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Abstract: Failure modes, effects, and criticality analysis (FMECA) is a qualitative risk analysis method
widely used in various industrial and service applications. Despite its popularity, the method suffers
from several shortcomings analyzed in the literature over the years. The classical approach to obtain
the failure modes’ risk level does not consider any relative importance between the risk factors
and may not necessarily represent the real risk perception of the FMECA team members, usually
expressed by natural language. This paper introduces the application of Type-I fuzzy inference
systems (FIS) as an alternative to improve the failure modes’ risk level computation in the classic
FMECA analysis and its use in cyber-power grids. Our fuzzy-based FMECA considers first a set of
fuzzy variables defined by FMECA experts to embody the uncertainty associated with the human
language. Second, the “seven plus or minus two” criterion is used to set the number of fuzzy sets to
each variable, forming a rule base consisting of 125 fuzzy rules to represent the risk perception of
the experts. In the electrical power systems framework, the new fuzzy-based FMECA is utilized for
reliability analysis of cyber-power grid systems, assessing its benefits relative to a classic FMECA.
The paper provides the following three key contributions: (1) representing the uncertainty associated
with the FMECA experts using fuzzy sets, (2) representing the FMECA experts’ reasoning and risk
perception through fuzzy-rule-based reasoning, and (3) applying the proposed fuzzy approach,
which is a promissory method to accurately define the prioritization of failure modes in the context
of reliability analysis of cyber-power grid systems.

Keywords: FMECA; fuzzy inference systems; fuzzy-based FMECA; risk assessment; cyber-power grids

1. Introduction

The failure modes, effects, and criticality analysis (FMECA) is a structured qualitative
method for reliability analysis intended to identify failures that have significant conse-
quences affecting the system performance in the application considered. FMECA is very
useful for identifying potential failures in a system, understanding their causes and con-
sequences, categorizing them, and using this information to help prioritize maintenance
tasks [1,2].

The standard IEC 60812:2006, titled “Analysis Techniques for System Reliability:
Procedure for Failure Mode and Effects Analysis (FMEA)”, can be considered an official guide
for the application of FMEA and the FMECA principles [3]. FMECA is an extension of
FMEA that includes a criticality analysis through calculating risk metrics [3]. Although
FMECA differs from FMEA because the first considers the calculation of criticality, both
terms are commonly used as synonyms. In this work, we use the correct term FMECA.

The primary objective of an FMECA analysis is to improve design [1–3]. However, it
can also be applied at any project stage (or process) to plan preventive maintenance actions.
In FMECA, the potential failure modes for all components are analyzed, identifying the
causes that originated the failure, the failure effects on the system, and the actions that
must be executed to mitigate its effects before it occurs.
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FMECA provides a risk level for each identified failure mode. A Risk Priority Number
(RPN) assesses the risk level. It is computed based on the following three criteria called risk
factors: the Occurrence (O), which represents the frequency of occurrence of the failure mode;
the Severity (S), representing the impact of the failure mode on the system; the Detection
(D), which represents a ranking of the level of detection of this failure mode. Numerical
categories characterize risk factors. Each category is usually represented by a numerical
scale that can be a 1–10 scale, as proposed in [4], or in a 1–5 scale, as proposed in [5], or
scales specially defined according to the characteristics of the problem. For the severity and
occurrence scales, the higher the effect or frequency, the higher its rating; conversely, for the
detection scales, the lower the failure mode’s detectability, the higher its detection rating.

In the classical FMECA context, the risk priority number (RPN) is calculated as in (1) as
follows [3]:

RPN = S ◦O ◦ D (1)

The scalar multiplication is the most used operator where the symbol ◦ represents a
composition between the risk factors. The higher the RPN for a specific failure mode, the
higher its risk. The failure modes are ranked from higher to lower RPN, producing a failure
mode’s ordinal ranking.

FMECA is widely used in several industrial and commercial applications such as oil
and gas, energy, mining, nuclear, chemical processes, and, lately, healthcare, among others.
Concerning electrical power systems, FMECA analysis was applied in different contexts.

In [6], for example, the FMEA analysis was applied to the risk assessment in capacitor
banks. The authors identified 17 failure modes from the following 3 main components:
the capacitor unit, the support insulators, and the unit panel, and conducted a detailed
explanation of failures and detection methods. The authors proposed four categories for
the severity, five for the occurrence, and six for the detection. The FMEA was applied to
capacitor banks installed in the Majan Electricity Company SAOC in Oman, where the
capacitor banks are an important source of medium-voltage grid outages. The authors
showed the FMEA worksheet with the failure modes ranked by their severity instead the
RPN. However, they do not compute the RPN.

Reference [7] presents a risk analysis of power transformers for maintenance and
replacement decision. The analysis uses the power transformers data published in 2015
by the Conseil International des Grands Réseaux Électriques (CIGRE). To conduct the analysis,
the power transformer was divided into the following six main components: winding,
core, insulation, bushings, tap changers, and tank. The authors develop a matrix that
presents the relationships between the parameters that cause failures. In this analysis, some
parameters included in the CIGRE data were used to assess the risk factors. The severity
considers parameters related to the effects of failures in power transformers, the damage
of the failures to the environment and themselves, their reparability, and the duration of
the electricity interruptions. The occurrence considers parameters such as failure location,
causes, and type. The detection considers parameters such as protection, monitoring, and
inspection. In addition, the effect of aging in the power transformers is considered under
the bathtub curve; the analysis considers the following three aging groups: ages from 0 to
5 years, ages from 5 to 20 years, and ages from 20 years and above. The RPN is computed
for each of the three groups of ages, considering the failure modes with RPN greater than
100 as the top priority risk. The insulation defects appear as the riskiest failure modes
in transformers with ages between 0 and 5 years; for ages between 5 and 20 years, the
transformers achieve a stable operation, and the RPN value is low, and, not surprisingly,
the RPN increases considerably for the FMECA analysis considering ages above 20 years.
Unlike other applications of classical FMECA, this work considers additional factors to
assess the risk factors and divides the analysis into three periods.

Reference [8] presents an approach to measure and collect data from remoter mon-
itoring systems in high-voltage power transformers, whose alarms and alert conditions
were identified through the FMEA analysis. Sensors for winding temperature, cooling-oil
temperature, inner pressure, and electrical power were installed to measure the parameters.
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A Simatic IoT2040, a Siemens open platform, user acquisition, processing, and data transfer
to enable real-time monitoring and preventive maintenance applications, was also used.
The FMEA analysis is used as an auxiliary method to detail and identify the transformer
failures and their detection methods (alarms and alert conditions), defining alarm categories
for different failures.

The first application of FMECA analysis in photovoltaic electrical systems (PV) is
shown in [9], where the authors show a risk analysis for a photovoltaic array at the North-
east Solar Energy Research Center (NSERC) located at Brookhaven National Laboratory’s
(BNL). The system is composed of 1672 photovoltaic modules, and each one is rated at
310 Wp. To conduct the analysis, the PV system was simplified considering only the
following three blocks: the source system composed of the photovoltaic modules, the rack
and cable system; the string combiner composed of fuses, dc cables, and disconnect devices;
the power conditioning system composed by the inverter, circuit breakers, transformers,
protective relays, and grid interface. The implemented FMECA focuses on the failure
modes of single components and considers less interest in their combination. The authors
identified the following two main problems for the work development: the availability of
specific photovoltaic systems failure databases and the outdated databases about failures in
electric elements; finally, the author uses failure information from academic references. The
five risk categories were defined based on the available information and experts’ experience,
represented by a 1–5 scale. Results show that inverter and lightning protection systems
are the riskiest failure modes, followed by the cells and contacts. The author evidences a
need for more publicly available FMEA analysis for PV systems. This makes it difficult to
validate the obtained results. However, the analysis identified an important set of failure
modes that will feed a probabilistic risk analysis.

Report [10] shows the results of the International Energy Agency Photovoltaic Power
Systems Programme (IEA PVPS), specifically related to the Performance, Operation, and
Reliability of Photovoltaic Systems (PVPS). The report considers the analysis of 191 main-
tenance tickets. Thirty failure modes related to the PV module, cables and connectors,
mounting structure, and inverter were identified during the analysis; 11 detection meth-
ods were also identified. The failure mode impact is defined in terms of the following
three safety categories: failure does not affect safety; failure may cause fire, electrical shock,
or physical damage; failure can directly cause fire, electric shock, or physical damage.
Five categories were defined to assess the failure mode impact on the system performance.
The FMEA analysis is performed for each failure mode, and failure characteristics such
as origin, detection method, impact on safety, and performance are assessed based on the
expert’s knowledge and opinion. The report also includes a quantitative analysis based
on a cost priority number (CPN). The authors extract the following important conclusions
from their analysis: the risk definitions are not fully structured, and event databases are
not harmonized. In this case, they noted that standardization for the available metadata
used in data analysis is necessary. Moreover, due to the large number of PV plants, the
automation of the maintenance ticket is essential to extract key performance parameters
efficiently, limiting human intervention.

