through alteration of the IFT between oil-water.
However, DCW experiments have demonstrated evidence of incremental oil recovery with
low Acid-Number contrary to the literature on surfactant flooding which states the need
fora high Acid-Number. Yet another mechanism is formation of micro-dispersions (oil
surrounding a water core) which results in EOR through two separate mechanisms of
wettability alteration through surface active materials removal and expansion of the layer
of high salinity connate-water [14].

Efforts by researchers were done to address this challenge of having to consider
multiple variables and mechanisms through statistical regression analysis [34] which
highlighted that the parameters of chlorite and kaolinite were positively correlated to
the residual oil saturation. These findings identified the importance of the rock mineral
composition on the success of the DCW EOR. However, the main limitation to the study was
insufficient/incomplete experimental data and measurements of the initial and boundary
conditions. Overcoming this limitation requires the use of machine learning (ML) and
artificial intelligence tools (AIT). The major challenge in the usage of ML and AIT is that
they cannot be generalized as they are specific to a data set to which they are calibrated, and
this also requires that they are supplied with large amounts of data for repeated calibration.
Additionally, the challenges of overfitting, excessive training, coincidence, bias and lack of
interpretability are prevalent in these cases.

Although ML/AIT have the aforementioned challenges it has found prevalent appli-
cations in the Oil and Gas Industry from exploration, reservoir characterization, reservoir
development to forecasting and predictive maintenance of facilities [35].

The challenges mentioned in DCW EOR and application of ML/AIT provided the
motivation for this work to perform meta-analysis of different experiments which helped
to identify the gaps in the experiments, identify the different mechanisms, the list of critical
input parameters and to identify a sustainable approach towards application of AI starting
with an ML system which enables quick screening of the subject reservoir system before
proceeding with detailed experimentation and modeling. The good accuracy and hence
predictability from AI systems in supporting screening for DCW is further presented in
this work.

2. Method, Experiments and Mechanisms

The method involved a detailed analysis of the varied scales of experiments (eg. core-
flood, single well, multi well, sector and field level. The main parameters contributing
to the impact of DCW is still centered around the properties of the system, rock, brine
and hydrocarbon despite the scales of the experiments and the incremental recovery is
considered which normalize the scale effect) which helped in evaluating the different
essential parameters like, reservoir conditions at initial state, mineral compositions of the
rock-surface, formation-water, crude oil/hydrocarbon, injected-brine and their interac-
tions/interplay, leading to wettability changes, production profiles in terms of oil recovery,
pore volume injected, effluent ion analysis, pressure differential response and final tertiary
recovery (Figure 1). From Figure 1, the key parameters that are reported in the different
experiments are illustrated and certain key parameters that are important but not reported
by many experiments are highlighted. The lack of information of these critical parameters
like for example the rock mineral composition are critical to have a comprehensive data
set that aids in better understanding of the success of the DCW EOR. Another critical
component highlighted through the data analysis of the different experiments is the lack of
consistent information of the oil/hydrocarbon properties like Total Acid Number and Total
Base Number. The numbers of 1 and 36 on the left side of Figure 1 depicts the number of
experiments. The numbers of 8 and 32 on the right side of Figure 1 depicts the number of
parameters reported in each of the experiments. The statistical summary of the parameters
are presented in Table 1.
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Table 1. Statistical Summary of the Various Input Parameters from DCW Experiments.

