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Abstract: Classic algorithms show high performance in tracking the maximum power point (MPP)
of photovoltaic (PV) panels under uniform irradiance and temperature conditions. However, when
partial or complex partial shading conditions occur, they fail in capturing the global maximum
power point (GMPP) and are trapped in one of the local maximum power points (LMPPs) leading
to a loss in power. On the other hand, intelligent algorithms inspired by nature show successful
performance in GMPP tracking. In this study, an MPPT system was set up in MATLAB/Simulink
software consisting of six groups of serially connected PV panels, a DC-DC boost converter, and load.
Using this system, the cuckoo search (CS) algorithm, the modified incremental conductivity (MIC)
algorithm, the particle swarm optimization (PSO) algorithm, and the grey wolf optimization (GWO)
algorithm were compared in terms of productivity, convergence speed, efficiency, and oscillation
under complex shading conditions. The results showed that the GWO algorithm showed superior
performance compared to the other algorithms under complex shading conditions. It was observed
that GWO did not oscillate during GMPP tracking with an average convergence speed of 0.22 s and
a tracking efficiency of 99%. All these evaluations show that GWO is a very fast, highly accurate,
efficient, and stable MPPT method under complex partial shading conditions.

Keywords: photovoltaic systems; complex partial shading; MPPT; CS; GWO; MIC; PSO

1. Introduction

The dependence on fossil fuels for energy production leads to a steady increase in
carbon emissions in the atmosphere. It brings many problems, such as global warming,
air pollution, and natural disasters. In addition, the increase in global energy demand is
constantly depleting oil and natural gas reserves. For these reasons, the issue of global
warming and energy policies has recently become a controversial issue around the world.
Every day, more and more countries are trying to reduce their greenhouse gas emissions
and are turning to alternative energy production sources [1]. Renewable energy generation
sources are more suitable options as they are clean, inexhaustible, and reliable. Preferring
these resources can reduce fossil fuel imports, environmental pollution, and global warming
problems. It also enables society to secure energy independence.

Recently, photovoltaic (PV) energy has come to the fore among renewable energy
generation resources. Some of its advantages are that it is harmless, beneficial, and environ-
mentally friendly. Once PV energy systems are built, they generate electricity from sunlight
without causing greenhouse gas emissions. They have an average lifespan of 20–25 years,
and during this time they can obtain much more electrical energy than is required. They can
also be built on rooftops, in the desert, and in rural areas. They require little maintenance
and do not create air and noise pollution [2,3].

PV energy systems have some disadvantages as well as all these advantages. These
are low energy efficiency, high production cost, and high initial investment cost. The
characteristic curve of the PV panel is not linear. In other words, it depends on the
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irradiation level and temperature factors. Therefore, the value of power at the maximum
power point in a PV energy system varies depending on weather conditions. To eliminate
all these negativities and increase efficiency, tracking the maximum power point has been
considered as a way forward [4]. The MPP defines the maximum possible power that
can be produced from a PV panel. Maximum power point tracking (MPPT) is desired to
operate the panel at the point where the highest possible power will be provided. If the
operating point is close to the MPP, low power losses are observed, and if it is distant from
it, high-power losses are observed. Therefore, proper tracking of the MPP in changing
weather conditions is essential to ensure maximum power is drawn from the PV panels [5].

In modern renewable PV energy systems, this process is provided by MPPT algorithms.
In other words, a DC–DC converter is used that controls the duty cycle value depending
on the voltage and current values obtained from the panel. In addition, through the
MPPT system, the operating point can be adjusted to produce the highest maximum
power [6]. Therefore, considering this information, the MPPT system can be defined as an
electronic system designed to produce maximum power by changing the duty cycle of PV
panels [7]. Numerous methods have been developed and studies have been conducted
on maximum power point tracking in the last decade in the literature. These methods
were compared in terms of criteria such as convergence speed, tracking accuracy, efficiency,
complexity, and cost [8]. A PV panel shows only one MPP when exposed to constant
irradiation and using any of the traditional MPPT methods this point can be easily tracked.
Examples of classic MPPT methods include perturbed and observed (P&O) [9], incremental
conductivity (IC) [10], open-circuit voltage [11], and short-circuit current [12]. Research
on these has generally focused on the speed of convergence to MPP and high tracking
accuracy. However, the panels may not receive homogeneous irradiation at all hours of the
day due to many environmental factors, such as moving clouds, shade from buildings and
trees, and dusting. When partial shading conditions occur, more than one maximum power
point occurs in the PV curve. In this case, classic methods will fail to track the appropriate
GMPP [13].

Many intelligent methods have been presented, developed, and published to address
the multi-MPP issue in partial shading. Particle swarm optimization (PSO) [14], the cuckoo
search algorithm (CSA) [15], grey wolf optimization (GWO) [16], the firefly algorithm
(FA) [17], artificial bee colony (ABC) [18], ant colony (AC) [19], the bat algorithm (BA) [20],
whale optimization (WO) [21], the butterfly optimization algorithm (BOA) [22], the salp
swarm algorithm (SSA) [23], fuzzy logic (FL) [24], the genetic algorithm (GA) [25], artificial
neural networks (ANN) [26], Harris hawks optimization (HHO) [27], and the Jaya algorithm
(JA) [28] are some of these methods. In addition, these methods have been used and
developed in a modified or hybrid manner. Examples of these include variable step size
P&O [29], modified incremental conductivity (MIC) [30], modified PSO (M-PSO) [31],
modified firefly algorithm (M-FA) [32], ANN with GA [33], P&O with PSO [34], modified
P&O with ANN [35], and P&O with the bat algorithm [36].