Regarding wind electrical energy systems, the authors of [11] present a review of
several FMECA applications in offshore wind power plant components and analyze a
study case. The traditional risk categories represented the risk factors, as suggested in [3].
The FMECA identified 593 failure modes related to 83 components of the offshore wind
turbine and 119 failure modes related to 23 components of the offshore wind substation.
The tower and substructure, the blades, and the converter all achieve the higher RPN, and
conversely, the blade bearings and the nacelle are ranked, respectively, as the less critical
components [11]. In addition, the paper includes a quantitative comparative study using
a simplified version of the components of the wind turbine system and the traditional
FMEA methodology. The authors’ analysis aims to verify possible differences between
the obtained results and different wind turbine data and knowledge bases. The blades,
generator, and converter all achieve a higher probability of occurrence for their failure modes.
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The structural components, such as the blades and tower, achieve higher values for severity.
This study applies the classical FMECA analysis, using the expert’s knowledge to assess
the risk factors subjectively.

The application of FMECA analysis in the cyber-power grid context still needs to be im-
proved. Work [12] shows one of the first FMECA analysis applications in distribution grids
combining power and cyber equipment. The traditional risk categories represented the risk
factors, as suggested in [3]. The cyber-power grid test system was specially designed for
this application. The generation system shown in Figure 1 consists of one conventional
generation station (110 MW), one wind energy station (130 MW), one photovoltaic power
plant (100 MW), and one energy storage system (50 MW). The power grid consists of
four power transformers, fifteen circuit breakers, one residential load point (20 MW), one
industrial load point (85 MW), and one commercial load point (40 MW). The storage facility
and generation stations were not part of the FMECA analysis. The failure rate data for the
power equipment were collected from statistical data from the Portuguese electrical utility
and specialized databases and manufactured datasheets. The cyber network considers
a ring topology for the local area network LAN-Ethernet network; the wide area network
WAN-optical fiber network consisting of human-machine interfaces (HMI), ethernet switches,
servers, energy boxes with smart metering functions, and intelligent electronic devices (IED).
As indicated in Figure 1, the power grid architecture includes a control center consisting
of an inter-control center communications protocol server, an applications server, an engi-
neering server, an engineering database, and its respective backup. Finally, the test system
considers a corporate center consisting of one business server, one corporate server, an
e-mail server, a web apps server, and a file transfer protocol server. The reliability values for
the cyber network were collected from reliability statistics and manufacturers’ datasheets.
The FMECA analysis identified 107 failure modes and fully analyzed the 42 riskiest ones.
Results show that transformer explosions, IED control failures, and busbars’ structural
integrity loss achieve the highest RPN values.

On the other hand, the transformer tap-changer contacts’ degradation, the optical fiber
link fracture, and the optical fiber link humidity induced the lower RPN. The authors state
an interesting conclusion regarding human interference in future smart grids, specifically
the HMI’s operational failure due to human error, which negatively impacts the grid. This
human error is unintentional, and its high probability of occurrence and unpredictability
makes it a high-risk failure cause. Among this application’s main advantages was estab-
lishing a systematic process for failure identifications involving expert knowledge and
technical data. However, the relative importance of the risk factors was not considered
during the RPN computation, which the authors now consider for the same grid system in
this paper.

Reference [13] shows innovative research related to smart grid technologies, where
the authors introduce a novel application of chaotic systems in the context of an electrical
energy distribution network’s flow control. Chaos is introduced in the test circuits by
implementing Chua’s electronic circuit, which exhibits chaotic behavior. This application is
also relevant for microgrids, where a decentralized strategy often improves performance.
The paper proposes a mathematical model for a network of oscillators used for numerical
and experimental analysis. The basic topology consists of N RLC oscillators coupled
through a capacitor. In addition, the authors implemented a Chua circuit using operational
amplifiers. The test results in evidence that the time constant of the energy flow can be
effectively controlled by acting on the parameters of Chua’s circuit [13]. The authors
conclude that the effective implementation of chaotic signals is particularly valuable for
some applications, particularly in cases where efficient energy management in electrical
networks is necessary. One key benefit of utilizing this type of signal is the ability to control
the time constant of energy distribution and regulate the direction of the energy flow by
adjusting the parameters of the chaotic circuit considered.
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Figure 1. These authors in [12] applied FMECA analysis, combining power and cyber equipment in a
distribution grid.

From the previous literature review, we can conclude that the classical FMECA is
a powerful tool for identifying potential failure modes and their effects in several appli-
cations because the risk assessment follows a systematic procedure that considers the
knowledge of expert personnel and technical information about the system. Despite this
FMECA advantage, an in-deep analysis of the available literature evidence the following
weaknesses:

1. Computation of risk priority number (RPN) does not take into account the relative
importance of severity, occurrence, and detection risk factors;

2. Different combinations of S, O, and D can produce the same RPN value;
3. The numerical scales used to represent the risk factors are usually attributed arbitrarily,

being essentially qualitative scales;
4. Assessment of risk factors has a subjective character. Hence, an integer number may

not represent the uncertainty associated with expert knowledge, and;
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5. Although risk factors are represented as intervals, the RPN computing method is
inappropriate for this kind of data.

FMECA technique is a team-based qualitative risk analysis method. Therefore, human
reasoning plays an essential role during its development. An appropriate representation of
expert knowledge in risk assessment is one of the main challenges of the classical FMECA
method. Therefore, the criteria of the expert members constitute the principal source of
uncertainty in the classical FMECA analysis. Moreover, FMECA experts use linguistic
terms to represent risk categories, the second source of uncertainty in FMECA.

The mentioned five weaknesses in the classical FMECA analysis motivate us to find
alternatives to integrate the uncertainty into the FMECA risk assessment when applied
to the cyber-power grid perspective. Fuzzy logic appears as an appropriate approach to
represent the natural language and the human reasoning mechanism, allowing us to deal
with their intrinsic uncertainty. Employing fuzzy logic allowed us to represent each risk
factor using a function with associated uncertainty instead of only an integer number. In
addition, we can compute the failure modes risk through a reasoning mechanism instead
of the simple arithmetic product between three integer numbers.

Considering that context, this paper’s main objective is to evaluate using a type-I
fuzzy inference system to improve risk prioritization in the FMECA analysis, considering a
more natural risk definition based on expert knowledge. To test and apply the proposed
fuzzy-based FMECA, we applied our approach to the cyber-power grid we studied in [12]
using the power grid topology shown in Figure 1. In our approach, fuzzy membership
functions represent risk categories, and the risk computation follows a rule-based inference
mechanism.

Our results show that fuzzy sets and fuzzy rules adequately represent the expert
knowledge and risk perception of the FMECA team members. Because our fuzzy-FMECA
considered a different level of importance for each risk factor, the set of failure modes
previously ranked as the riskiest by classical FMECA was relocated to the most correct
priority. In addition, an in-deep analysis was included to explain how the fuzzy mechanism
works to assess the risk in the proposed cyber-power grid case.

The paper has the following structure: Section 2 includes a literature review of the
fuzzy-based methods used to improve the FMECA analysis. Section 3 presents a brief
introduction to fuzzy sets and type-I fuzzy inference systems applied in the context of
the FMECA analysis. Section 4 shows the implementation of the proposed fuzzy-FMECA
approach, including detailed information about the membership functions representing
the FMECA risk factors, fuzzy rules, and operators used for the fuzzy inference system.
Section 5 presents the classical FMECA analysis case study in the cyber-power grid and the
configuration of the fuzzy-FMECA test cases. Section 6 shows the results and a detailed
discussion about the failure modes prioritization obtained by the classical and fuzzy-
FMECA. Finally, Section 7 includes the paper’s conclusions and significant points for future
work.

2. Literature Review

As stated in the previous section, the FMECA analysis relies on the expert knowledge
of analysis team members. These team members evaluate failure modes qualitatively,
introducing uncertainty and vagueness into the process. The literature contains several
approaches proposed to deal with uncertainties related to risk and safety analysis, especially
in FMECA analysis.

In [14], the authors present an in-depth analysis of uncertainty sources in process
safety analysis (PSA). The study identified three sources of uncertainty: completeness un-
certainty refers to including all significant aspects within the analysis; modeling uncertainty,
related to deficiencies in the accident scenario probabilities and consequences modeling; pa-
rameter uncertainty, related to incomplete available data. The paper includes an exhaustive
identification of uncertainties associated with the different methods used in the following
four PSA stages: hazard analysis, consequence assessment, frequency estimation, and risk
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estimation. The authors propose a hybrid approach consisting of the traditional qualitative
hazard identification process and a quantitative model based on a fuzzy logic system (FLS)
used to quantify the frequency, severity of consequences, and risk index. Authors propose a
fuzzy logic-based “bow-tie” model to compute frequency; the consequence analysis is con-
ducted by individual fuzzy logic models to deal with the consequence analysis complexity,
showing an application for the boiling liquid expanding vapor explosion (BLEVE) calculation
on a 600 m3 tank with LPG. The risk index assessment model considers fuzzy frequency
and severity input variables. Finally, to compute the risk correction index (RCI), which
represents the effect of PSA quality on the overall risk index, the authors proposed an FLS
approach consisting of three categories for complexity, three categories for experience, and
nine fuzzy rules. The authors’ main conclusion states that FLS is a promising approach to
dealing with uncertainty in the PSA process.