Count Mean Std Min 25% 50% 75% Max

Initial Ph 400 7.345 0.645769 6 7 7 8 9

Final Ph 400 7.9225 1.053217 6 7 8 9 10

Incremental Ph 400 0.413025 0.725292 −0.6 −0.1725 0.285 0.93 2.42

Initial 2dary RF % 400 55.78925 17.915644 21.1 40.7 57.9 71.2 84.6

Final tertiary RF % 400 62.3985 14.501375 33.6 50.8 63.35 75.375 85.4

Incremental Recovery % 400 7.25325 4.743611 0.5 3.6 6.25 10.5 19.5

PV injected 400 9.738029 5.959649 2.0176 4.883825 8.61605 13.650375 32.292

Calcite % (Vol frac.) 400 79.100822 13.262753 18.317211 71.408474 81.740385 89.387394 96.973293

Oil API 400 38.161622 2.814191 32.17528 36.042618 38.14266 40.247431 45.901551

INITIAL delta
PRESSURE 400 1850.5525 1405.91191 38 659.75 1551 2932.5 5721

Final delta Pressure 400 1511.85007 1146.82214 45.437148 524.058782 1240.58035 2308.95522 4599.31634

Incremental delta
Pressure (mbars) 400 −274.2325 692.205366 −3438 −660.25 −124.5 260.75 599

TDS (ppm)_initial 400 103,138.78 60,508.9967 356.686492 56,538.5582 98,518.3141 146,442.64 251,562.568

TDS (ppm)_final 400 25,921.7213 18,062.5151 218.107931 11,397.6902 22,468.4393 36,697.1033 90,599.6645

Ca2+ (ppm)_initial 400 15,772.2792 9990.0498 47.271032 7233.59186 15,165.7159 23,731.3163 35,719.1144

Ca2+ (ppm)_final 400 3300.4944 2452.14977 7.002135 1306.36644 2836.29868 4797.66486 13,399.1734

Mg2+ (ppm)_initial 400 6645.61677 4490.62125 78.394785 2805.63705 6040.21025 9829.99925 16,963.18

Mg2+ (ppm)_final 400 1986.18929 1492.30691 4.931813 820.920485 1671.39675 2878.697 7756.01576

Cl− (ppm)_initial 400 69,601.4136 34,150.7379 2082.16468 43,464.9675 67,684.0769 93,635.0201 159,308.712

Cl− (ppm)_final 400 9998.65875 6049.26692 197.113809 5237.78223 9161.02435 13,651.6003 26,839.5109

Na+ (ppm)_initial 400 27,442.6826 14,167.119 1075.4852 16,439.5947 25,960.7544 37,865.4821 78,307.6518

Na+ (ppm)_final 400 4668.7699 2851.4983 125.072798 2325.6318 4298.11026 6612.70635 12,181.6632

So4
2− (ppm)_initial 400 1518.925 1054.06688 6 629.75 1389 2241 4147

So4
2− (ppm)_final 400 987.084518 724.766487 13.753987 454.212929 860.997331 1348.04794 3578.42331

perm (mD) 400 132.299676 93.602232 2.562917 54.007955 121.621899 194.152594 419.508137
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Further data analysis was carried out to understand the correlation between the
various parameters listed in the different experiments. The correlation matrix represents
the parameters that have the positive and negative correlations as shown in Figure 2. The
blue colours show the positive correlations while the orange colours show the negative
correlations. Strong correlations are seen with respect to the fluid properties of Oil API and
cation concentrations with respect to the incremental recovery.
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Morrow et al. on the basis of their low salinity investigation on Berea sandstone
attributed the significant incremental oil production to necessary conditions [12] as: pres-
ence of clay minerals; connate-water existence and existence of hydrocarbon to create a
mixed-wet setting. The coreflood experiments were done where the oil recovery versus the
brine injection {pore volumes (PV)} were monitored and plotted indicating impact of DCW
for Berea cores [12].

The relative proportion of the cation/anions in the injected-brine vis-a-vis connate-
brine is to be accounted for comprehending the DCW effect [28]. Seccombe et al. [8] showed
that based on Endicott field corefloods and SWCTT that there exists a linear relationship
(1:1) of the incremental oil recovery and the percentage of the clay content (a range between
4–14% of clay content results in 4–14% additional oil recovery). The wettability of the
reservoir at the start of DCW has an impact on the incremental recovery and wettability is
impacted by the temperature, crude composition, the brine composition & pH and the rock
minerals & composition [20].