As a result of the examination of the studies in the literature, it was observed that
these methods were operated under two types of conditions. The first are studies in which
constant irradiation has the same effect throughout the entire system. The second are
studies where partial shading conditions occur in a certain part of the system. In this study,
complex partial shading, which is a more difficult condition for MPPT, is discussed. In
MATLAB/Simulink, a system consisting of six series-connected PV panels, one DC–DC
boost converter, and one load was designed. CS, GWO, MIC, and PSO algorithms were
used in the designed system. These algorithms were run in five different uniform and
complex partial shading conditions. The algorithms were evaluated and compared in terms
of convergence speed, efficiency, oscillation, and productivity criteria.
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2. Materials and Methods
2.1. Renewable PV Energy Systems

The concept of photovoltaic energy refers to the process of obtaining electrical energy
as a result of the absorption of sunlight falling on solar panels. This concept was first
introduced by Alexandre Edmond Becquerel in 1839. Becquerel expressed this concept by
observing that when light falls on a solid electrode placed in a liquid electrolyte solution, a
voltage is created at the ends of the electrode. PV energy systems can be designed in many
ways for various applications and requirements. A block diagram describing the structure
of a renewable PV energy system is given in Figure 1.
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Figure 1. Block diagram of the PV energy system [37].

Renewable energy systems include PV panels, batteries, inverters, charge regulators,
and electronic circuits. The direct current (DC) obtained by falling sunlight on the solar
panels is provided by DC–DC converters in various topologies in the system. The resulting
DC is converted into alternating current (AC) with the help of inverters and is prepared
for use. PV energy systems are mostly categorized into three different groups: off-grid,
on-grid, and hybrid.

2.1.1. PV Cell Modelling

For PV cells, the single diode equivalent circuit model is the preferred notation due to
its simplicity. This model consists of a current source (Iph), a diode, a resistor in parallel
(Rp), and a resistor in series (Rs) [38]. Figure 2 shows the electrical equivalent circuit model
of the PV cell. The output current of the PV cell is given in Equations (1)–(3).

I = Iph − Id (1)

I = Iph − I0

[
exp

(
V + IRs

a

)
− 1
]
− V + IRs

Rp
(2)

a =
NsnkT

q
(3)

In the above equations, I0 represents the reverse saturation current of the diode, an
ideal factor, Ns is the number of cells connected in series, n is the diode ideal constant, k is
the Boltzmann constant, T is the cell temperature, and q is the electron charge. The current
obtained by the effect of the light falling on the PV cell is given in Equation (4).

Iph =
(

Iph,n + K1(T− Tn)
) G

Gn
(4)
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In the above, Iph indicates the current obtained under standard test conditions. Tn
refers to the rated temperature. It shows the G irradiation value and the Gn nominal
irradiation value (W/m2). The saturation current of the diode is expressed in Equation (5).

I0 =
ISC,n + K1(T− Tn)

exp
(

VOC,n+KV(T−Tn)
a

)
− 1

(5)
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Figure 2. Electrical equivalent circuit model of PV cell.

In the above equation, ISC,n represents the rated short-circuit current, VOC,n repre-
sents the rated open-circuit voltage, K1 is the current coefficient, and KV is the voltage
coefficient [39]. In this study, six series-connected TATA power solar system TP250MBZ
PV 250 W polycrystalline modules were used in the system design. The solar PV module
parameters are given in Table 1.

Table 1. TATA power solar system TP250MBZ module parameters.

Power at STC (W) 250 Vmp: Voltage at Max Power (V) 30

Power at PTC (W) 222.7 Imp: Current at Max Power (A) 8.3

Power Density at STC (W/m2) 151.515 Voc: Open Circuit Voltage (V) 36.8

Power Density at PTC (W/m2) 134.97 Isc: Short Circuit Current (A) 8.83

2.1.2. PV Energy Systems under Different Irradiation and Temperature Conditions

The two most important factors that determine the maximum power that can be
obtained in PV energy systems are the solar irradiation and the temperature. The power
obtained from the PV panel is calculated by multiplying the panel voltage and the current.
There is a standard test condition for PV energy systems. This condition is used to assess
the efficiency of PV energy systems. In the datasheets of PV panels, there are generally
values in these standard test conditions. In the power–voltage characteristic curve, there
is a maximum power generated for a given voltage and current value. Standard test
conditions are defined as 1000 W/m2 irradiance and 25 ◦C temperature [40]. However,
these conditions may not be met continuously. Changes in irradiation and temperature
also affect the output current and voltage of the PV panel [41]. Figure 3 shows the effect of
the PV panel at different irradiance and temperature values on the current–voltage and
power–voltage characteristic curves.
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In Figure 3, it is seen that increase in the irradiance while the PV panel is under
constant temperature increases the output current. In this case, the maximum output power
of the PV system is directly affected by change in the current value. As a result, the increase
in irradiation causes the output power to increase as well. When the figures are examined, it
is seen that increase in temperature while the PV panel is under constant radiation reduces
the output voltage. In this case, the maximum output power of the PV system is directly
affected by decrease in the voltage value. As a result, increase in temperature causes the
output power to decrease.