Reference [15], the same authors present another innovative and recent fuzzy logic
application to deal with uncertainty in the representative accident scenarios (RAS) identifi-
cation as part of Hazard and Operability (HAZOP) analysis conducted by a team of experts.
The study identified two main sources of uncertainty: uncertainties related to team mem-
ber’s knowledge and experience; uncertainties related to the effect of safety barriers [15].
To take into account the effects of the safety barriers, the authors propose a risk correction
index (RCI); RCI is represented as a function of the quality index (QI), represented by the
complexity of the system under analysis and the experience of the analysis team, and as a
function of the efficacy index (EI) that represents the performance of the safety barriers qual-
itatively. The proposed approach for the RAS identification considers the following four
stages: (1) The HAZOP analysis to identify the accident scenarios; (2) a traditional initial
risk ranking and a fuzzy-based initial risk ranking that includes categories for classical and
fuzzy frequency, and classical and fuzzy consequences; (3) a final risk ranking assessment,
based on the traditional and fuzzy RCI, traditional and fuzzy QI and traditional and fuzzy
EI; a final RAS selection between the traditional RAS or the fuzzy RAS. When applied to
RAS identification in liquefied natural gas (LNG) storage tanks in a typical regasification
terminal, the results show that the fuzzy initial risk and fuzzy final risk indices for each
accident scenario were determined with more accuracy when compared to the traditional
approach [15].

Several approaches have been applied in the last two decades to overcome the short-
comings mentioned above in classical FMECA. In [16], the author shows extensive bibli-
ographic research on methods to improve the FMECA prioritization process from 1998
to 2018. The researchers used the following two-level keyword structure to conduct the
bibliographic research: "FMEA” or “FMECA”. Between the subordinate keywords, they
propose “risk priority number”, “risk evaluation”, “risk assessment”, “risk prioritization”,
“risk ranking”, “risk factor weight”, “reliability analysis”, “criticality analysis”, all these
being determined based on published papers and experts’ advice. Years from 2014 to 2018
account for 60% of the published papers, representing a significant growth in FMECA-
oriented research in the last 25% of the analyzed period. China is the major contributor to
the FMECA improvement. The methods of “gray theory” and “fuzzy inference systems”
appear to be the most used in the last decade to improve the FMECA analysis, mainly in
mechanical systems, aircraft systems, electronics, the automobile industry, and healthcare
risk management [16]. The main issues were using weights for a certain quality judgment
of each FMECA team member and the internal relationships among failure modes and
associated correction actions. In our opinion, one of the main conclusions of this paper is
related to the computational complexity of the proposed improvement methods, which
makes it difficult for practitioners to adopt them. In this context, fuzzy inference systems
appear as an appropriate methodology due to their conceptual simplification and the direct
participation of practitioners in the implementation.

In [17], the authors compared the classical FMECA with two modified FMECA based
on Grey relational theory (GRT) and fuzzy rule base (FRB). Five risk categories and triangular
membership functions represent the linguistic terms related to risk factors. A 125-rule base
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was formulated, and the Mamdani FRB was used to assess the risk priority in the fuzzy rule
base. The GRT is used to include experts’ diverse opinions and to assign a relative weight
to each assessment factor. The proposed approach assessed the risk of 27 failure modes
in pipeline systems. When comparing the three methods in two failure modes having the
same risk factors values, the classical and rule-based FMECA provided the same ranking.
However, the GRT method pointed to a different ranking for both failure modes, thus not in
agreement with the first two. The main advantages of using the rule-based and GRT-based
FMECA are that both allow the expert’s weighted experience to be better incorporated into
FMECA when there is limited operational data.

In [18], the authors propose an FMECA method combining fuzzy set theory, analytical
hierarchy process (AHP), and data envelopment analysis (DEA) to handle the uncertainty in
risk analysis of aircraft landing systems. The fuzzy stage considers the risk factors of five
categories, triangular and trapezoidal membership functions. The AHP assigns a weight for
each FMECA risk factor associated with four experts. The DEA determines the optimum
corrective actions for the riskiest failure modes. The authors applied their methodology to
assess risk in a simple aircraft landing system, comparing it with the fuzzy-developed FMEA
(FDFMEA). Authors conclude that their approach can provide much more information to
make a better decision decreasing the risk level. However, the failure modes prioritization
based on risk continued to remain subjective. A sensitivity analysis could provide more
information about the proposed model’s relationship between risk and cost.

Reference [19] shows an approach based on a combination of a modified fuzzy AHP
method to obtain the weights attributed to each risk factor plus a modified fuzzy weighted
multi-objective optimization on the basis of a ratio analysis plus the full MULTIplicative form
(MULTIMOORA) methodology to determine priority weights for the decision-makers. The
proposed approach includes the following three new risk factors: time T, cost C, and profit P.
Each risk factor fuzzification considered seven risk categories formalized with triangular
membership functions. The model was applied for risk assessment in a steel factory and
compared with the traditional fuzzy-FMECA and weighted fuzzy-FMECA methods. The
authors highlight some advantages of their proposed model, such as a more precise risk
evaluation due to the simultaneous use of risk factors weighting and establishing a set of
priority weights for the decision-maker’s criteria and experience.

In [20], a type-II fuzzy system is applied to identify hazardous conditions in marine
power systems applications. The method applied was a general type-II fuzzy system (GT2FS)
decomposed into several interval type-II fuzzy systems (IT2FS) to reduce the computational
complexity. The GT2FS considers five risk categories, type-II triangular membership
functions, and thus 125 fuzzy rules. Compared with the type-I fuzzy-based FMECA
and the classical FMECA, the authors state that their approach highlights the differences
between different failure modes’ rankings, becoming more robust and efficient for the RPN
calculation and the prioritization process.

Reference [21] contains another application of improved FMECA in the marine context.
The authors proposed a combined methodology based on fuzzy logic and the decision-
making trial and evaluation laboratory (DEMATEL) for correlation between failure modes and
their causes. The fuzzy system considered ten categories, trapezoidal membership functions
for the risk factors S, O, and D, and five categories with triangular membership functions
to represent risk factors weights. Before performing the risk assessment, an expert’s total
credibility weight also ponders the risk factor and its associated weights. The fuzzy RPN is
then computed using the weighted geometric mean between risk factors, with the final RPN
value obtained using the Centroid of Area COA. The DEMATEL method is applied in the
next step to correlate the failure modes with their occurrence, computing a causal degree
to rank the failure modes. When applied to the risk assessment in shipboard-integrated
electric propulsion systems, the authors conclude that their approach is consistent with
the practical engineering failure cases, and their approach considers the correlation effects
between failure modes and causes, giving higher risk priority to common cause failure
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modes. In other words, a higher risk priority is achieved if the same cause induces multiple
failure modes.

In [22], the authors proposed a new technique for fuzzy risk assessment in an FMECA
analysis based on D numbers and multi-sensor information. The fuzzy stage considers
seven risk categories with triangular and trapezoidal membership functions for risk factors.
The weights for risk factors are computed, with them transformed into D numbers. Finally,
the risk factors are ranked. When applying their approach to a case study that assesses the
risk of the general anesthesia process, the proposed method overcomes the shortcomings
of the traditional RPN approach to some degree, obtaining comparable performances
relative to other MCDM technologies used in FMEA as the Vise Kriterijumska Optimizacija I
Kompromisno Resenje VIKOR method. The proposed approach is especially suitable for the
case that contains non-exclusive fuzzy evaluations.

Reference [23] introduces the notion of fuzzy relative importance for the FMECA risk
factors. These were modeled by triangular membership functions, with authors including
the failure modes priority through three trapezoidal-based linguistic terms (low, moderate,
and high priority). In addition, two sets of fuzzy weights for the risk factors are computed.
The authors apply the proposed approach to the manufacturing process. Their approach
allows for establishing the relative importance of the risk factors by introducing a specific
fuzzy variable. Using fuzzy weights allows representation of the perception of the experts
from the FMECA team regarding each risk factor. The main limitation of this methodology
is, however, the assignment of the parameters for the membership functions related to
the importance and priority indices since they must be the result of consensus among the
members of the FMECA team.

In [24], the authors use the FMECA method in the logistic environment facing the
COVID-19 outbreak. The proposed approach considers a fuzzy-based FMECA to represent
twelve process failures identified and an Analytic Hierarchy Process (AHP) method to obtain
the weights for the three FMECA risk factors. The authors classified the failures into the
following three main groups: business risks, safety risks, and special issues. Results show
that failure mode, denoted by the Exposure of employees to high-risk groups with fever, is
the riskiest, showing the influence of the COVID-19 pandemic on the logistical systems. The
main advantage of the proposed approach combining the fuzzy-FMECA and AHP is the
accuracy of the degree of risk computation. The limitation of this work is the dependence
on the experts’ knowledge because the results may vary for different groups of experts.

In [25], the authors present an approach combining the fuzzy-FMECA analysis and
Fault Tree Analysis (FTA) to assess the riskiest failure modes quantitatively. The fuzzy-
FMECA considers five risk categories, triangular membership functions, and a fuzzy
inference system (FIS) to compute the risk priority number. When applied to a system with
four failure modes, the authors concluded that their approach proves efficient because as
the FTA only considers the riskiest failure modes, this allowed for reducing the tree size,
concentrating on the most severe failures that affect the system.