DCW EOR has been shown to be effective in carbonates too [36–38] and this is because
of the mixed wet state generally found in carbonates, which is one of the initial conditions
necessary for DCW improved recovery. The injected water ionic composition is critical in
recovery from carbonates in addition to the identification of the recovery being directly
proportional to increase in temperature.
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The above are in line with the data analysis findings as evidenced from the correlation
matrix (Figure 2) where the incremental recovery and the final recovery are impacted by
the initial and final pH, the fluid ion composition, the rock composition, rock porosity and
permeability, the delta pressure experienced during the flooding and the recovery factor
achieved before the start of the DCW EOR.

The multiple interaction parameters and mechanisms necessitate the use of comprehen-
sive ML/AIT models that can help in understanding the critical parameters and screening
for DCW EOR. The following are some of the approaches. ML/AIT tools have been used
in reservoir exploration, reservoir management, reservoir development and predictive
maintenance both as a classifier and regressor [35]. One of the researches have demon-
strated the application of Artificial Neural Network based AIT to polymer projects [39].
Another research involved predicting the recovery factor for a water flood based on the
data from reservoirs that were used for testing and then using ANN for prediction based
on 10 parameters involving the reservoir rock and fluid properties [40]. Reservoir selection
and application have involved application of Random Forest, Decision Trees and Gradient
Boosting coupled with numerical simulation and optimization algorithms [41–44]. Sus-
tainable application of the ML/AIT approach would hence involve first the collection of
data from different sources either from lab/experiments and/or couple with data from
physics based models and then using the data for training, validation and testing phase
using different ML/AIT algorithms. This method has been used to develop a sustainable
approach to understanding and screening for the DCW EOR. Physics based numerical
simulations with different uncertainties on the operations of the flooding mechanisms were
carried out to determine the responses for the cumulative oil production. The numerical
simulation set up is shown in Figure 3 with an injector at one end and the producer at
the other end. The saturation distribution is shown in Figure 3. This was followed by the
creation of the multiple experiments for the different salinity injection. The data snapshot
followed by the statistical summary of the data are shown in Tables 2 and 3 respectively. The
correlation matrix of the parameters as illustrated in Figure 4 provides understanding of
the collinearity between the parameters and enhancing the understanding of the pertinent
parameters. This is followed by application of the different ML models where multi-variate
linear regression training and testing scores are presented in Tables 4 and 5 respectively.
The high R-squared values of the training and testing provide confidence in the model.
Table 6 shows the model predictability with respect to the cumulative oil production and
the error % is between −0.7% to 1.2% which demonstrates the high predictability of the
multi-variate linear regression model.

Table 2. Data Snapshot of the key input and output parameters for DCW EOR physics based model.

oil_cumm oil_rate salt_inj_rate water_inj_rate salt_prod_rate

0 92,639.8203 20.131918 1573.96987 96.71246 1487.757223

1 92,874.6328 23.188352 1633.21025 96.72685 1433.805503

2 91,315.3125 22.906847 1628.47469 96.72571 1434.469796

3 92,644.1094 22.964913 1628.47503 96.72572 1436.759638

4 94,064.1563 23.714615 1637.91078 96.72912 1427.805137

5 88,271.8594 22.727471 1633.21126 96.72697 1432.184682

6 92,489.625 22.963549 1628.47472 96.72571 1436.31514

7 89,551.1484 23.208965 1633.21095 96.72809 1425.309749

8 92,139.4141 22.915001 1628.4748 96.72572 1436.540591

9 93,325.0078 23.243745 1633.21017 96.72684 1433.721528
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Table 3. Data Statistics of the parameters for DCW EOR physics based model.

