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Abstract: In this study, the load frequency control of a two-area thermal generation system based on
renewable energy sources is considered. When solar generation is used in one of the control areas, the
system becomes nonlinear and complicated. Zero deviations in the frequencies and the flow of power
through the tie lines are achieved by considering load disturbances. A novel grey wolf optimizer,
which is a metaheuristic algorithm motivated by grey wolves is utilized for tuning the controller
gains. The proportional, integral, and derivative gains values are optimized for the two-area Solar
integrated Thermal Plant (STP). As the load connected to the system varies continuously with time,
random load variation is also applied to observe the effectiveness of the proposed optimization
method. Sensitivity analyses have also been adopted with the deviation in the time constants of
different systems. Inertia constant variations of both areas are considered from −25% to +25%, with
or without STP. The proposed algorithm shows good dynamic performance as shown from the
simulation results in terms of settling time, overshoot values, and undershoot values. The power in
the tie line achieves zero deviation quite rapidly in solar-based cases compared to those without STP.

Keywords: frequency control; grey wolf optimization; solar plant; thermal plant; control area error;
gain optimization

1. Introduction

Automatic Generation Control (AGC) is an essential requirement of power plants
for smooth working in the state of load deviations. The control demonstrates that gen-
eration in the power system is automatically regulated, which agrees with the changes
in loading requirements. The main theme of the AGC study lies in the system frequency
regulations. The speed falls with an increment in load demand, and this result in frequency
fluctuations [1]. The nature of interrelated solar plants with the already existing thermal
plant is to include renewable energy sources in the system. Additionally, the existing grids
remain connected with more and more renewable energy sources nowadays. Hence, we
have considered the inference of solar PV systems in one of the control areas. This is the
primary focus of this proposed work. The necessity of autonomous generation control is
one of the essential requirements of the interconnected power system, as continuous load
variations are faced by the generation facilities. They are equipped with systems (governors
with controllers) to respond like the primary and secondary controls. In these conditions,
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generation is altered, as per the requirements, through governor controls. Additionally, it is
required to achieve zero steady-state deviations in frequencies concerning the control areas.
The tie power flow should also have zero steady-state errors.

Nowadays, power systems are interrelated. So, disruption in one of the areas creates a
disturbance in another area. Additionally, the control areas are interconnected through tie
lines. So, the conditions of AGC are to control both the frequency and the tie-line power
at scheduled values. Automatic Generation Control has gained more importance and
attention from researchers due to its role in interconnected systems. The main challenge is
frequency management since it has a direct connection with speed. If the system frequency
changes, the speed of a plant changes, and hence, the output of the power plant is affected.
So, the challenge is to nullify the frequency deviations as quickly as possible after a change
in the system loading conditions. For fast and efficient controls, the gain of the secondary
controller must be properly optimized for achieving zero steady-state errors in frequency
and tie-line power flow. Researchers have adopted several optimization algorithms for
tuning the gains of secondary controllers. Several frequency regulation optimization and
control methods have already been established over the decades.

The authors have identified deregulation situations with load frequency control opera-
tional problems and their technical solutions regarding standard algorithms required for
the deployment of this critical condition in [2]. Parameterized AGC schemes are explored,
including non-linear and linear power model structures, classical and optimal control,
along with centralized control. Wind turbines have also been considered for AGC schemes
that utilize intelligent control in [3].

The Differential Evolution (DE) approach based on parallel 2-DOF regulator LFC control
is discussed with different conditional parameters such as generation rate constraints and a
dead band of the governor with delay time in the system modeling [4]. The authors presented
numerous classical controllers, such as an integral controller for automated generation controls
in a hydro-thermal system. Additionally, the sensitivity method is used for estimating the
controller tuning with the optimum parameters and good robustness, considering large
deviations in the system loading [5]. To astound the frequency-fluctuations-related problem, a
simple PID control procedure, which counterbalances this variability in the system frequency,
is utilized in [6]. Controller parameters have been varying along a wide spectrum of load
variations using an imperialist competitive algorithm for obtaining the optimum response of
frequency in the same by the authors. Dye-sensitized solar cells Z-series connected modules
are tested in a greenhouse environment to combine the devices’ high conversion efficiency,
robustness, and transparency, as proposed by the authors [7]. An artificial-intelligence-
based algorithm termed the Hybrid Neuro-Fuzzy (HNF) method has been presented by the
researchers. The proposed regulator has the advantage of being able to handle non-linearities.
It is also faster compared to conventional controllers [8]. The setting of control attributes at
optimal values of the power systems centered on PSO aimed at the multi-machines system
has been suggested in [9]. This author confirmed that the proposed approach is functioning
properly in dampening local and inter-area oscillations with large variations in loading
situations and system structures.