Reference [26] introduces the application of fuzzy-based FMECA analysis for risk
evaluation in power transformers. The proposed approach combines aggregation tools
based on hesitant fuzzy systems (HFS) and the Criteria Importance Through Inter-criteria
Correlation (CRITIC) technique. In the first step, an FMEA group, including three experts, is
asked to offer their opinions on the risk evaluations for seven failure modes using the HFS.
The second step considers the assignment of weights for each expert using the CRITIC
weighting method. The global risk for each failure mode is computed using a novel hesitant
fuzzy weighted geometric average (HFWGA), and finally, the failure modes are ranked. In
addition, the authors conduct a comparison between their approach, the Hesitant Fuzzy Vise
Kriterijumska Optimizacija I Kompromisno Resenje (HF-VIKOR), the Hesitant Fuzzy Technique
for Order Preference by Similarity to the Ideal Solution (HF-TOPSIS), and extended generalized
TOmada de Decisao Interativa Multicriterio (TODIM). The authors’ results state that their
rankings are consistent with the classical FMECA and the generalized TODIM, concluding
that the proposed FMEA framework is valid for evaluating and ranking failure modes’
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risk prioritization. The proposed FMECA approach is flexible in handling risk assessment
teams with multiple experts and includes a relative weighting among them. The three risk
factors and the inherent relation between risk factors should be investigated to improve the
method.

In [27], it is introduced the application of the fuzzy-FMECA analysis for the safety
risk assessment in a water diversion infrastructure. Failure modes were classified into the
following four main groups: social impact, operation management, engineering technology,
and environmental impact. The fuzzy structure considers fives risk categories, triangular
membership functions and Mamdani fuzzy inference system. The approach is applied to
a strategic infrastructure in China, the Huixian section of the Middle Route Project of the
South-to-North Water Diversion Project (MRP-SNWDP). To collect the data for the analysis,
the authors asked twenty-four experts to fill out a questionary to determine the scores for
occurrence and detectability, and the data for severity obtained from the inspection reports.
In addition, a weight was associated with the experts’ experience. Compared with the
classical FMECA, the proposed approach can make a systematic risk prioritization, with
the prioritization results obtained from both FMECA methods being very similar. This
approach’s main limitation is related to the subjectivity of the questionnaire survey and the
use of qualitative indicators for the three risk factors.

A different application of fuzzy-based FMECA is found in [28], where the authors show
its application in a quantifier prototype of methane gas (CH4) and carbon dioxide (CO2)
specifically developed to measure the emissions generated by cattle. A group of specialists
identified 30 failure modes through the classical FMECA analysis. The proposed fuzzy-
FMECA architecture comprises five risk categories, trapezoidal membership functions
for the three risk factors, seven categories and triangular membership functions for the
RPN, and a Mamdani fuzzy inference system with 125 rules. From the results, the authors
conclude that fuzzy logic is adequate for risk assessment, especially in the project or
porotypes development stages, when no operational information is available to support
the decisions. Although the fuzzy-based FMECA deals with the uncertainty associated
with the expert’s criteria, using classical ratings to assess the risk factors can disadvantage
this methodology.

A recent application of adaptive neuro-fuzzy inference systems (ANFIS) and support
vector machines (SVM) to improve the FMECA process is shown in [29]. FMECA analysis
is a proactive diagnosis technique for this work’s edible oil purification process. The
authors propose an approach consisting of the following steps: (1) A process description
where the authors define the system’s main functions and the failure modes’ causes, effects,
and consequences; (2) A knowledge-based approach, where authors determine the risk
parameters, defined the ANFIS and SVM structures; (3) A final step that includes the
RPN computing and sensitive analysis. Four experts identified 67 failure modes from
14 components. The ANFIS approach considered 3 fuzzy categories with 27 rules, 5 fuzzy
categories with 125 rules, and 10 categories with 1000 rules; in addition, the analysis
considered a combination of eight membership functions for the risk factors triangular,
trapezoidal, pi, gauss, gauss2, g-bell, p-sigmoid and d-sigmoid). The application of SVM
considered the following two algorithms: Sequential Minimal Optimization (SMO) and
Iterative Single Data Algorithm (ISDA), which classify the 67 failure modes into 67 risk
clusters. The ANFIS network using hybrid training, specifically the 3-categories (27-rule)
and the 5-categories (125-rule), showed high potential to create maximum risk number
cluster failure modes. Regarding the SVM application, the ISDA algorithm has higher
accuracy in predicting the actual values and classifying the failure modes with the lowest
error compared to the other intelligent methods in this paper.

In [5], the authors show one of the first approaches that apply type-I Mamdani fuzzy
systems for the FMECA analysis in the smart grid environment. The fuzzy-FMECA analysis
was performed in the following two stages: first, an intermediate fuzzy variable called
“impact” is computed using the fuzzy inference system between risk factor Severity and
Occurrence. The fuzzy RPN is computed by applying the fuzzy inference system between



Energies 2023, 16, 3346 11 of 34

the impact and the Detection. Risk factors were represented by triangular and Gaussian
membership functions corresponding to five risk categories. The proposed approach was
applied for risk assessment on eight smart grid components, showing that the fuzzy-based
FMECA adequately prioritizes the failure modes. However, one must point out that this
analysis does not consider any interdependency between the different components.

Reference [30] also shows the application of type-I fuzzy inference systems for improv-
ing the FMEA analysis in a smart grid distribution system. The fuzzy system considers
125 fuzzy rules, triangular membership functions for the risk factors O, S, and D, and
Gaussian membership functions for the RPN. The Mamdani inference system and COA
were used in the defuzzification process. When applied to a power grid test system shown
in [12] consisting of 24 failure modes, authors conclude that their approach deal with the
uncertainty in predicting failure modes where there is insufficient data or even knowledge
to make accurate decisions, providing a way for dealing with multiple experts with conflict-
ing opinions. The results proved that the method is more robust and accurate than classical
FMECA. Moreover, the method developed can be improved by considering economic
constraints.

Due to the limited applications of FMECA analysis in the context of cyber-power
grids, this work aims to contribute to the prioritization of failure modes, introducing the
application of fuzzy systems to represent the uncertainty associated with human language
and the human logical reasoning mechanism.

The following section introduces type-I fuzzy inference systems and the FMECA risk
factors representation in fuzzy logic terms.

3. Type-I Fuzzy Inference Systems
3.1. Fuzzy Sets and Fuzzy Logic

A fuzzy set can be viewed as an extension of a classical set that “introduces vagueness
by eliminating the sharp boundary that defines when an object belongs to a set (or category)
or not” [31]. In classical sets theory, a particular element belongs to a set or not; in fuzzy
sets’ terms, it is possible to say that this element belongs to a set with a certain membership
grade. For example, the probability of occurrence for a particular failure mode is 5 × 10−2

occurrences per year. We state that it belongs to a risk category named Occurrence Probable
(OP). To represent the risk category OP as a fuzzy set, one considers that the failure mode’s
probability of occurrence is around 5 × 10−2 occurrences per year. The term around means
that fuzzy set OP will contain not only the failure modes with probability 5 × 10−2, but
also failure modes whose probability of occurrence is close to 5 × 10−2 within a predefined
interval. Let us say that the fuzzy set OP (occurrence around 5 × 10−2) is defined in
the interval from 3 × 10−2 to 30 × 10−2, as shown in Figure 2. All failure modes with a
probability of occurrence within this interval will belong to the OP with a certain membership
grade. This, in fuzzy sets, can be modeled through a membership function, denoted by µ(x)
that assigns a membership grade between 0 and 1 to each element in the interval.
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Figure 2 shows a triangular-shaped membership function defined to represent the
category OP on the interval [30 × 10−2, 30 × 10−2], and whose membership varies from 0
(non-membership) to 1 (full membership). When the probability of occurrence is 5 × 10−2,
it has a grade of membership equal to 1; when the probability of occurrence is 20 × 10−2, it
has a grade of membership equal to 0.4; when the probability of occurrence is 30 × 10−2, it
has a grade of membership equal to 0, and so on.

Formally, a fuzzy set Ã can be defined as a set of ordered pairs (2), where µA(x) is the
“membership function” of x in the fuzzy set Ã (the degree that x belongs to Ã). A letter U
is called the universe of discourse and represents all the possible values for x [31]. This kind
of fuzzy set is a standard or Type-1 fuzzy set [32,33] and is completely characterized by its
membership function [34].

Ã = {(x, µ(x))/x ∈ U} (2)

The membership function is considered a subjective representation of the human
language [34,35]. It can be established using intuition or inference procedures, neural
networks, genetic algorithms, soft partitioning, and other procedures found in the literature.
In general, it is always preferable that the membership function represents the expert
knowledge for a particular application if this knowledge is available.

In the context of FMECA, the three risk factors (S, O, and D) can also be represented
in fuzzy terms as linguistic variables [35]. For example, linguistic values such as “Remote”,
“High”, or “Moderate” can be used to define the occurrence, O, instead of using numerical
values.

In a mathematically formal way, a quintuple represents a linguistic value (x, T(x), U, G, M),
where x is the variable, T(x) is the term-set of x (collection of linguistic values for x), U is
the universe of discourse for x (all possible values of x), G is a syntactic rule for generating
terms T(x), and M is a semantic rule that associates each linguistic value with is meaning
M(x), where M(x) is a fuzzy set in U [35].