2.1.3. The Effect of Partial Shading Conditions on PV Energy Systems

The PV panel achieves only one MPP under standard test conditions. It is generally
accepted that all panels operate in the same weather conditions in most MPPT methods.
However, this may not always be true. One of the important variables affecting the
efficiency of PV panels is shading. The efficiency of the power value to be produced from
a PV panel is very sensitive to the shading conditions. The power loss varies depending
on two factors. These are the type of shading and the area of the shaded part [42]. Panels
may operate under partial shading conditions due to environmental factors, such as the
shadows of clouds, tall buildings, tree branches, or other objects moving on the PV panels.
In such a case, solar panels with less irradiation on them will receive less current than other
panels. The reduced current of the panels will cause a decrease in the output power value.
In this case, the high current obtained in the panels that are not under shading damages
the panels operating under partial shading. To prevent this harm, bypass diodes connected
in parallel are added to all PV panels. Thus, the high current to be obtained will proceed
through the bypass diode circuit and prevent damage to the PV panels operating under
partial shading conditions [43]. In the power–voltage characteristic curve of a PV system
operating under partial shading conditions, peaks occur as much as different irradiance
values. Only one of these peaks has the highest output power and is called the GMPP.
Other points are called LMPPs. Partial shading does not only cause the output power and
voltage values of PV systems to decrease. At the same time, it causes the formation of hot
spots in the PV panels.

As a result, the physical structures of the PV panels due to overheating are damaged.
To prevent such undesirable situations, bypass diodes are added to all PV panels in parallel.
Bypass-connected diodes are passive in normal operation, where they are not subject to
partial shading. That is, they do not affect the system. However, when exposed to partial
shading, diode circuits connected to the bypass in the PV panels with shading become
active and take precautions against the hot-spot event. In addition to all these benefits of
bypassing connected diodes, they also have different problems. One of these problems
is the inability to produce power or energy on the PV panel, which is exposed to partial
shading where the bypass-connected diode circuit operates. Thus, the maximum power
value decreases. Due to the presence of bypass-connected diodes, peaks occur in the
power–voltage characteristic curve of the PV energy system as often as the number of
different irradiations. As a result, the system becomes complex [44]. The power–voltage
and current–voltage characteristic curves of the PV panel obtained for the complex shading
condition are given in Figure 4.

2.1.4. DC–DC Boost Converter

DC–DC converters are electronic circuits that are widely used to convert unregulated
DC input power to regulated DC output power at different voltage and current levels [45].
They are used to adjust and control the varying output power of solar panels to ensure that
the operating point is always at MPPT. This can be accomplished using one of the MPPT
techniques to change the duty cycle (D) applied to drive the converter [46]. The DC–DC
boost converter is one of the most widely used topologies among power electronics circuits.
It is used in applications where the output voltage is required to be higher than the input
voltage. The desired output voltage can be obtained by changing the duty cycle applied
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to the switch under a fixed frequency [47]. The relationship between D, the input voltage
Vin and the output voltage V0 of the boost converter is shown in Equation (6). The boost
converter circuit is shown in Figure 5.

V0

Vin
=

1
1−D

(6)
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Figure 5. DC–DC boost converter circuit.

Figure 6 shows a two-stage grid-connected system. The purpose of the DC–DC boost
converter in early stages of the process is to control the voltage of the PV array so that
electricity may be gathered. An inverter controls the DC–DC converter’s output voltage
while also producing the AC voltage needed for connecting the solar system with the grid
during the second stage. Coupling among the two stages is minor due to the presence of a
DC link capacitor among the boost converter as well as the inverter, allowing them to be
investigated independently.
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When using a boost converter to regulate a PV array, either an open or closed loop
can be utilized. When operating at constant current and low irradiance, a photovoltaic
array’s dynamic resistance is at its lowest. The stability and dynamic response are terrible.
A single-loop PI voltage controller cannot close-loop control the array voltage because the
system’s dynamic response depends on the operating point and environmental conditions.
Inner control requires a boost converter inductor current loop. Two PI controllers and a
costly current sensor are required for this solution. It is most common to control a boost
converter in an open loop. There is no feedback in this approach; the proper input voltage
is obtained by comparing the input and output voltages of the converter. This method
eliminates the need for an expensive current sensor by not measuring the inductor current.
The system response may result in more transient and steady-state errors than the closed-
loop method. In PV MPPT, sampling time is a key parameter. Before applying a new
command voltage Vin

ref to the converter after the system’s transient response has stabilized,
a voltage and current sample must be taken from the array. So, sampling must take longer
than the settling time.

2.1.5. System Design

In this section, first, a PV system is designed in MATLAB-Simulink software (version
R2022b). This system was tested under uniform and complex partial shading conditions for
five different situations. The current–voltage (I-V) and power–voltage (P-V) characteristic
curves were obtained and investigated for five different cases. Then, they were added
to the created system, respectively, the CSA, GWO, MIC, and PSO algorithms from the
MPPT methods. Each algorithm was started in five different uniform and complex partial
shading conditions, respectively, and their graphics were obtained. The algorithms were
compared in terms of convergence speed, efficiency, oscillation, and power criteria. The
MATLAB-Simulink software image of the designed system is given in Figure 7.