Researchers are exploring the merging of renewable energy technologies for electrical
power generation and controls. Authors have shown the implementation of an ANFIS
strategy that employs artificial neural networks (ANN) for autonomous generation control
of the three imbalanced hydrothermal systems [10]. An independent hybrid generating sys-
tem operation with solar thermal power, battery energy storage, diesel generators, solar PV,
ultra-capacitors, fuel cells, wind turbine-based generators, flywheel, and aqua electrolyzer
is proposed [11]. Metaheuristic optimization algorithms have become quite prominent in
different areas of engineering. A combined cycle’s automatic generation control gas turbine
generation plant with traditional controller’s parameter tuning is proposed by the authors
utilizing the Firefly Algorithm [12]. For two area thermal systems with wide load fluctu-
ations, a Teaching- and Learning-Based Optimization-based algorithm with a 2-Degree
of Freedom of PID controller is proposed [13]. For Automatic Generation Control in a
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deregulated environment, a hybrid-based Teaching–Learning-oriented optimization and
pattern-searching methodology is proposed by the authors, and the findings are compared
with Genetic Algorithms and Differential Evolution [14].

Renewable energy with better result attainment for the performance of AGC is pre-
sented in the work [15]. One of those algorithms is the Grey Wolf Optimizer (GWO),
inspired by grey wolves [16]. In this algorithm, the optimizer simulates the key leadership
configuration and the hunting procedure of the grey wolves. The leadership pyramid is
an imitation using four types of grey wolves, namely alpha, delta, beta, and omega. The
authors presented a mathematical prototype to assess the impression of trifling photo-
voltaic power plants on performance factors considering the economics of a bigger power
system [17]. The use of the grey wolf optimization algorithm for the thermal energy sys-
tems incorporated in three control areas for the solution AGC problem is proposed by
the authors. In the same work, a conventional thermal system with a single-stage turbine
(reheat) and adequate generation constraints (rate) is considered. The algorithm estimates
the performances of the proportional–integral, integral, and PID controllers with good
accuracy [18]. Authors have suggested a quasi-oppositional dragonfly approach for the
tuning of PID control attributes by considering the three-area model. The results are shown
with the help of time absolute error [19]. A mathematical standard of trivial (rooftop)
photovoltaic (PV) generating station has been established by the authors of [20]. The AGC
solutions considering the penetration of the different types of electric vehicles in the electric
grids along with the power generation are illustrated by the authors of [21–24]. In the
research work [25], the authors suggested an ANN model utilizing the radial basis function
for modelling the non-uniform PV system enactments while controlling the frequency
variations [26].

In the past, de-rating techniques have been utilized to qualify frequency backing
functions in the PVs; now, for the first time, de-rating techniques are employed to man-
age voltages in the full PV LV distribution systems [27]. For generating the appropriate
patterns of charging for the Li-ion batteries, battery modeling and multi-objective con-
stricted dynamic programming techniques are proposed. In the same work, an ensemble
biogeography-based optimization approach is employed for the best solutions [28]. Some
authors suggested AI-based strategies to extend the life of the battery from both a produc-
tion and management standpoint. A critical review of cutting-edge AI-based strategies is
also provided, considering ANN and ensemble learning [29]. The authors developed an
easily understandable ML algorithm for battery manufacturing. It is also demonstrated
that the technique can be applied to predict various components of battery capacities, as
well as quantify the dynamic impacts and interconnections of the coating factors very effi-
ciently [30]. To adjust the class imbalance and accurately categorize three important quality
indicators of electrodes, an efficient RUBoost-centered classifier framework is proposed.
Similarly, experimental findings demonstrate that the proposed systems can deal with class
inequity difficulties and precisely predict the characteristics of the produced electrode [31].
Being leadless or containing little lead to overcome the problems posed by hazardous lead
yield halides, perovskite materials are investigated for use in the photovoltaic system by
the authors of [32]. Research has been undertaken to standardize current AI utilizing deep
learning operations in this field after the paper first offers a review of AI and big data in
combating COVID-19 [33]. The authors have discussed using the stacking CQDs of various
sizes; the graded band orientation approach is employed to reduce the charge carrier
diffusion in QNR [34]. The exhaustive literature review shows that many researchers have
applied different PID controllers for LFC problems. Generally, all have considered simple
load variations. In this work, we consider variable and random step load variations in load
demands. Additionally, the sensitivity variations of different parameters are examined in a
wide range.