3.2. Fuzzy Membership Functions

The membership functions characterize the fuzziness in a fuzzy set. Usually, mem-
bership functions can be represented by mathematical formulae. The most common mem-
bership functions are the triangular and trapezoidal membership functions. The triangular
membership function (tri), denoted by tri(x; a, b, c), is specified by the following three param-
eters as shown in Equation (4) [34]:

tri(x; a, b, c) =


0, x < a

(x− a)/(b− a), a ≤ x ≤ b
(c− x)/(c− b), b ≤ x ≤ c

0, x > c+
(3)

The trapezoidal membership function (trap), denoted by trap(x; a, b, c, d), is specified by
four parameters, as shown in the Equation (4) [34].

trap(x; a, b, c, d) =


(x− a)/(b− a), a ≤ x ≤ b

1 b ≤ x ≤ c
(d− x)/(d− c), c ≤ x ≤ d

0, otherwise

(4)

The two functions (3) will be used to represent the FMECA risk factors.

3.3. Fuzzy If-Then Rules

In fuzzy logic, approximate reasoning refers to a mode of reasoning in which the
input-output relation of a system is expressed as a collection of fuzzy IF-THEN rules where
the preconditions and consequents involve linguistic variables [31,34]. The fuzzy if-then
rule is also known as a fuzzy rule, fuzzy implication, or fuzzy conditional statement [34].
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A general structure of if-then rules is “IF x is A THEN y is B”, where the expression
“x is A” is called the antecedent or premise, and the expression “y is B” is called the
consequent or conclusion [34]. Fuzzy if-then rules can be explained in detail using the
context of fuzzy relations, but because this work is not a treatise on fuzzy relations, this
topic was not covered in this section. An example in the FMECA context would be a fuzzy
if-then rule associated with a particular failure mode expressed as follows:

IF (Severity is hazardous) AND (Occurrence is remote) AND (Detection is high)
THEN (RPN is moderate).

The terms hazardous, remote, and high are fuzzy categories related to Severity, Occur-
rence, and Detection, respectively. Moderate is a fuzzy category related to the risk priority
number (RPN). Usually, fuzzy rules are defined by a group of experts or using artificial in-
telligence mechanisms. In our context, one considers that the rule’s antecedent is composed
of the combination of the three risk factors, each represented linguistically by a fuzzy set.

3.4. Fuzzy Inference Systems

The fuzzy inference system (FIS) is a computational framework that formulates in-
put/output mappings through fuzzy if-then rules and fuzzy reasoning mechanisms. The
FIS consists of the following three stages, as shown in Figure 3 [34]:

• The input processing stage is called fuzzification, where the input variables are trans-
formed into fuzzy sets;

• The reasoning mechanism, which performs the inference procedure based on the pre-
defined fuzzy rules and the selected fuzzy inference mechanism to derive a reasonable
output or conclusion and;

• In the output processing stage, defuzzification transforms the fuzzy sets resulting from
the reasoning mechanism into a crisp value.
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The inputs of a FIS can be either fuzzy or numerical values. In fuzzy logic, the
numerical values are called crisp and can be represented as a fuzzy singleton function [31,34].
There are the following two main fuzzy inference systems: the Mamdani FIS and Takagi-
Sugeno FIS [31,34]. To explain the fuzzy inference system block diagram shown in Figure 3,
in the next paragraphs, we detail the Mamdani fuzzy inference system depicted in Figure 4
with the following two fuzzy rules:

Rule1 : If (x11 is A11) AND If (x12 is A12) THEN (z1 is C1),

Rule2 : If (x21 is A21) AND If (x22 is A22) THEN (z2 is C2),

where the operator AND is represented by the min(•) (T-norm), the implication operator
THEN is represented by the min(•) (T-norm), the aggregate operator is represented by
max(•) (T-conorm), and the defuzzification is obtained by the centroid of the area (COA).
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The Mamdani FIS shown in Figure 4 comprises the following steps that represent the
fuzzy inference system stages depicted in Figure 3 [34]:

• Step 1: Obtain the membership value for each input variable in the antecedent part
of the fuzzy rule. In the example of Figure 4, for Rule 1, the membership value for
the input x11 in the fuzzy set A11 is µ11, and the membership value for the input
variable x12 in the fuzzy set A12 is µ12. The same analysis is valid for rule 2. This step
is known as fuzzification, and the membership functions can be specially defined for
the application or taken from a database; this step represents the Input Processing
Stage depicted in Figure 3.

The reasoning mechanism shown in Figure 3 comprises the fuzzy rules and the fuzzy
inference mechanism. This stage is conducted in the following two steps, the combination
of membership values detailed in step 2 and the consequent generation detailed in step 3:

• Step 2: Combine the membership values on the antecedent part of each rule through a
specific fuzzy operator, usually the minimum min(•) operator or the maximum max(•)
operator, to obtain a fuzzy rule’s weight (called firing strength). This step is equivalent
to using the AND operator or the OR operator in Boolean logic. If the result of
the combination is greater than zero, the rule is “fired,” and its consequent will be
computed using this firing strength. In the example of Figure 4, the operator min(•),
equivalent to the Boolean operator AND, is used to obtain the minimal value between
µ11 and µ12, resulting in the rule 1 firing strength α1. The same analysis is valid for
rule 2;

• Step 3: Generate the qualified consequents of each rule by weighting each consequent
fuzzy set with the firing strength obtained in step 2. This step is equivalent to the
implication (THEN) in Boolean logic. In the example of Figure 4, the fuzzy output
rule 1 is weighted by the firing strength α1. The implication operator, usually the min
operator, truncates the consequent’s fuzzy set at the α1 value, obtaining the shaded
area in set C1. The same analysis is valid for rule 2.
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The output processing stage shown in Figure 3 corresponds to the conversion of the
fuzzy consequent determined in step 3 into a crisp value:

• Step 4: Aggregate all the qualified consequents to produce the FIS fuzzy output, then
this output is defuzzified to obtain the final crisp output. The aggregation process
combines all rule’s consequents to obtain a single fuzzy set through an aggregation
operator, usually the operator max(•). Defuzzification is the process of extracting a
crisp representative value from a fuzzy set. This work considers the centroid of the
area, COA, because it is the most popular defuzzification method [34]. In Figure 4, the
application of the operator max(•) between the rule’s outputs produces the shaded
area, and the application of the operator COA produces the FIS crisp output y∗.

3.5. FMECA Risk Factors Expressed in Fuzzy Terms

As stated in Section 1, the risk categories in the classical FMECA are represented by
an integer numerical scale, being the most used on the 1–10 scale and the 1–5 scale. The
selected scale usually determines the number of risk categories associated with each risk
factor.

In this work, one considered the “seven plus or minus two” criterion defined by
Miller in [33] to establish the number of fuzzy membership functions to each risk factor.
According to Miller, the limit of the information processing capacity of human memory
is seven units of information simultaneously, more or less two pieces of information.
In [36], the authors used the Miller criterion to support their decision to fix the number
of membership functions associated with a specific fuzzy category. Although the authors
state that they do not have sufficient theoretical arguments to support their selection, they
concluded that their decision to assign eight membership functions (seven plus one) is
simple enough to be understood by the decision-maker and analyzed by the fuzzy system.
Following this logic, we have selected five membership functions (exactly seven minus
two terms) to represent the fuzzy categories associated with each risk factor.

FMECA must be conducted by human experts, who assign an integer value from 1
to 10 for each risk factor. Following, one considers the universe of discourse for each risk
factor as the interval U = [1, 10]. The three risk factors (Severity S, Occurrence O, Detection
D, and the risk priority number RPN) will be represented by fuzzy variables.

Regarding Severity, we consider the following assumptions:

• The Severity categories are as follows: Severity Minor (SMI), Severity Low (SL),
Severity Moderate (SM), Severity Very High (SVH), and Severity Hazardous (SH);

• The term-set for Severity T(S) is as follows: T(S) = {SMI, SL, SM, SVH, SH};
• The semantic rule M for the term set for Severity T(S) is shown in Table 1.
• Regarding Occurrence, we consider the following assumptions:
• The Occurrence categories are the following: Occurrence Remote (OR), Occurrence

Very Unlikely (OVU), Occurrence Occasional (OO), Occurrence Probable (OR), and
Occurrence Frequent (OF);

• The term-set for Occurrence T(O) is as follows: T(O) = {OR, OVU, OO, OP, OF};
• The semantic rule M for T(O) is shown in Table 2.

Table 1. Semantic rules for term-set Severity.

Semantic Rule Fuzzy Subset

M(SMI) The effect of the failure mode is considered Minor when assessed as 1
M(SL) The effect of the failure mode is considered Low when assessed between 2 and 3
M(SM) The effect of the failure mode is considered Moderate when assessed between 4 and 6

M(SVH) The effect of the failure mode is considered Very High when assessed between 7 and 8
M(SH) The effect of the failure mode is considered Hazardous when assessed between 9 and 10
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Table 2. Semantic rules for term-set Occurrence.

Semantic Rule Fuzzy Subset

M(OR) The occurrence of the failure mode is considered Remote when assessed as 1
M(OVU) The occurrence of the failure mode is considered Very Unlikely when assessed between 2 and 3
M(OO) The occurrence of the failure mode is considered Occasional when assessed between 4 and 6
M(OP) The occurrence of the failure mode is considered Probable when assessed between 7 and 8
M(OF) The occurrence of the failure mode is considered Frequent when assessed between 9 and 10

Regarding the Detection, we consider the following assumptions:

• The categories for Detection are as follows: Detection Almost Certain (DAC), Detection
High (DH), Detection Moderate (DM), Detection Low (DL), and Detection Absolutely
Impossible (DAI);

• The term-set for Detection T(D) is as follows: T(D) = {DAC, DH, DM, DL, DAI};
• The semantic rule M for T(D) is shown in Table 3 as follows:

Table 3. Semantic rules for term-set Detection.