2.2. Maximum Power Point Tracking

The initial investment cost of PV energy systems is high. In addition, it is intended to
generate electrical energy with high efficiency from these systems. Therefore, maximum
power point tracking methods are needed. Various methods are being developed to obtain
maximum power from PV energy systems. Electronic tracking is one of these developed
methods. This method aims to find the operating point at which the power of the system is
maximal. Many algorithms are used for this purpose. These algorithms try to maintain
or further improve the MPP value with various scenarios in its structure. This method is
called maximum power point tracking. Tracking the MPP value with an algorithm used
in the system will not require redundant materials and maintenance costs. Therefore, it is
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the most logical solution to use MPPT algorithms to increase the efficiency of the PV panel.
Ongoing studies reported in the literature focus on MPPT methods [48]. The voltage and
current values measured instantly in the PV energy system adjust the duty cycle due to an
algorithm used in the MPPT method. It is then controlled by the system at the output of
the DC–DC converter circuit. MPPT methods are distinguished in terms of factors such as
the tracking speed, tracking accuracy, oscillation, efficiency, complexity, etc. [49].
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2.3. Cuckoo Search Algorithm (CSA)

The CSA is one of the new-generation smart methods developed by Xin-She Yang
and Suash Deb in 2009. It is a population-based algorithm. CSA is a method developed
by observing the brood parasitism-based behaviors of some cuckoos [50,51]. The CSA has
three main rules:

∗ Cuckoos lay only one egg at a time in a randomly selected nest.
∗ Those who have deposited eggs in the nests are transferred to the next generation.
∗ The number of host nests is fixed and, with probability pa ε (0,1), eggs laid by cuckoos

can be recognized by the host nest owner [50,51]. The flowchart diagram of the CSA
used in maximum power point tracking is shown in Figure 8 [52].

Searching for a suitable host nest is very important for the continuation of the cuckoo’s
generation. The search for a nest is like the search for food, which occurs randomly or
semi-randomly. In general, when searching for food, living things follow directions or
trajectories that can be modeled with a precise mathematical function. The Lévy flight
model is one of the most widely used models [53]. CSA benefits from Lévy flight. CSA
achieves local maximum points due to Lévy flight. Additionally, it shortens the time it
takes to reach the global maximum power point [54]. Lévy flight is a random method
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in which stride sizes are expressed in terms of stride lengths with a precise probability
distribution [53]. Each egg in the host nest represents the CSA solution. It is aimed at
hiding the solutions with a lot of potential. The Lévy flight is expressed in Equation (7) to
create a new solution during iteration [55].

Xi
t+1 = Xi

t + a⊕ Levy(λ) (7)
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The random stride length is derived from a Lévy distribution. The mathematical
expression of the Lévy distribution for random steps is given in Equation (8) [52].

Levy(λ) ≈ t−λ, 1 < λ ≤ 3 (8)

α > 0 is the step size related to the size of the problem of interest and t is the number
of iterations [56]. While performing MPPT with CSA, the duty cycle is selected as the
control variable. The step size α is described as the difference between the best-existing
sample and the other samples. β is expressed as the power-law index. u and v represent
probabilistic design parameters with standard deviations, κ is the step coefficient, and Γ is
the gamma function. The following equations are expressions describing the work of the
CSA for MPPT [15].

Vi
t+1 = Vi

t + κ·
(

u

|v|1/β

)
·(Vbest −Vi) (9)

u ≈ N
(

0,σu
2
)

, v ≈ N
(
0,σv

2) (10)

σu =

 Γ(1 + β)· sin(π·β/2)

Γ
((

1+β
2

))
·β·(2)(

β−1
2 )


1
β

, σv = 1 (11)

At each iteration, Lévy flight is made by all particles until the GMPP is reached. The
tracking process is terminated when a suitable result is reached [51].
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One of the primary advantages of CSA use in MPPT is its capacity for efficient global
optimization. With its stochastic nature, the global optimum of the MPPT problem can be
searched efficiently by the CSA. The simplicity of the CSA algorithm makes the algorithm
suitable for MPPT applications. CSA is less likely to be trapped in local optima due to its
random nature, improving the robustness and reliability of the algorithm. Additionally,
CSA’s parallel search capability makes it suitable for MPPT applications with multiple
PV panels.

However, CSA has limitations when solving the MPPT problem. The first limitation
is that CSA may converge slowly compared to other algorithms, such as the perturb and
observe (P&O) algorithm or the incremental conductance algorithm. Another restriction of
CSA is that it can be sensitive to its parameter values, such as the population size or the step
size. Thirdly, CSA lacks strong theoretical guarantees for convergence or optimality. Finally,
CSA may struggle to find the optimum of a complex and nonlinear objective function,
which can be the case in some MPPT applications.