Most of the actual-world optimization is inherently nonlinear and multimodal, with a
wide range of complicated constraints. Even for a unified purpose, an approach to optimal
solutions is always quite impossible. Metaheuristic optimization techniques have gained
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popularity for solving complex problems that are otherwise challenging to solve using con-
ventional methods. Metaheuristic methods are now being used to find high-quality results
for an ever-increasing variety of complex real-world issues, such as combinatorial prob-
lems. As these algorithms can handle multi-objective, multi-solution, and non-stationary
problems very efficiently.

In the proposed PID controller, the system attributes have been calculated utilizing
the metaheuristic algorithm for the estimation of competitive attribute values(parameters).
The motivation for this paper is to utilize the metaheuristic algorithm for the tuning of the
control parameters of multi-area load frequency control with and without the insertion
of renewable energy sources and a wide range of load variations. The cutting-edge Grey
Wolf Optimizer (GWO) for obtaining admirable transient and steady-state performances
is utilized in this paper. The issue of continuous deficiency of energy possessions is also
discussed in this work. Table 1 shows the full forms of acronyms used in this paper.

Table 1. Acronyms’ full forms.

Acronym Stands for

ACE Area Control Error

AGC Automatic Generation Control

ANFIS Adaptive-Network-Based Fuzzy Inference System

ANN Artificial Neural Network

AVR Automatic Voltage Regulator

DE Differential Evolution

DOF Degree of Freedom

FPC Flat Plate Collectors

GWO Grey Wolf Optimizer

I Integral

ITAE Integral Time Absolute Error

LFC Load Frequency Control

PI Proportional–Integral

PID Proportional–Integral–Differential

PSO Particle Swarm Optimization

PTC Parabolic Trough Collectors

PV Photovoltaic

SLP Step Load Perturbance

STP Solar Thermal Plant

The key contributions of the authors in this article are as follows:

1. Integration of the thermal power generations with the renewable generations for the
automatic generation controls, considering variable and random step load variation
in load demand;

2. To achieve the zero-frequency error after the different load variations and maintain
the system frequency constant at the specified values using the proposed PID controls;

3. Maintaining the tie-line power flows at the specified levels for the different changes
in load conditions in different generation facilities using the adopted novel meta-
heuristic method;

4. Improved dynamic performance regarding the sensitivity analysis as evidenced by
simulation results, shown by control parameters such as undershoot value, overshoot
value, and settling time.
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2. Overview of Autonomous Generation Control

The system’s frequency residues consider variations in active power, whereas changes
in reactive power have less impact and are mostly determined by variations in the bus
voltage gradient. While the automated voltage regulator (AVR) controls the amount of bus
voltage and reactive power, the control loop of the load frequency regulator controls real
power and frequency.

In contrast to single-area systems, multi-area frequency management is a more com-
plicated issue to be addressed properly. The frequency inaccuracy of one location is related
to the other linked areas in big systems since all systems are connected through tie lines.
The following traits are connected to the multi-area system:

• When a single system loses power, a multi-area system allows electricity to flow from
one area to another. In this situation, the blackout problems can be mitigated;

• The least amount of frequency variation also gets aggregated.

The fundamental drawback of a multi-area system, despite some of its advantages, is
that any disturbance in one area will also create frequent disruptions in the other control
area. Every area needs to be in check for things to run normally and effectively.

Two Control Area Systems (Thermal Energy)

Two control regions for thermal (reheat) generating systems have been considered.
As shown in Figure 1, both control regions have been subjected to step load changes
and governor–turbine systems as their basis. One section has a hard or strong internal
connection, while the other has a weak tie-line outward connection. Frequency deviances
for areas 1 and 2 are shown as ∆w1 and ∆w2, respectively.
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Figure 1. Block diagram of two-area thermal system.

All pool members must contribute to the frequency control, without affecting their
own net interchange as part of the tie-line-centered bias control scheme. This implies that
the frequency variation and the tie power deviation change must attain zero value under
steady-state conditions.