Semantic Rule Fuzzy Subset

M(DAC) The detection of the failure mode is considered Almost Certain when assessed as 1
M(DH) The detection of the failure mode is considered High when assessed between 2 and 3
M(DM) The detection of the failure mode is considered Moderate when assessed between 4 and 6
M(DL) The detection of the failure mode is considered Low when assessed between 7 and 8

M(DAI) The detection of the failure mode is considered Absolutely Impossible when assessed between 9 and 10

In the classical FMECA, the RPN results from the product of S, O, and D have a
range from 1 to 1000. The RPN also can be divided into risk categories in the fuzzy
reasoning context to implement the reasoning mechanism. Therefore, the range or universe
of discourse does not necessarily need to be equal to the classical RPN. In this work, the
universe of discourse for RPN is considered as U = [1, 10] with the following assumptions:

• The categories for the RPN were defined as follows: Risk Minor (RMI), Risk Low (RL),
Risk Moderate (RM), Risk High (RH), and Risk Extreme (RE);

• The term-set for RPN T(RPN) is as follows: T(RPN) = {RMI, RL, RM, RH, RE};
• The semantic rule M for T(RPN) is shown in Table 4.

Table 4. Semantic rules for term-set for RPN.

Semantic Rule Fuzzy Subset

T(RMI) The overall risk of the failure mode is considered Minor when assessed around 1
T(RL) The overall risk of the failure mode is considered Low when assessed between 2 and 3
T(RM) The overall risk of the failure mode is considered Moderate when assessed between 4 and 6
T(RH) The overall risk of the failure mode is considered Very High when assessed between 7 and 8
T(RE) The overall risk of the failure mode is considered Hazardous when assessed between 9 and 10

In the next section, we apply the fuzzy framework depicted before to represent and
process the risk categories in a fuzzy-FMECA analysis. More specifically, we propose a
methodology to apply fuzzy inference systems to prioritize the failure modes, which are
then applied to a cyber-power grid.

4. Implementation

Figure 5 shows a flowchart describing the proposed fuzzy-FMECA approach. The
flowchart is divided into the following two stages:
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• Stage 1: The classical FMECA is accomplished first. As a result, one obtains the value of
the three risk factors for each failure mode, the failure mode overall risk represented by
the RPN computed through the Equation (1), and the failure modes ranking according
to Section 1. The steps taken are shown in blue in Figure 5;

• Stage 2: This stage comprises the fuzzy-FMECA. Its steps are shown now in orange
in Figure 5. The fuzzy database (composed of the fuzzy sets) and the fuzzy rules are
constructed considering the expert criteria of the FMECA team members. Following,
using the information of the fuzzy database, the risk factors (S, O, D, and RPN) are
fuzzified. The fuzzy risk factors and the fuzzy rules are the input for the fuzzy
inference mechanism. Once the inference mechanism is executed, the fuzzy RPN and
the failure mode’s ranking are obtained.
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To maintain the essence of the classical FMECA and for comparison purposes, we
consider the rating for each risk factor as an integer number, resulting from the FMECA
team members’ consensus.

4.1. Fuzzy Categories for the FMECA Risk Factors

As stated in Section 3.5, the FMECA risk factors are assessed using integer numbers
on a numerical scale from 1 to 10. This work considers five membership functions for each
risk factor and the fuzzy RPN. Table 5 shows the proposed categories and their respective
ratings. For example, when the rating for Severity is 4, 5, or 6, it belongs to the category
severity moderate SM. The next section shows the proposed fuzzy membership functions
used to represent each risk category in Table 5.

Table 5. Ratings for risk categories used as in the classical FMECA.

Severity (S) Occurrence (O) Detection (D) FuzzyRPN 1 Rating

Hazardous—SHA Frequent—OF Absolutely impossible—DAI Extreme—RE 9, 10
Very High—SVH Probable—OP Low—DL High—RH 7, 8
Moderate—SM Occasional—OO Moderate—DM Moderate—RM 4, 5, 6

Low—SL Very unlikely—OVU High—DH Low—RL 2, 3
Minor—SMI Remote—OR Almost Certain—DAC Minor—RMI 1

1 FuzzyRPN (Fuzzy Risk Priority Number) resulting from defuzzification is not always an integer number, and its
value falls inside the limits of the corresponding rating.

The fuzzy risk priority number (FuzzyRPN) included in Table 5 results from de-
fuzzification is not always an integer number, and its value falls inside the limits of the
corresponding rating.

4.2. Membership Functions for the FMECA Risk Factors

The use of membership functions to represent the risk categories allows for the in-
clusion of the vagueness associated with the natural language used by the FMECA team
members to classify the failure modes. While the classic FMECA considers strict member-
ship for each category, the fuzzy-FMECA is flexible, and ratings may belong to two risk
categories simultaneously with different membership values.

This work uses the following two widely-used membership functions: triangular and
trapezoidal; the FMECA team members selected these functions for their parameterization
simplicity. To parameterize the membership functions, we considered the criteria of the
FMECA team members who performed the FMECA analysis presented in [12]; they set
the central point, limits, slope, and the overlapping of the functions. Table 6 shows
the parameters for the triangular membership functions that represent the risk factors’
Occurrence and Detectability. Figure 6 shows their shapes.

Table 6. Type-I triangular membership functions for the FMECA risk factors.

Category Occurrence Detection

1 tri(x; 0,1.5,2.5) tri(x;0,1.5,2.3)
2, 3 tri(x; 0.8,2.8,4.2) tri(x;1.1,2.9,4.5)

4, 5, 6 tri(x; 3.2,5.4,7.4) tri(x;2.5,5.0,7.5)
7, 8 tri(x; 6.4,7.5,9.6) tri(x;4.8,7.5,10.4)

9, 10 tri(x; 8.7,9.3,11.4) tri(x;7.6,9.3,12.4)



Energies 2023, 16, 3346 19 of 34Energies 2023, 16, x FOR PEER REVIEW 20 of 36 
 

 

  

Figure 6. Triangular type-I FIS membership functions for the FMECA risk factors occurrence and 

detectability. 

To parametrize the triangular membership functions were considered the following 

assumptions: 

• The functions’ shapes are non-symmetrical to allow different overlapping levels be-

tween categories; 

• The triangular membership function OR has the lower limit at O = 0 and the upper 

limit at O = 2.5; the maximum membership value occurs at O = 1.5; 

• The triangular membership function OVU has the lower limit at O = 0.8 and the 

upper limit at O = 4.2; the maximum membership value occurs at O = 2.8, that is, at 

the mid-point of its respective interval; 

• Categories OR and OVU are superposed. When a failure mode’s severity is rated as 

1, we can say that it belongs to category OR with membership 0.667 and, simultane-

ously, to category OVU with membership 0.1. When a failure mode’s occurrence is 

rated as 2, we can say that it belongs to category OR with a membership of 0.50, and 

at the same time, it belongs to category OVU with a membership of 0.60. The simul-

taneous membership of a particular failure mode into two different categories 

shows the flexibility of the system to represent the vagueness associated with the 

risk perception of the members of the FMECA team; 

• The membership functions for detection were parametrized following the above-

mentioned criteria. 

Table 7 shows the parameters for the trapezoidal membership functions to repre-

sent the risk factors Severity and FuzzyRPN, and Figure 7 shows their shapes.  

To parametrize the trapezoidal membership functions were considered the follow-

ing assumptions: 

• Most functions are shaped as non-symmetrical to allow different overlapping levels 

between categories; 

• The trapezoidal membership function SMI has the lower limit at S = 0 and the upper 

limit at S = 2.4; the maximum membership value occurs between S = 1 and S=1.5; 

• The trapezoidal membership function SL has the lower limit at S = 0.9 and the up-

per limit at S = 3.5; the maximum membership value occurs between S = 2 and S = 3; 

• Categories SMI and SL are superposed. When a failure mode’s severity is rated as 1, 

we can say that it belongs to category SMI with the maximum membership of 1.0 

and, at the same time, it belongs to category SL with a membership of 0.09. When a 

failure mode’s severity is rated as 2, we can say that it belongs to category SM with 

the maximum membership of 1.0 and, at the same time, it belongs to category SL 

with a membership of 0.44; 

• The membership functions for the FuzzyRPN consider the full membership around 

the mid-point of each category; as an example, for the risk category RM with limits 

between 4 and 6, the full membership is achieved when resulting fuzzy RPN are 

computed between 4.2 and 5.5, and for the risk category RH the full membership is 

achieved when the resulting RPN are computed between 7 and 8. 

Figure 6. Triangular type-I FIS membership functions for the FMECA risk factors occurrence and
detectability.