oil_cumm oil_rate salt_inj_rate water_inj_rate salt_prod_rate

count 66 66 66 66 66

mean 90,204.8248 22.893558 2266.77132 96.726845 1821.712399

std 2750.77324 0.522679 645.710367 0.002144 393.397018

min 86,274.9297 20.131918 1573.96987 96.71246 1425.032223

25% 87,591.1074 22.577548 1633.21018 96.72582 1433.809963

50% 89,254.0859 22.964231 2137.17665 96.72696 1741.492088

75% 92,824.1426 23.185488 2890.3578 96.727998 2203.411014

max 96,922.7344 23.890052 3568.35387 96.72925 2618.744446
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max 96,922.7344 23.890052 3568.35387 96.72925 2618.744446 

Figure 3. Physics based numerical 3D model setup with Producer and Injector.
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Table 4. Training performance scores from multi-variate linear regression.

Training Performance RMSE MAE R-Squared Adj. R-Squared SMAPE

0 466.007248 326.026657 0.972258 0.970524 0.359848

Table 5. Testing Performance scores from multi-variate linear regression.

Test Performance RMSE MAE R-Squared Adj. R-Squared SMAPE

0 607.824835 467.198228 0.884826 0.850273 0.521664
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Table 6. Prediction Results and the Error % from multi-variate linear regression.

Actual Oil_Cumulative Predicted Oil_Cumulative Error Percent

46 91,706.5 92,845.49211 1.241997

57 89,577.67969 90,569.364 1.107066

47 87,611.79688 87,471.97086 −0.159597

2 91,315.3125 92,377.58595 1.163303

38 87,687.17969 87,836.18783 0.169931

55 88,272.46094 87,618.89959 −0.740391

21 92,742.54688 92,837.8847 0.102798

26 87,190.76563 88,095.1093 1.037201

53 87,771.74219 87,677.05167 −0.107883

41 87,223.54688 87,320.80931 0.111509

48 87,581.03906 87,800.08334 0.250105

40 88,082.32813 87,538.30888 −0.617626

43 87,544.52344 87,278.03825 −0.3044

33 87,587.80469 87,403.55803 −0.210357

3. Results

The results from the data analysis of different scale experiments highlight the corre-
lation between multiple parameters that impact DCW outcome and further supports in
identifying missing parameters which are not being reported/measured (Figures 1 and 2).
The sustainable process of application of ML/AI is as shown in Figure 5 which allows
both better understanding and screening of DCW EOR. The process starts with data collec-
tion from various experiments either lab or physics based models, this is followed by data
screening then by data analysis and finally application/evaluation of the ML/AI algorithms.
Figure 6 shows an example of bivariate data analysis which aids in the understanding of
the relationship and correlation between the multi-parameters.
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Random Forest (RF) a classification and regression algorithm, contains various decision
trees (DT) and it overcomes the disadvantages of over fitting or having a local optima that
comes with using a single DT. RF involves the bagging approach where an ensemble of
the results from different trees of low correlations are used for an enhanced prediction. RF
training and testing results are depicted in Tables 7 and 8 respectively. The hyperparameters
used in the RF are max_depth in the range from 4 to 10, max_features of sqrt and log;
n_estimators in the range of 80 to 120 which were optimized based on the grid search.

Table 7. Random Forest Training performance scores.

Training Performance RMSE MAE R-Squared Adj. R-Squared SMAPE

0 327.933212 188.713807 0.986262 0.985403 0.206424

Table 8. Random Forest Testing performance scores.

Testing Performance RMSE MAE R-Squared Adj. R-Squared SMAPE

0 397.490904 272.626693 0.950745 0.935968 0.303536
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Table 9 shows the model predictability with respect to the cumulative oil production
and the error % is between −0.4% to 1.07% which demonstrates the high predictability of
the Random Forest model.

Table 9. Random Forest Prediction Results and the Error %.