ACE is the linear function of inter-area connected lines power fluctuations and fre-
quency instabilities. The relationships given by Equations (1) and (2) illustrates the expres-
sions of ACE for the two control zones:

ACE1 = ∆P12 + B1∆w1 (1)
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ACE2 = ∆P21 + B2∆w2 (2)

3. Modeling of Solar-Based Thermal Plant

The two most viable sources of renewable power are solar PV and wind generation. The
solar collector types utilized in solar-based thermal power plants include Parabolic Trough
Collectors (PTC), sterling engines(dish), and Flat Plate Collectors (FPC). To obtain the most
solar irradiation, the working fluid is carried by the solar collector. Figure 1 depicts two area
systems with thermal (reheat) power plants. These systems have been upgraded to include
Solar generation with Thermal Plants generation (STPs) in area 1, while area 2 simply consists
of the thermal generation system. For the thermal system, the nominal attribute values were
obtained from [1], and for the solar thermal system, the same is taken from [13].

The following abbreviations have been used in the above Figures 1 and 2:
B1 and B2 are the constants for frequency biases in area 1 and area 2;
R1 and R2 are speed directive attributes for governor of area 1 and area 2;
SLP1 and SLP2 are load deviations (step changes) in area 1 and area 2;
ACE1 and ACE2 are ACE in area 1 and area 2;
∆Ptie shows the alteration in tie power flow amid area 1 and area 2;
∆ω1 and ∆ω2 represent changes in frequency/frequency aberrations in area 1 and area 2.
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Figure 2. Block representation for two area thermal systems with Solar PV source in area 1.

In Figure 3, arrow Ti indicates the direction of fluid flow. A fluid of temperature To is
released. I demonstrate the way solar radiation heats pipes and stores energy in working
fluid. The symbols used are as follows:

To = collector (outlet fluid) temperature (◦C);
I = solar radiation across collection plane

(
W/m2);

Ti = collector (inlet fluid) temperature (◦C);
Te = collector (environment) temperature (◦C);
v = flow rate of collector (or pump) ( m3/s );
η0 = collector optical efficiency;

VL = collector complete heating loss coefficient (W/m 2K
)

;

c = heat capacity (specific) of collector fluid (J/(kgK));
C = (ρ ∗ c ∗V), heat capacity of the fluid of collector (J/K);
A = surface area of the collector ( m2);
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V = collector heat transfer volume (m 3
)

;

ρ = collector (fluid) corpus density (kg/m 3
)

.
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Collector Model

A simpler solar collector is considered to use a constant fluid flow rate. The value of
To(t) from Equation (3) is substituted in Equation (2).

dTo(t)
dt

=
Aη0

C
I(t)− VL A

C
(Ta(t)− Te(t)) +

v(t)
V

(Ti(t)− To(t)) (3)

Equation (4) represents time requirement of variables:

Ta(t) = (T i(t) + To(t))/2 (4)

Then, Equation (2) is arranged in a manner that input parameter is placed on left
side, and output parameters are placed in right side, so the new equation is as shown in
Equation (5):

dTo(t)
dt

+

(
VL A
2C

+
v
V

)
To(t) =

Aη0

C
I(t) +

(
v
V
− VL A

2C

)
Ti(t) +

VL A
C

Te(t). (5)

Applying Laplace transform to Equation (5):

L
[

dTo(t)
dt

]
+

(
VL A
2C

+
v
V

)
L[To(t)] =

Aη0

C
L[I(t)] +

(
v
V
− VL A

2C

)
L[Ti(t)] +

VL A
C

L[Te(t)]. (6)

Outcome of Laplace transform is shown in Equation (7) as follows:

sT0(s)− To(0) +
(

VL A
2C

+
v
V

)
To(s) =

Aη0

C
I(s) +

(
v
V
− VL A

2C

)
Ti(s) +

VL A
C

Te(s). (7)

Reorganizing Equation (7), we obtain output–input relation, as shown in Equation (8):

To(s) =
τ

τs + 1
To(0) +

τ

τs + 1
Aη0

C
I(s) +

τ

τs + 1

(
v
V
− VL A

2C

)
Ti(s) +

τ

τs + 1
VL A

C
Te(s), (8)

where variable τ represents collector time constant.
Output is assumed by considering only input as I(s), Te(s), and Ti(s), putting other

input zero, and neglecting initial conditions, then we obtain

W1 =
To(s)
I(s)