2.4. Grey Wolf Optimization Algorithm (GWO)

The GWO algorithm was developed by Seyedali Mirjalili in 2014. It is an intelligent
optimization method based on swarm intelligence. While developing the method, Seyedali
Mirjalili was inspired by the attack approach and social behavior of grey wolves during
hunting. Grey wolves live in groups of about 5–12 members. In addition to the hunting
efficiency of grey wolves, this method can also mimic social dominant hierarchy leadership.
Grey wolves with this leadership hierarchy are grouped into alpha (α), beta (β), delta
(δ), and omega (ω) [57]. Optimization includes three main stages; to follow the prey, to
chase and approach, and then to surround the prey and attack. The hunting system of
grey wolves is controlled by the alpha group, which is accepted as the leader or dominant
wolf. It also has the authority to decide on the management, sleeping place and time of
other wolves. Beta wolves follow the alpha and assist in group activities. This group is
the strongest candidate for replacement if something happens to one of the alpha wolves.
In third place in the hierarchy are the deltas. Delta wolves dominate only the omega
group. This group consists of elders, sentries, scouts, hunters, and caregivers. Caregivers
are responsible for caring for injured wolves during the hunting process. At the end of
the hierarchy is the omega group. Omega wolves must always bow to the other three
groups [57]. In this hunting system, the hunt represents GMPP. Therefore, it is used to
overcome the multi-peak problems that occur in PV systems. This method is combined with
direct duty cycle control. The aim here is to fix the duty cycle in GMPP and to minimize
the steady-state oscillations [58]. The flowchart diagram of the GWO used in maximum
power point tracking is shown in Figure 9.

Here, Pbest,i indicates the best result in iterations, and Gbest indicates the best result
found by the wolves [59]. Equations (12) and (13) are used to show the hunting method of
grey wolves.

→
D =

∣∣∣∣→C·Xp(t)−
→
X(t)

∣∣∣∣ (12)

→
X(t + 1) =

→
Xp(t)−

→
A·
→
D (13)

Here, t shows the existing repetition; the coefficient vectors are D, A, and C. XP
represents the position vector of the prey and X represents the position vector of the grey
wolf. The vectors A and C are calculated with Equation (14).

→
A = 2

→
a·→r1 −

→
a ,

→
C = 2·→r2 (14)
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Here, the value of α is linearly decreased from 2 to 0. The values of the r1 and r2
vectors are in the range [0, 1]. In a GWO-based MPPT study, D represents the grey wolf.
Therefore, it can be restarted with Equations (15) and (16).

Di(k + 1) = Di(k)−A·D (15)

P
(

di
k
)
> P

(
di

k−1
)

(16)

In Equations (15) and (16), P denotes power, D refers to the duty cycle, i represents the
number of grey wolves present, and k represents the number of iterations. One of the most
important contributions of this method is that it eliminates steady-state oscillations [16].
In MPPT optimization use, the GWO algorithm is preferred because of its capability
to achieve a better trade-off between exploration and exploitation compared to other
algorithms. GWA makes the transition quickly to the global optimum and maintains it for
a longer time. Moreover, by using a Pareto-based approach, multiple objective functions
can be handled. Another strength of GWA is its ability to converge faster than some other
optimization algorithms. The primary limitation of GWO is the difficulty in setting the
appropriate parameter values, such as the population size or the scaling factor, requiring
careful parameter tuning. In addition, GWA may be susceptible to premature convergence,
which may limit the search space. Finally, the computational complexity of GWA can be
relatively high for large-scale MPPT applications.
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2.5. Modified Incremental Conductivity Algorithm (MIC)

A successful MPPT method provides a balance between tracking speed and steady
state. In line with these conditions, the conventional incremental conductivity algorithm
may not be able to properly track the MPPT in the case of a sudden change in irradiation.
This can lead to low power efficiency [60]. For this reason, the idea has emerged of
developing a conventional incremental conductivity algorithm. The flowchart diagram of
the proposed MIC for maximum power point tracking is shown in Figure 10.
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In the MIC method, as the sunlight begins to increase, the voltage and current values
begin to increase. It is determined whether MPP is caught or not using both the increase in
solar irradiation and the increase in the current and voltage. A permissive error is accepted
to understand that the MPP has been caught. This error is expressed by Equation (17).∣∣∣∣ dI

dV
+

I
V

∣∣∣∣ < 0.07 (17)

The proposed method provides an optimizing feature that checks if the MPP is caught
and then sets the reactive power value to one [61]. When the above equality is not met
and the value of the reactive power is one, the proposed method checks whether the
current and voltage values increase. In this situation, the proposed method increases the D
instead of reducing it, unlike the conventional IC. As a result, the MIC method is developed
to overcome the wrong response given by the conventional IC when the irradiance is
increased [62].

The MIC algorithm is utilized in MPPTs for its ability to track the maximum power
point (MPP) accurately under rapidly changing environmental conditions. The MIC algo-
rithm can quickly adapt to changes in the environment and adjust the operating point to
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the new MPP. Additionally, the MIC algorithm does not require any knowledge of the PV
system’s parameters, making it easier to implement in practical applications.

Nevertheless, the MIC algorithm also has some limitations. One of the main limitations
is its tendency to oscillate around the MPP under steady-state conditions, which can result
in reduced efficiency and power output. The MIC algorithm may also fail to converge to
the global MPP under certain conditions, such as partial shading or multiple local maxima.
Additionally, the MIC algorithm requires the PV system to operate at a higher voltage than
the MPP voltage to ensure accurate tracking, which can lead to power losses.