To parametrize the triangular membership functions were considered the following
assumptions:

• The functions’ shapes are non-symmetrical to allow different overlapping levels be-
tween categories;

• The triangular membership function OR has the lower limit at O = 0 and the upper
limit at O = 2.5; the maximum membership value occurs at O = 1.5;

• The triangular membership function OVU has the lower limit at O = 0.8 and the upper
limit at O = 4.2; the maximum membership value occurs at O = 2.8, that is, at the
mid-point of its respective interval;

• Categories OR and OVU are superposed. When a failure mode’s severity is rated as 1,
we can say that it belongs to category OR with membership 0.667 and, simultaneously,
to category OVU with membership 0.1. When a failure mode’s occurrence is rated as
2, we can say that it belongs to category OR with a membership of 0.50, and at the
same time, it belongs to category OVU with a membership of 0.60. The simultaneous
membership of a particular failure mode into two different categories shows the
flexibility of the system to represent the vagueness associated with the risk perception
of the members of the FMECA team;

• The membership functions for detection were parametrized following the abovemen-
tioned criteria.

Table 7 shows the parameters for the trapezoidal membership functions to represent
the risk factors Severity and FuzzyRPN, and Figure 7 shows their shapes.

Table 7. Type-I trapezoid membership functions for the FMECA risk factors.

Category Severity FuzzyRPN

1 trap(x; 0.1,0.6,1.5,2.4) trap(x; 1.0,1.0,1.6, 2.5)
2,3 trap(x;0.9,2.0,3.0,3.5) trap(x; 1.0,2.4,3.2,4.1)

4,5,6 trap(x;2.7,4.0,5.0,7.8) trap(x;2.9,4.2,5.5,7.6)
7,8 trap(x;5.1,7.0,8.0,9.5) trap(x;5.5,7.0,8.0,9.5)

9,10 trap(x;7.6,9.0,10.0,12.2) trap(x;7.67,9.06,10,10)

To parametrize the trapezoidal membership functions were considered the following
assumptions:

• Most functions are shaped as non-symmetrical to allow different overlapping levels
between categories;

• The trapezoidal membership function SMI has the lower limit at S = 0 and the upper
limit at S = 2.4; the maximum membership value occurs between S = 1 and S = 1.5;

• The trapezoidal membership function SL has the lower limit at S = 0.9 and the upper
limit at S = 3.5; the maximum membership value occurs between S = 2 and S = 3;

• Categories SMI and SL are superposed. When a failure mode’s severity is rated as
1, we can say that it belongs to category SMI with the maximum membership of 1.0
and, at the same time, it belongs to category SL with a membership of 0.09. When a
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failure mode’s severity is rated as 2, we can say that it belongs to category SM with
the maximum membership of 1.0 and, at the same time, it belongs to category SL with
a membership of 0.44;

• The membership functions for the FuzzyRPN consider the full membership around
the mid-point of each category; as an example, for the risk category RM with limits
between 4 and 6, the full membership is achieved when resulting fuzzy RPN are
computed between 4.2 and 5.5, and for the risk category RH the full membership is
achieved when the resulting RPN are computed between 7 and 8.
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4.3. Fuzzy If-Then rules for the Proposed Approach

The fuzzy rules used in this work were defined by the same team that conducted the
classical FMECA analysis shown in [12], considering the combination of the five risk factor
categories (the five membership functions) as premises. The respective consequent was
then selected from the FuzzyRPN categories. The resulting 125 fuzzy rules are listed in
Appendix A.

4.4. Operations for the Type-I Fuzzy Inference System

We select the same logical operators used for the Mamdani FIS example of Section 3.4.
They are as follows:

• “AND” method—min;
• “IMPLICATION” method—min;
• “AGGREGATION” method—max;
• Defuzzification—COA;

5. Application of the Fuzzy-FMECA Approach to a Cyber-Power Grid
5.1. Cyber-Power Grid Test System

The proposed fuzzy-FMECA approach was applied to the cyber-power grid test system
shown in Figure 1 and was previously used by these authors in [12]. The system comprises
a four-bus 30 kV power system and a cyber network for monitoring and management.
The main equipment considered was the busbar, cable, circuit breaker (CB), transformer,
human-machine interface (HMI), switch (SW), intelligent electronic device (IED), and
optical fiber.

One hundred and seven (107) failure modes (FM) were initially identified, but only the
42 riskiest failure modes were selected for further analysis, as listed in Table 8. It shows the
classical FMECA worksheet for the cyber-power grid test system, where the values for each
risk factor S, O, and D were considered obtained from the consensus of the FMCEA team
members. This set will also be used as inputs for the proposed fuzzy-FMECA approach.
Table 8 also shows the RPN value and the rank achieved for each failure mode.
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Table 8. Classical FMECA applied to the cyber-power grid test system shown in Figure 1 (based
on [12]).

Failure
Mode Equipment Failure Mode(s) S O D RPN Rank

FM01 Busbar Loss of structural integrity 7 5 9 315 9
FM02 Busbar Loss of structural integrity 7 6 9 378 3
FM03 Busbar Loss of structural integrity 7 5 9 315 10
FM04 Busbar Loss of electrical continuity 8 4 10 320 6
FM05 Busbar Electrical disturbances 8 4 10 320 7
FM06 Bus-bar Electrical disturbances 8 4 8 256 17
FM07 Cable Cable integrity defect 8 7 5 280 15
FM08 Cable Electrical operation failure 6 6 10 360 4
FM09 CB Insulation failure 6 5 7 210 26
FM10 CB Wrong operation 7 6 4 168 37
FM11 CB Bushing breakdown 6 5 10 300 11
FM12 CB Bushing terminal hot spot 6 4 8 192 29
FM13 CB CB contacts degradation 6 5 9 270 16
FM14 Transformer Bushing breakdown 6 4 10 240 22
FM15 Transformer Bushing terminal hot spot 6 4 7 168 39
FM16 Transformer Magnetic-core delamination 6 4 7 168 38
FM17 Transformer Winding overheating 7 6 7 294 14
FM18 Transformer Tap changer contacts degradation 6 3 9 162 40
FM19 Transformer Tank rupture 8 3 9 216 23
FM20 Transformer Winding isolation degradation or breakdown 6 4 10 240 21

FM21 Transformer Distortion, loosening, or winding
displacement 7 5 9 315 8

FM22 Transformer Transformer explosion 9 5 10 450 1
FM23 Transformer Cooling system failure 8 3 7 168 36
FM24 HMI Operational failure 5 5 10 250 19
FM25 HMI Security failure 9 2 10 180 33
FM26 SW Performance decreased 6 7 6 252 18
FM27 SW Operational failure (Switch blackout) 6 6 10 360 5
FM28 SW Operational failure (Switch blackout) 6 5 10 300 13
FM29 SW Network/Cyber storm 6 4 7 168 35
FM30 SW Power outage 6 3 10 180 34
FM31 SV Data errors 6 5 10 300 12
FM32 SV Power outages 7 3 10 210 25
FM33 SV Security failure 10 2 10 200 28
FM34 IED Communication failure 6 5 8 240 20
FM35 IED Communication failure 6 4 8 192 30
FM36 IED Communication Failure 6 5 7 210 27
FM37 IED Monitoring failure 6 5 6 180 32
FM38 IED Control failure 8 7 7 392 2
FM39 IED Power outages 7 3 10 210 24
FM40 IED Security failure 9 3 7 189 31
FM41 Optical fiber Fracture 4 3 10 120 41
FM42 Optical fiber Humidity induced 4 3 10 120 42

5.2. Membership Functions for the FIS Implemented

We propose a fuzzy inference system for application in cyber-power grids that con-
siders triangular and trapezoidal membership functions as detailed in Section 4.2. Table 9
shows the FIS configuration to test the proposed fuzzy-based FMECA approach.

Table 9. Membership functions for the tested FIS configuration.

Configuration MF
Severity

MF
Occurrence

MF
Detection

MF
Fuzzy RPN

FIS Trapezoidal Triangular Triangular Trapezoidal
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It considers trapezoidal membership functions for Severity and the FRPN and triangu-
lar membership functions for the Occurrence and Detection risk factors.

Table 5 identified that the risk level Severity Minor (SMI) has the lowest Severity
category. It could represent an additional uncertainty source for the FMECA team. For this
reason, one chose a trapezoidal function to represent it (see Figure 7), where Severity values
between 1 and 1.5 correspond to full membership of their respective category. We consider
full membership to the category Severity Low (SL) for ratings between its lower limit S = 2
and its upper limit S = 3. For the category Severity Very High (SVH), we considered full
membership for ratings between S = 4 and S = 6, and for the category Severity Hazardous
(SHA), we assigned full membership for ratings between S = 9 and S = 10.

The risk category Severity Moderate (SM) shows how fuzzy systems allow modeling
the criteria elaborated by the FMECA team members. As detailed in Table 5, failure modes
classified as 4, 5, or 6 belong to that category level named Severity Moderate (SM). However,
we propose that failure modes classified between 4 and 5 must have full membership in
the fuzzy category SM, and failure modes classified as 6 have a membership of 0.6428. The
three ratings (4, 5, and 6) still belong to category SM but with different membership values.

The previous-mentioned criteria were also used to select the membership functions for
the FuzzyRPN, as shown in Figure 7. In this work, the value of FRPN is computed as the
centroid of the area (COA) of the membership function resulting from the fuzzy inference
mechanism. So, the FuzzyRPN it is not always an integer number such as the risk factors
ratings.