=
τ

τs + 1
Aη0

C
, (9)
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W2 =
To(s)
Ti(s)

=
τ

τs + 1

(
v
V
− VL A

2C

)
, (10)

W3 =
To(s)
Te(s)

=
τ

τs + 1
VL A

C
. (11)

The effect of initial condition on To(s) is as follows:

W0 =
To(s)
T0(0)

=
τ

τs + 1
. (12)

Equation (13) shows individual effect on Equation (10) as follows:

To(s) = W0To(0) + W1 I(s) + W2Ti(s) + W3Te(s). (13)

The transfer rate of heat is assumed to be constant in collector’s model. This trans-
fer function is the output Laplace transform T0(s) about the input Laplace transform
( Ti(s), I(s), and Te(s)). Outlet temperature’s initial conditions are selected to make solar
field model more realistic.

τ =
1(

VL A
2C + v

V

) , (14)

where variable τ represents time constant of collector and is also shown by Ts.
The difference between input (inlet) and the surrounding temperatures is minimal.

Equation (15) shows the function of the solar strength with respect to irradiance (solar):

G(s) =
To(s)
I(s)

=
Ks

1 + Tss
. (15)

In the above, variable Ks represents the gain of the collector.

4. Objective Function

The purpose of AGC lies in attaining the zero area control error as fast as possible, as
defined in Equations (1) and (2). The time-weighted integration of the absolute value of
deviations(ITAE) is utilized for creating the objective function in this present study. It is
formulated as the fitness function, as displayed below:

f =

t∫
0

|∆w1 − ∆w2|.tdt, (16)

where ∆ω1 and ∆ω2 represent frequency deviations in two areas, i.e., area 1and area 2.
The optimal value is produced via continuous iterative computing. Repetitiveness of

the solution is also satisfied to ensure optimal solution.

5. Grey Wolf Procedure for Optimization

The grey wolf method belongs to the class of metaheuristic optimization techniques
and is solely employed for calculating the gain constant for optimal outcomes. These meta-
heuristic schemes have been utilized successfully to tackle several engineering challenges
in the real world. The optimization algorithm named GWO approach considers a pack of
wolves finding prey and developing better hunting techniques and utilizes the survival
of the fittest hypothesis of evolutionary algorithms. The major reason of considering wolf
hunting the best is that these wolves dwell in packs. Applications of GWO for resolving
the issue of economical load dispatch are discussed in [26].

The social structure and collective hunting strategy of the pack of grey wolves have
been given in this paragraph. This algorithm is nature inspired and replicates the clever
search method employed by grey wolves for coordination among the group in order to
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effectively catch prey when hunting. One of the most essential aspects of the grey wolf
algorithm is having a rigorous hierarchy at social level, which helps in persevering mutual
support with each other at the time of hunting. Table 2 shows the social structure of wolves
with their responsibilities.

Table 2. Hierarchy level of wolfs (in hunting process).

Hierarchy Rank Roles

1 α Main authority, imposes a choice on the pack

2 β Counselor to Alfa, keep the pack disciplined

3 δ Guardian of injured wolves

4 Ω Complies with every pack leader wolf

5.1. Searching Agents

α, β, δ, andω represent the search agents. Here, Alpha (α) represents leader, which
helps in finding optimal solution during hunting, Beta (β) represents second level optimal
result, Delta (δ) is at third level and has less priority compared to α and β, and omega (ω)
follows the solution proposed by α, β, and δ and keeps updating its position towards the
prey [13]. Equations (17) and (18) are used to obtain the optimal solution.

→
D =

∣∣∣∣→C ·→Y p(k)−
→
Y(k)

∣∣∣∣, (17)

→
Y(k + 1) =

→
Y p(k)−

→
A·
→
D, (18)

where iteration count is k, and
→
Y(k) and

→
Y p(k) are the wolf and prey position vectors, respectively.

→
A = 2

→
b ·→s1 −

→
b (19)

→
C = 2·→s2 (20)

→
s1 along with

→
s2 are considered vectors of random nature. The value of b varies

between the range of 2 to 0.
→
C as well as

→
A show location of the prey. For

→
C , it may have any value in range of

0 to 2. This indicates the weight of the prey. Considering
→
C is bigger than 1, optimal result

is almost achieved. The importance of
→
C is basically for locally optimal point avoidance.