Actual Oil_Cumulative Predicted Oil_Cumulative Error Percent

46 91,706.5 92,691.87184 1.074484

57 89,577.67969 89,138.82447 −0.489916

47 87,611.79688 87,586.11232 −0.029316

2 91,315.3125 91,933.3289 0.676794

38 87,687.17969 87,636.05965 −0.058298

55 88,272.46094 88,474.28232 0.228635

21 92,742.54688 92,644.77877 −0.105419

26 87,190.76563 87,830.34617 0.733542

53 87,771.74219 87,586.11232 −0.211492

41 87,223.54688 87,334.95017 0.127722

48 87,581.03906 87,573.81931 −0.008244

40 88,082.32813 88,474.28232 0.444986

43 87,544.52344 87,601.87695 0.065514

33 87,587.80469 87,582.80968 −0.005703

AdaBoost is a supervised ML model used for classification and regression problems.
It provides strong predictions through sequentially learning from a combination of a series
of weak models AdaBoost training and testing results are presented in Tables 10 and 11
respectively. The hyperparameters used in AdaBoost are learning rate from 0.01 to 1;
n_estimators in the range of 10 to 100 which were optimized based on the grid search.

Table 10. AdaBoost Training performance scores.

Training Performance RMSE MAE R-Squared Adj. R-Squared SMAPE

0 368.878285 303.819095 0.982617 0.981531 0.332918

Table 11. AdaBoost Testing performance scores.

Testing Performance RMSE MAE R-Squared Adj. R-Squared SMAPE

0 415.037139 295.10578 0.9463 0.93019 0.328256

Table 12 shows the AdaBoost model predictability with respect to the cumulative
oil production and the error % is between −0.7% to 0.99% which demonstrates the high
predictability of the AdaBoost model.

The performance scores are compared between the multi-variate linear regression,
Random Forest and AdaBoost are presented in Table 13.
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Table 12. AdaBoost Prediction Results and the Error %.

Actual Oil_Cumulative Predicted Oil_Cumulative Error Percent

46 91,706.5 92,297.1338 0.644048

57 89,577.6797 88,950.4137 −0.700248

47 87,611.7969 87,612.0938 0.000339

2 91,315.3125 92,224.3879 0.995534

38 87,687.1797 87,916.7227 0.261775

55 88,272.4609 88,168.5313 −0.117737

21 92,742.5469 92,297.1338 −0.480268

26 87,190.7656 87,916.7227 0.832608

53 87,771.7422 87,728.0063 −0.049829

41 87,223.5469 87,383.9336 0.18388

48 87,581.0391 87,463.8581 −0.133797

40 88,082.3281 88,168.5313 0.097867

43 87,544.5234 87,612.0938 0.077184

33 87,587.8047 87,612.0938 0.0277

Table 13. Performance Score comparison between the multi-variate linear regression and different
ML/AIT models.

Test Performance Comparison Linear Regression Random Forest Tuned Adaboost Tuned

RMSE 607.824835 397.490904 415.037139

MAE 467.198228 272.626693 295.10578

R-squared 0.884826 0.950745 0.9463

Adj. R-squared 0.850273 0.935968 0.93019

SMAPE 0.521664 0.303536 0.328256

4. Discussion

The findings from the data analysis of the different experiments highlights that there
are two primary interactions which is the rock-fluid and the fluid-fluid interactions, also it
highlights the need for comprehensive data collection and a consistent standard for mea-
surement and reporting that will enhance the understanding of the DCW EOR mechanisms
and its critical parameters. A minimum requirement of experiments is to conduct the
corefloods at full reservoir conditions using the live oil and formation brine. This needs to
be coupled with in-situ saturation monitoring utilizing gamma ray detectors and also semi
dynamic Pc measurement techniques that are able to capture the full cycle of drainage and
imbibition Pc curves. From these curves we can measure the area under the spontaneous
imbibition to evaluate the change in the wettability of the core plug. Additionally the core
plug should be taken from the full core after the X-ray CT scan/X-ray diffraction (XRD)
and the evaluation of the core plug for the level of heterogeneity based on pore throat size
distribution needs to be done [45].