2.6. Particle Swarm Optimization Algorithm (PSO)

The PSO algorithm, which is among the most popular bio-inspired algorithms, is a
probabilistic technique developed by Eberhart and Kennedy in 1995. The basis for this
optimization was laid by observing the social behavior of creatures that move in flocks, such
as birds and fish [63]. PSO is an unconventional, smart, easy-to-understand, and effective
approach [64]. PSO handles the solution of the optimization problem in an n-dimensional
field in the following way: Everyone arranges their flight direction according to their flight
direction, as in bird flocks and the flight direction of the whole flock. In other words, in this
method, individuals benefit from their past experiences of themselves and of the whole
swarm. Everyone in this n-dimensional field is called a particle. Particles are used to
provide searches for the optimal point. Therefore, each particle helps in the analysis of the
optimization [65]. The flowchart diagram of the PSO algorithm is given in Figure 11.
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When the flowchart is examined, after the PSO starts working, each particle updates
its position and velocity. The particles then reach the optimum point by repeating each
other. At all iteration stages, all particles are refreshed with the two best values. The first
is the personal best value of particles available in the population. It is expressed as Pbest,i.
The second is the global best value obtained through particles in the population. It is
expressed as Gbest [67]. During the iteration process, the particles in the population have
a fitness value that is decided by the fitness function. Additionally, they have a velocity
that is used to decide the particle’s flight range and direction. After the Pbest,i and Gbest are
found, the position and velocity information of each particle is updated with the relevant
mathematical equations [68]. One of the most successful properties of the PSO algorithm,
when used in MPPT, is its ability to converge to the global maximum power point (MPP)
quickly and accurately, even under partial shading and multiple local maxima conditions.
Additionally, the PSO algorithm can function without exact knowledge of the PV system’s
parameters, making it easier to implement in practical applications. One of the downsides
of this algorithm is its tendency to get stuck in local optima, especially in high-dimensional
search spaces. This can lead to reduced efficiency and power output. Moreover, the PSO
algorithm can suffer from premature convergence, which occurs when the algorithm stops
exploring the search space too early and fails to find the global MPP. Furthermore, the
PSO algorithm requires many iterations to converge to the MPP, which can increase the
computational time and energy consumption of the PV system.

Xi(k + 1) = Xi(k) + Vi(k + 1) (18)

Vi(k + 1) = w·Vi(k) + c1·r1[Pbest − Xi(k)] + c2·r2[Gbest − Xi(k)] (19)

In Equations (18) and (19); i refers to the number of particles in the swarm, k refers to
the number of iterations, w refers to the inertia weight, r1 and r2 refer to variables in the
randomly distributed range [0, 1], and c1 and c2 refer to the acceleration coefficients. Pbest,i,
and Xi(k) express the best location of the particle, and Gbest refers to the best location of
particles in the swarm. Xi(k + 1) expresses the location of the particle. Vi(k + 1) refers to the
velocity of the particle.

The function of variables c1, c2, and w is to control the convergence of the global
search result to the best solution [69]. Another task of the inertia weight w is to balance
between local and global search steps. c1 affects the cognitive element of the particles in
the population, and c2 affects the social element. The search for optimum convergence is
carried out through these two elements. For this reason, it is very important to properly
control the acceleration coefficients. c1 performs the operation of directing the particles in
the population towards their personal best solution. c2 directs the particles towards the
best global value found so far between the repeat steps. The position of all particles is
evaluated with a fitness function. When the maximum number of iterations is reached, the
PSO is stopped [70].

3. Findings and Discussion
3.1. Result Obtained from the Designed System

In the system created, six PV panels were connected in series to each other. The
uniform and complex shading conditions were applied to the system, respectively. The
power values of the PV panels under different shading conditions are shown in Table 2.
As a result of these values, current–voltage (I-V) and power–voltage (P-V) characteristic
curves were obtained.
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Table 2. Uniform and complex partial shading conditions.

Panel 1. UIC (W/m2) 2. CPSC (W/m2) 3. CPSC (W/m2) 4. CPSC (W/m2) 5. CPSC (W/m2)

Panel 1 1000 1200 350 150 1000
Panel 2 1000 1000 950 450 800
Panel 3 1000 800 900 550 950
Panel 4 1000 600 700 750 750
Panel 5 1000 400 500 850 900
Panel 6 1000 200 300 1100 650

The current–voltage (I-V) and power–voltage (P-V) characteristic curves under dif-
ferent shading conditions are given in Figure 12. The first uniform irradiation condition
(UIC) graph is given in Figure 12a. In the power–voltage graph in Figure 12a, only one
peak occurs as each panel receives equal irradiance values. The maximum power value of
this point is 1494 W. The second complex partial shading condition (CPSC) graph is given
in Figure 12b. In Figure 12b, the global maximum power point is 664 W. The third CPSC
graph is given in Figure 12c. In Figure 12c, the global maximum power point is 554 W. The
fourth CPSC graph is given in Figure 12d. In Figure 12d, the global maximum power point
is 634 W. The fifth CPSC graph is given in Figure 12e. In Figure 12e, the global maximum
power point is 1080 W.
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shading conditions. (a) For the UIC graph; (b) For the second CPSC graph; (c) For the third CPSC
graph; (d) For the fourth CPSC graph; (e) For the fifth CPSC graph.
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3.2. Modeling the Designed System with Cuckoo Search Optimization Algorithm