During hunting, obstacles may come and be reflected in the random changes in
→
C . Value

of
→
C maintains the uncertain functioning of GWO, and through this ambiguity, the best

outcome is achieved after specific iterations.
→
A monitors for the prey from first iteration to last iteration. Firstly, one outcome is

considered alpha, and then solutions vary from this to find a more suitable result. After

best outcome is achieved, convergence is known as to be assisted through
→
A.

Divergence occurs when wolves deviate from prey to locate a better prey (|A| > 1).

This modernism in
→
A is finished to ensure procedure skillfulness.

Convergence occurs while the result point’s movement is in the best feasible value
(1 > |A| > −1) [13].

The first iteration is dedicated to divergence, while the second half is dedicated to
position updates towards a point using alpha, beta, and delta as the best points. Figure 4
represents departure from the prey to assimilation to the best ones.
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5.2. Positions Apprising

It is assumed that alpha possesses awareness of the ideal while omega wolves’ posi-
tions are updating. However, beta with the deltas have knowledge regarding what is the
best solution [13]. Using the defined mathematical calculations, omega travels to its next
ideal position approaching prey as follows:

→
Dα =

∣∣∣∣→C1 ·
→
Yα(k)−

→
Y
∣∣∣∣ (21)

→
Dβ =

∣∣∣∣→C2 ·
→
Y β(k)−

→
Y
∣∣∣∣ (22)

→
Dδ =

∣∣∣∣→C3 ·
→
Yδ(k)−

→
Y
∣∣∣∣ (23)

→
Y1 =

→
Yα −

→
A1 ·

( →
Dα

)
(24)

→
Y2 =

→
Y β −

→
A2 ·

( →
Dβ

)
(25)

→
Y(k + 1) = (

→
Y1(k) +

→
Y2 (k) +

→
Y3( k) )

/
3 . (26)

The three best options have a notion about their prey, the other wolves compute

their separation from them that are
→
Dδ,

→
Dα, and

→
Dβ respectively. These distances support

establishing the three best feasible placements for omega. The next best locations are
updated by averaging such three possibilities.

This position-updating technique is continued until the most optimum point is ob-
tained. This may also be continued until the maximum iteration has been completed and
the location has been established after the computations. This process is repeated to ensure
that the most recently updated location is the ideal place.

In above Figure 5, circles of dissimilar colors show the prey and the wolves. a1, C1, and a2
along with C2, a3, and C3 are significant elements for the position of the searching agents. The
technique drives omega (hunter) in direction of the estimated location of prey, as displayed in
the figure.

5.3. Illustration for Understanding the GWO Procedure

GWO has a goal function for which a random set of populations is generated. In this
instance, the aim is to minimize the function. To commence, a random population is created,
as indicated in Table 3, and then each collection of population functions is computed. The
functions are shuffled in the first iteration to acquire the top three results; this is displayed
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in Table 4. Entire leftover solutions are referred to as choices. They are modified in each
cycle, as seen below (Equations (27)–(29)):

→
b = 2− 2

(
itr

maxitr

)
. (27)

Table 3. Objective function values for random values of Y1 and Y2.

No. (n) Y1 Y2 F

I 5.9202 4.0123 6.9806

II 5.8990 5.0009 6.0031

III 7.4190 7.9874 46.0083

IV 3.0018 1.0103 6.0122

V 5.9089 3.3810 3.9909

VI 5.8902 2.9821 2.9982

VII 6.9708 5.8530 23.9081

VIII 5.0072 2.9802 2.0018

IX 4.7900 2.9907 1.9998

X 5.9702 2.9850 3.0021
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This gives,
→
b = 1.3232 (28)

→
D =

∣∣∣∣2rand(0, 1)[4.6917, 3.2904]
→
Yb(k)−

→
Y
∣∣∣∣ (29)

→
Y1 = [5.0013, 2.9084]− (2

→
b ·rand (0, 1)−

→
b )
→
Dα (30)

→
Dα =

∣∣∣∣2rand(0, 1)[5.0108, 2.9980]
→
Yb(k)−

→
Y
∣∣∣∣ (31)

→
X2 = [5.0108, 2.9980]− (2

→
b ·rand (0, 1)−

→
b )
→
Dβ (32)
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→
Dα =

∣∣∣∣2rand(0, 1)[6.0015, 2.9581]
→
Yb(k)−

→
Y
∣∣∣∣ (33)

→
Y3 = [6.0015, 2.9581]− (2

→
b ·rand (0, 1)−

→
b )
→
Dδ (34)

→
Y(1, :) =

→
Y1(k) +

→
Y2(k) +

→
Y3(k)

3
(35)

→
Y = [3.0480, 2.6845] (36)

The initial value combination’s position is updated here. Same is performed for the
alternative solutions. If the value of omega in the following iteration function is lesser than
alpha, these solutions for omega become the subsequent best solution.

fomega < falpha (37)

This technique is repeated until the minimal function value is reached. Figure 6 depicts
the flowchart for the suggested grey wolf optimization procedure.
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Table 4. Best Solutions.