The experiments should also include atomic force microscopy and zeta potential
measurement at the different interfaces which are measured in mV and provide indication
of the change in the charges at the interface as the DCW is performed through the cores.
Additionally, to understand the effect caused due to DCW experiments evaluation of the
liquid-liquid interactions through microscopic photographs need to be conducted.

For the different components in the DCW interaction there are specific tests/experiments
to be done as follows:

For the oil: TAN/TBN/SARA, mass spectrometry, viscosity, PVT.
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For the oil-water interface: AES, XPS (X-ray photoelectron spectroscopy, to determine
the surface composition by measuring the surface carbon content), Zeta-potential analyser
and CEC.

For the water: Brine analysis, PHREEQC, Ph.
For the water-rock interface: AES, XPS, Zeta-potential analyser, CEC.
For the bulk rock: SEM-EDX, XRD, XRF.
The above measurements and modelling requirements are time consuming and re-

source intensive and therefore it is prudent to have a pre-screening technique [18] that
will ensure efficiency and greater value added for the time and effort as researchers and
investigators move from initial screening and understanding to the field implementation.

The sustainable approach of ML/AIT has been presented which shows that bet-
ter screening of DCW EOR process and the determination of critical parameters can be
achieved. In the sustainable approach the cycle from data gathering/collection, clean-
ing/screening, correlation/analysis, application and evaluation of ML/AIT enables better
predictability and hence screening of the DCW EOR. As demonstrated and presented in
Table 13 the Random Forest algorithm and AdaBoost provide better predictability as com-
pared to the initial multi-variate linear regression. This provides a sustainable approach
for screening of the DCW EOR before proceeding to more resource intensive experimental
data gathering to piloting and full field implementation.

5. Future Work

The future work involves further development of the ML/AIT from the current stage
to the next stage inclusive of further models and data sets from multiple sources. This
would also involve creation of multiple modeling scenarios with variation in different
parameters and the impact of these parameters on the recovery. This can further lead to
identification of the critical parameters from the modeling perspective. Additionally, based
on the comprehensive experiment data collection and measurements identified through
this work, further lab coreflood/pilot/field experiments can be performed, analysed and
screened for enhanced understanding and reporting of the critical mechanism and its
associated parameters.

6. Conclusions

Although extensive R&D has been conducted on the topic of DCW, the critical chemical
mechanisms are still an area of further investigation and ongoing research. The following
are the main conclusions that are arrived at based on this work.

1. Through the review of various experiments predominantly hinging upon lab based
corefloods the underlying critical mechanism includes 2 primary interactions (rock-
fluid & fluid-fluid) which alters wettability, interfacial tension, or both.

2. The detailed meta-analysis of the various experiments highlights a lack of comprehen-
sive data set of measurements and no standard approach being followed for reporting
out DCW EOR experiments, which hinders the understanding of the critical mecha-
nisms and their parameters. A comprehensive experimentation and measurement is
recommended which will alleviate the aforementioned challenge.

3. Experiments should entail measurement at both the initial and final conditions of
the experimentation and specific measurements for each component rock (mineral
composition through SEM-EDX, XRD, XRF), brine (pH, Ionic compositions, TDS), oil
(API, TAN, TBN) and total system (System temperature, Delta Pressure, Capillary
Pressure, Relperm, Wettability, IFT, Recovery Factors, XES, AES, Zeta Potential at
interfaces and CEC).

4. This work presents and implements a sustainable process workflow for application
of ML/AI (comparison between multi-variate Linear Regression, Random Forest
and AdaBoost) which ensures improved screening of the DCW EOR process before
investment of considerable resources into experimentation and measurement.
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5. This work concludes better accuracy is obtained from ML/AI as compared to multi-
variate Linear Regression with error in the prediction of the Cumulative Oil produc-
tion being narrowed down to the range of −0.4% to 1.07%. This clearly demonstrates
the capability of the ML/AI models to reproduce with accuracy the results comparable
to computationally intensive 3-D physics based models for DCW.
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