The power–time graph of CSA under different shading conditions is given in Figure 13.
The first UIC graph is given in Figure 13a. When the first UIC graph is examined, it is seen
that 1489 W power was obtained. It reached the global maximum power point in 0.48 s
and maintained its stability. There was no oscillation. The efficiency of the system was
calculated as 99.66%. The second CPSC power–time graph of CSA is given in Figure 13b.
In Figure 13b, 633.5 W power was obtained. It could not reach the global maximum power
point. It was caught at the local maximum power point. There was no oscillation. The
efficiency of the system was calculated as 95.40%. The third CPSC power-time graph of
CSA is given in Figure 13c. In Figure 13c, 553.5 W power was obtained. It reached the
global maximum power point in 0.88 s and maintained its stability. There was no oscillation.
The efficiency of the system was calculated as 99.90%. The fourth CPSC power–time graph
of CSA is given in Figure 13d. In Figure 13d, 631 W power was obtained. It reached the
global maximum power point in 0.65 s and maintained its stability. There was no oscillation.
The efficiency of the system was calculated as 99.52%. The fifth CPSC power-time graph of
CSA is given in Figure 13e. In Figure 13e, 890 W power was obtained. It could not reach
the global maximum power point. It was caught at the local maximum power point. There
was no oscillation. The efficiency of the system was calculated as 82.40%.
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3.3. Modeling the Designed System with Grey Wolf Optimization Algorithm

The power–time graph of GWO under different shading conditions is given in Figure 13.
The first UIC graph is given in Figure 14a. When the first UIC graph is examined, it is seen
that 1493.9 W power was obtained. It reached the global maximum power point in 0.25 s
and maintained its stability. There was no oscillation. The efficiency of the system was
calculated as 99.99%. The second CPSC power-time graph of GWO is given in Figure 14b.
In Figure 14b, 653.5 W power was obtained. It reached the global maximum power point in
0.2 s and maintained its stability. There was no oscillation. The efficiency of the system was
calculated as 98.41%. The third CPSC power-time graph of GWO is given in Figure 14c. In
Figure 14c, 548.5 W power was obtained. It reached the global maximum power point in
0.29 s and maintained its stability. There was no oscillation. The efficiency of the system was
calculated as 99.00%. The fourth CPSC power-time graph of GWO is given in Figure 14d.
In Figure 14d, 630 W power was obtained. It reached the global maximum power point in
0.21 s and maintained its stability. There was no oscillation. The efficiency of the system
was calculated as 99.36%. The fifth CPSC power-time graph of GWO is given in Figure 14e.
In Figure 14e, 1061 W power was obtained. It reached the global maximum power point in
0.19 s and maintained its stability. There was no oscillation. The efficiency of the system
was calculated as 98.24%.
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the fifth CPSC graph.
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3.4. Modeling the Designed System with Modified Incremental Conductivity Algorithm

The power–time graph of MIC under different shading conditions is given in Figure 15.
The first UIC graph is given in Figure 15a. When the first UIC graph is examined, it is seen
that 1493.5 W power was obtained. It reached the global maximum power point in 0.16 s
and maintained its stability. There was no oscillation. The efficiency of the system was
calculated as 99.96%.
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The second CPSC power–time graph of MIC is given in Figure 15b. In Figure 15b,
633.5 W power was obtained. It could not reach the global maximum power point. It was
caught at the local maximum power point. There was no oscillation. The efficiency of the
system was calculated as 95.40%. The third CPSC power-time graph of MIC is given in
Figure 15c. In Figure 15c, 553.5 W power was obtained. It reached the global maximum
power point in 0.14 s and maintained its stability. There was no oscillation. The efficiency of
the system was calculated as 99.90%. The fourth CPSC power-time graph of MIC is given
in Figure 15d. In Figure 15d, 588.5 W power was obtained. It could not reach the global
maximum power point. It was caught at the local maximum power point. There was no
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oscillation. The efficiency of the system was calculated as 92.82%. The fifth CPSC power-
time graph of MIC is given in Figure 15e. In Figure 15e, 847 W power was obtained. It could
not reach the global maximum power point. It was caught at the local maximum power
point. There was no oscillation. The efficiency of the system was calculated as 78.42%.

3.5. Modeling the Designed System with Particle Swarm Optimization Algorithm

The power-time graph of PSO under different shading conditions is given in Figure 16.
The first UIC graph is given in Figure 16a. When the first UIC graph is examined, it is seen
that 1493.5 W power was obtained. It reached the global maximum power point in 0.92 s
and maintained its stability. There was no oscillation. The efficiency of the system was
calculated as 99.96%.
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The second CPSC power–time graph of PSO is given in Figure 16b. In Figure 16b,
662 W power was obtained. It reached the global maximum power point in 1.35 s and
maintained its stability. There was an oscillation of 111.5 W and it was calculated as 16.84%.
The efficiency of the system was calculated as 99.69%. The third CPSC power-time graph of
PSO is given in Figure 16c. In Figure 16c, 552.5 W power was obtained. It reached the global
maximum power point in 1.08 s and maintained its stability. There was an oscillation of
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2.5 W and it was calculated as 0.45%. The efficiency of the system was calculated as 99.72%.
The fourth CPSC power-time graph of PSO is given in Figure 16d. In Figure 16d, 542 W
power was obtained. It could not reach the global maximum power point. It was caught at
the local maximum power point. There was an oscillation of 4.98 W in this graph and its
oscillation was calculated as 0.92%. The efficiency of the system was calculated as 85.48%.
The fifth CPSC power–time graph of PSO is given in Figure 16e. In Figure 16e, 1077.5 W
power was obtained. It reached the global maximum power point in 1.18 s and maintained
its stability. There was no oscillation. The efficiency of the system was calculated as 99.76%.