Results for Y1 Y2 F

α 5.0013 2.9084 2.0019

β 5.0108 2.9980 3.0201

δ 6.0015 2.9581 3.2039

6. Results and Discussion

Results and the corresponding discussions are given in this section.

6.1. Result with STP and without STP

In order to compare the effects of solar energy on the system’s different characteristics
in both scenarios with and without STP, solar energy is employed in the power system.
Table 5 reflects the customized and optimized values for both cases.

Table 5. Controller gains without and with STP.

Controller Gain Without STP With STP

kp,1 0.5601 0.7498

kp,2 0.7898 0.3311

ki,1 0.4084 0.3202

ki,2 0.4802 0.3402

kd,1 0.4983 0.5387

kd,2 0.3456 0.7008

As shown in Figure 7, the frequency variation area 1 quickly reaches zero in the case
of a solar thermal power plant. Figure 8 displays frequency discrepancy in area 2 and
demonstrated improved results in the case of using PV. Figure 9 displays power flow in the
tie line without and with STP. The SLP value considered is 0.2. (TH SOURCE—thermal
source and STP SOURCE—solar thermal power source).
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In the solar thermal instance, fluctuations in the power flow of the tie line attain the
desired null value in the least time. Table 6 correlates withthe dynamic performances of
both systems. It can be concluded that solar power source penetration in area 1, along with
the thermal source transient performance, is also quite better in terms of dampening out
the frequency and tie-line power deviations to 0.

Table 6. Performance attributes dynamics without and with STP (Undershoot—US, Overshoot—OS,
and Time to Settle—TS).

Attributes Performance
(Dynamics) Without STP Along with STP

∆w1

TS 21.500312 8.649830

OS 0.0107588 0.001642

US 0.0007589 0.001342

∆w2

TS 20.989801 9.988071

OS 0.0106175 0.008796

US 0.0004987 0.000543

∆Ptie

TS 22.9012341 9.501261

OS 0.0004598 0.005768

US 0.00019978 0.0003650
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6.2. Comparison of Results Obtained from GWO with Integral (I) Controllers

The steady-state error is reduced by using integral control. Results show a comparison
of integral control with PID control. Grey Wolf Optimization (GWO) is used to optimize
the attributes of the PID controller. Table 7 shows a comparison of settling time, undershoot
values, and overshoot value for various parameter characteristics. It shows that results
produced by GWO tuning are much better compared to I tuning.

Table 7. Performance of GWO tuning compared with PSO [35] and integral tuning (Undershoot—US,
Overshoot—OS, and Time to Settle—TS).

Attributes Dynamics I Tuning GWO Tuning PSO Results

∆w1

TS 24.17865 8.654140 10.3201212

OS 0.034786 0.002642 0.021235612

US 0.0076399 0.001242 0.02130346

∆w2

TS 22.64792 10.075095 12.02365781

OS 0.025696 0.008096 0.00912342

US 0.0086329 0.0004932 0.00557290

∆Ptie

TS 22.98635 9.48519 14.4785902

OS 0.0065920 0.006068 0.00608467

US 0.0089521 0.0004010 0.00149566

Jaya algorithm is used to tune PID for STP for comparisons [36]. Table 8 shows the
comparison between I control, PI control, and tuned PID control.

Table 8. Comparison of I and PI controllers with tuned PID for STP (Undershoot—US, Overshoot—
OS, and Time to Settle—TS).

Attributes Dynamics I Controller PI Controller Tuned PID
Control

∆w1

TS 11.92054 14.418729 8.6182208

OS 0.013824513 0.0123271884 0.003787487

US 0.035138888 0.021846066 0.021198573

∆w2

TS 14.658047 13.899727 7.6016538

OS 0.0012796318 0.0016410739 0.00003422029

US 0.017074277 0.020000111 0.014809222

∆Ptie

TS 24.370994 31.009171 22.898826

OS 0.014122517 0.0040503251 0.00167344

US 0.045736824 0.0087653243 0.012513358

Below, Figures 10–12 give the analogy of dynamic parameters in a chart pattern.
Figure 10 shows the improvement in the settling time of the dynamics in the system using

GWO compared to the integral control for two area frequencies and tie-line power deviations.
Here, we can see that the settling time is 8.65414 s using GWO compared to 24.17865 s using I
control in area 1 frequency changes. Figure 11 shows the improvement in overshoot values
using GWO compared to the integral control for two area frequencies and tie-line power
deviations. Here, we can see that the overshoot value is merely 0.00264 using GWO compared
to 0.034786 using the I control in area 1 frequency changes. Figure 12 shows the improvement
in undershoot values in the system using GWO compared to the integral control for two
area frequencies and tie-line power deviations. Here, we can see that the undershoot value is
0.00124 using GWO compared to 0.0076399 using I control in area 1 frequency changes.
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6.3. Variation in SLP

Figure 13 shows the graph of variable SLP with respect to time. It shows better results
compared to those without STP. The incorporation of solar power gives better results with
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continuously varying SLP also. A variable step (random) load changes are deliberated in
area 1 with STP.
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The effectiveness of the offered AGC scheme with STP is displayed in Figures 14–19.
The results show that better results are presented by GWO-based PID controllers (TH
SOURCE—thermal source and STP SOURCE—solar thermal power source).
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6.4. Sensitivity Investigation

The suggested AGC system is evaluated through sensitivity investigations. Diverse
loading scenarios and varied parameters in safe limits are used to analyze the system’s sen-
sitivity. The system without and with STP is used in a wide range of cases for faster dynamic
performances. Sensitivity analysis is conducted by varying the parameter fluctuations in
the range of −25% to +25%in the parameter shown in Table 9.

Table 8 shows the attributes regarding variations in collector time constant, turbine
time constant, governor time constant, and inertia constants. The collector time constant
is less sensitive, and the turbine time constant is the most sensitive. The variations in the
frequencies and tie-line power are within safe limits and are almost equal to the nominal
values of system attributes. As a result, the given procedure delivers satisfactory, stable,
and robust control along with the optimal results of the regulator attributes acquired at
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standard loading. Additionally, the set values do not need resetting for extensive variations
in loading or the parameters.
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Table 9. Sensitivity investigation results (X = +25% and Y =−25%).

Attribute % Variation ∆w1 ∆w2 ∆Ptie

H1
X 7.4991 6.9988 9.5012

Y 8.0112 9.6014 15.0025

Tg1
X 8.0109 9.0192 8.9873

Y 9.0017 9.9905 10.9797

Tt1
X 6.7002 8.9782 13.9826

Y 10.00534 10.9936 11.9837

Ts
X 10.998 11.9935 18.0088

Y 7.9842 6.0045 5.7681

7. Conclusions

The simulated training using the proposed algorithm in Solar Thermal Plant (STP) is
compared with various tuning techniques. Solar PV source is incorporated along with the
thermal power system in area 1. The proposed system will be implemented in electrical
grids, where the penetrations of renewable sources increase along with traditional thermal
generations. It results in less pollution and higher efficiencies. The findings using GWO
along with PID reflected faster transient performance compared with simple control (I
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control).The simulation outcomes demonstrate that using the GWO-optimized PID tuning
for solar PV-based two-area thermal generation systems, the fluctuation dynamics die
out faster. The settling time is 8.65414 s using GWO compared to 24.17865 s using I
control in area 1 frequency changes. Additionally, random step load and the percentage
adjustments in the inertia are considered for testing the resilience of system operation. The
system parameters such as Tg1, H, Tt1, and Ts were adjusted with a 25% augmentation and
reduction for the sensitivity study of autonomous generation control using GWO. Because
a 25% fluctuation is probable, the algorithm’s sensitivity is tested for this change. The
limitation of this present work is regarding the convergence speed, which may be further
improved by using dynamic weights.

In this present work, incorporation of the solar PV with the thermal plant by the sub-
mission of GWO-optimized controllers for the two area systems is deliberated. The work
may be extended in future with the insertion of EVs with AGC of multi-area systems for
optimal control parameters tuning. Additionally, researchers may adopt hybrid optimization
algorithms for optimal parameter setting with the inclusion of wind sources and storage.
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