The values in the graphs obtained for each algorithm are recorded in Table 3. In Table 3,
the performance of the CSA, GWO, MIC, and PSO algorithms is compared to each other
in terms of power, efficiency, convergence speed, and oscillation criteria. In Table 3, it is
seen that the first and third cases are the cases where all the algorithms successfully track
the global maximum power point at the same time. However, the same is not true for the
other complex partial shading conditions. When the table is carefully examined, it is seen
that only GWO achieved the global maximum power point with high convergence speed
and efficiency for all complex partial shading situations. It is seen that the GWO did not
oscillate while following the maximum power point. The average convergence speed of
the GWO to the maximum power point was obtained as 0.22 s. The average efficiency of
GWO was obtained as 99%. All these evaluations show that GWO is a very fast, efficient,
and stable MPPT method under complex partial shading conditions.

Table 3. Comparison of CSA, GWO, MIC, and PSO algorithms.

Shading Algorithm Power (W) Efficiency (η) Convergence Speed (s) Oscillation (%)

1. UIC

CSA 1489 W 99.66% 0.48 0
GWO 1493.9 W 99.99% 0.25 0
MIC 1493.5 W 99.96% 0.16 0
PSO 1493.5 W 99.96% 0.92 0

2. CPSC

CSA 633.5 W 95.40% 0.49 0
GWO 653.5 W 98.41% 0.20 0
MIC 633.5 W 95.40% 0.15 0
PSO 662 W 99.69% 1.35 16.84

3. CPSC

CSA 553.5 W 99.90% 0.88 0
GWO 548.5 W 99.00% 0.29 0
MIC 553.5 W 99.90% 0.14 0
PSO 552.5 W 99.72% 1.08 0.45

4. CPSC

CSA 631 W 99.52% 0.65 0
GWO 630 W 99.36% 0.21 0
MIC 588.5 W 92.82% 0.14 0
PSO 542 W 85.48% 1.95 0.92

5. CPSC

CSA 890 W 82.40% 0.79 0
GWO 1061 W 98.24% 0.19 0
MIC 847 W 78.42% 0.15 0
PSO 1077.5 W 99.76% 1.18 0

In Table 3, the productivity and convergence speed and oscillation parameters are
used to evaluate the optimization algorithms. The efficiency parameter measures the ratio
of the power output of the PV panel to the maximum power that could be obtained at a
given irradiance and temperature. A high tracking efficiency indicates that the algorithm
can effectively track the maximum power point under varying environmental conditions.
Another parameter is the convergence speed. This parameter shows how quickly the
algorithm responds to changes in the maximum power point. A fast-tracking speed is
important for ensuring that the algorithm can quickly and accurately track the maximum
power point as environmental conditions change. The oscillation parameter in maximum
power point tracking (MPPT) refers to the tendency of the MPPT algorithm to oscillate
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around the true maximum power point, leading to fluctuations in the output power of the
photovoltaic system.

4. Conclusions

Intelligent methods are frequently used while tracking the global maximum power
point under partial shading conditions in PV systems. These methods can easily capture
and track the global maximum power point under partial shading conditions with two or
three peaks. However, under multiple peaks of more than two or three, they may fail to
catch and track the global maximum power point. In the proposed method, when there is a
change in the radiation intensity, a capacitor is connected to the PV array as a load, and the
P–V curve of the array is obtained by the controller according to the current environmental
conditions. An adaptive circuit structure is proposed for capacitor charging. Thus, the
efficiency of the system is increased, and the circuit area and cost are reduced. While the
power amount can be increased by approximately 150% compared to the conventional
circuit, the power losses to be obtained were confirmed by the experimental results. The
experimental setup prepared for this purpose was controlled with an FPGA control card. On
an array of six panels, both full irradiation and different partial shadow states were created.
The electrical characteristics of the PV system corresponding to the current situation and
the power and voltage values of the GMPP were determined by the load device.

This study was carried out to investigate which of the smart methods used was more
efficient when performing global maximum power point tracking of PV energy systems
under complex partial shading conditions. For this reason, a system was designed in
MATLAB-Simulink software. The intelligent algorithms, CSA, GWO, MIC, and PSO, were
used as MPPT methods in the designed system. As a result of the simulations, these
algorithms were compared in Table 2 in terms of power, convergence speed, efficiency, and
oscillation criteria. These algorithms were run under five different uniform and complex
partial shading conditions with six PV panels connected in series and a DC–DC boost
converter. Since each PV panel was exposed to different irradiance values, six different
peaks occurred. Only one of these peaks was the global maximum power point and
the others were local maximum power points. Therefore, under this six-peak complex
condition, it was even more difficult for the algorithms to catch and track the global
maximum power point.

According to the simulation results in this study, it was seen that the first and third
cases were the cases where all the algorithms successfully tracked the global maximum
power point at the same time. However, the same was not true for the other complex partial
shading conditions. Despite this complexity and difficulty, GWO was successful in the
simulations. Compared to the other algorithms, it was observed that GWO successfully
performed global maximum power point tracking with high convergence ability and
tracking speed in all five conditions. It was observed that GWO did not oscillate while
tracking the global maximum power point. The fact that GWO did not oscillate reduced
power losses and, therefore, increased efficiency. The average convergence speed of GWO
to the global maximum power point was obtained as 0.22 s. The average efficiency of GWO
was obtained as 99%. All these evaluations show that GWO is a very fast, highly accurate,
efficient, and stable MPPT method under complex partial shading conditions. In future
studies, it is anticipated that efficiency analyses will be undertaken using the designed
system and GWO, running them with real-time data.
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