To represent more certainty around the midpoint of each risk category, notice that we
used trapezoidal membership functions with the following characteristics: FRPN between
1 and 1.5 have full membership in the category Risk Minor (RMI), FRPN between 2.4 and
3.2 have full membership in category Risk Low (RL), FRPN between 4.2 and 5.5 have full
membership in category Risk Moderate (RM), FRPN between 7 and 8 have full membership
in category Risk High (RH), and FRPN between 9 and 10 have full membership in category
Risk Extreme (RE).

6. Results and Discussion

This section shows the results of applying the FIS configuration shown in Table 9.
Table 10 begins listing the 42 failure modes. It shows the classical RPN results and associated
rank in two gray columns. Aside, one shows, for the same inputs, the fuzzy-FMECA results
by its FRPN values and the new rank order.

To have a general overview of the ranks obtained with the two FMECA methodologies,
Figure 8 shows a radar chart displaying the classical FMECA (red line) and the proposed
fuzzy-FMECA (orange line). The radial axes represent the 42 failure modes, and the
concentric circles represent the ranking. This kind of chart greatly simplifies the comparison
between the FMECA rankings for small problems. Moreover, one can quickly detect failure
modes with significant priority changes; for example, FM42 appears ranked as priority 42
by the classical FMECA (orange line) and ranked as priority 27 by the fuzzy-FMECA (blue
line), or FM38 ranked as 2 by the classical FMECA and downgraded to priority 16 by the
fuzzy-FMECA (orange line).

In the next sections, one conducts a detailed analysis of the results obtained for the
fuzzy-FMECA compared with those from the classical FMECA. The following two situ-
ations need analysis and discussion: differences are higher concerning the prioritization
rank for the riskiest failure modes, and the second analysis must analyze the failure modes
with the same FRPN and what this means.

6.1. Classical FMECA × Fuzzy-FMECA: Higher Differences in Prioritization for the Riskiest
Failure Modes

Table 11 summarizes the top ten failure modes (FM) indicated by the classical FMECA
ranking (gray color column) and indicated by the fuzzy-FMECA ranking. According to the
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classical FMECA, the riskiest failure mode corresponds to FM22—transformer explosion by
an internal short circuit. This failure mode was also ranked priority 1 by the fuzzy-FMECA.

Table 10. Rankings and risk priority number for the classical and the fuzzy-FMECA.

Failure
Mode Classic RPN Classic

Rank FIS FRPN FIS
Rank

FM01 315 9 8.216 4
FM02 378 3 8.138 7
FM03 315 10 8.216 5
FM04 320 6 8.325 2
FM05 320 7 8.325 3
FM06 256 17 7.760 15
FM07 280 15 7.556 19
FM08 360 4 7.872 9
FM09 210 26 6.831 34
FM10 168 37 5.819 42
FM11 300 11 7.872 10
FM12 192 29 7.041 28
FM13 270 16 7.872 11
FM14 240 22 7.226 22
FM15 168 39 5.974 39
FM16 168 38 5.974 40
FM17 294 14 6.860 33
FM18 162 40 6.329 37
FM19 216 23 7.688 17
FM20 240 21 7.226 23
FM21 315 8 8.216 6
FM22 450 1 8.679 1
FM23 168 36 6.906 31
FM24 250 19 7.500 21
FM25 180 33 7.529 20
FM26 252 18 6.779 36
FM27 360 5 7.872 12
FM28 300 13 7.872 13
FM29 168 35 5.974 41
FM30 180 34 7.001 30
FM31 300 12 7.872 14
FM32 210 25 7.049 24
FM33 200 28 8.048 8
FM34 240 20 7.675 18
FM35 192 30 7.041 29
FM36 210 27 6.831 35
FM37 180 32 6.047 38
FM38 392 2 7.736 16
FM39 210 24 7.049 25
FM40 189 31 6.906 32
FM41 120 41 7.049 26
FM42 120 42 7.049 27
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In this case, the Severity factor was rated as SHA (Severity Hazardous), and the
Detection factor was rated as DAI (Detection Almost Impossible). Both risk factors were
then considered the highest risk category. The Occurrence factor was rated as Occasional
(OO) with O = 5 at the mid-point of the Occurrence interval (from 1 to 10). The risk
perception for this failure mode is that it should be somewhat risky because two of the three
risk factors were classified as somewhat risky in their respective categories. Concerning
the failure mode FM38 in Table 11, the IED control failure was ranked as priority 2 by the
classical FMECA. However, the fuzzy-based FMECA significantly decreased its priority to
16, as shown in Figure 8. Let us then analyze what caused this substantial difference. The
classical RPN for FM38 is obtained using the single arithmetic product between S = 8, O = 7,
and D = 7, giving an RPN = 392. Now, based on the membership functions established
by the experts’ team, Table 5 points that S = 8 belongs to the risk category Severity Very
High (SVH) that O = 7 belongs to an Occurrence Probable (OP), and that D = 7 belongs to the
risk category of Detection Low (DL). Unlike the crispy RPN, the FuzzyRPN was achieved
from a more enlarged procedure. According to the fuzzy sets shown in Figures 6 and 7
that the FMECA team members defined, the rating S = 8 means that the failure mode can
be considered simultaneously as being Severity Very High SVH with membership 1 and
also as Severity Hazardous SHA with membership 0.2857. The rating O = 7 means that the
failure mode can be considered simultaneously having an Occurrence Occasional (OO) with
a membership of 0.2 and an Occurrence Probable (OP) with a membership of 0.5614. The
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rating D = 7 means that the failure mode can be considered as Detection Moderate (DM) with
a membership of 0.2 and Detection Low (DL) with a membership of 0.8088.

Table 11. Comparison between the top ten classical FMECA rankings and those obtained using the
proposed fuzzy-based FMECA.

Id Equipment Failure Mode Failure Causes Failure Effects S O D FMECA
Rank

Fuzzy
Rank

FM22 Transformer Transformer
explosion

Internal short
circuit

Serious damage
in the substation;
personnel injuries

or death

9 5 10 1 1

FM38 IED Control failure
Defective data

processing
(software error)

Inability to
control power

system operation
8 7 7 2 16

FM02 Bus bar Loss of structural
integrity

Break of the
support

insulators

Bus bar break; no
electrical

connection
7 6 9 3 7

FM08 Cable Electrical
operation failure

Short circuits
transients

Excessive heat
(saturation) 6 6 10 4 9

FM27 SW
Operational
failure (SW
blackout)

SW is locked up
Incorrect SW

function or SW
malfunction

6 6 10 5 12

FM04 Bus bar Loss of electrical
continuity Arc flash

Degradation of
the physical

structure
8 4 10 6 2

FM05 Bus bar Electrical
disturbances

Short circuits
between bus bars Short circuits 8 4 10 7 3

FM21 Transformer

Distortion,
loosening, or

displacement of
the winding

Short circuits

Internal short
circuits;

transformer
damage

7 5 9 8 6

FM01 Busbar Loss of structural
integrity

Fracture of the
Cooper bar

Bus bar break; no
electrical

connection
7 5 9 9 4

FM03 Busbar Loss of structural
integrity

Cracking of
connection welds

Bus bar break; no
electrical

connection
7 5 9 10 5

Figure 9 shows the “fired” fuzzy rules and the fuzzy inference mechanism for fail-
ure mode FM38. The fuzzy rules represent the FMECA team members’ risk perception
regarding the risk factors previously assessed for each failure mode. The ratings for failure
mode FM38 (Severity S = 8, Occurrence O = 7 and Detection D = 7) activated the following
eight fuzzy rules:

Rule 88: If (S is SVH) and (O is OO) and (D is DM,) then (RPN is RH)
Rule 89: If (S is SVH) and (O is OO) and (D is DL), then (RPN is RH)
Rule 93: If (S is SVH) and (O is OP) and (D is DM), then (RPN is RH)
Rule 94: If (S is SVH) and (O is OP) and (D is DL), then (RPN is RH)
Rule 113: If (S is SHA) and (O is OO) and (D is DM), then (RPN is RH)
Rule 114: If (S is SHA) and (O is OO) and (D is DL), then (RPN is RH)
Rule 118: If (S is SHA) and (O is OP) and (D is DM), then (RPN is RH)
Rule 119: If (S is SHA) and (O is OP) and (D is DL), then (RPN is RE)

The fuzzy sets of the risk factors and the eight fuzzy rules represent, respectively, the
uncertainty and the logical reasoning of the FMECA team members. The classical RPN
calculation does not include these human reasoning characteristics and their uncertainty.
So, the fuzzy-FMECA combines them to produce the output. Notice that the failure mode
FM04, loss of electrical continuity in busbar caused by arc flash, replaced the FM38 in
priority 2. The severity for both failure modes is 8. The Occurrence weight to FM04 was
4. Despite being less than the Occurrence weight attributed to FM38 having been 7, the
Detection factor of FM04 was 10, much higher than that attributed to FM38 being 7. In
this case, the inference mechanism gave more relative importance to Severity and Detection
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factors when computing the FRPN due to its more defined memberships for higher values.
As shown in Figure 9, rules 94 and 119 completely define the resulting FIS area, concluding
that both rules completely explain the FRPN results. We consider that the new priority
for FM04 is most appropriate considering the impact of the failure mode and the almost
impossible chance of detecting it, as established by the FMECA experts.
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The FMECA team members consider that the severity and detection of failure mode
FM01, caused by fracture of the cooper bar, have high values (7 and 9, respectively). The
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classical FMECA classified FM01 as priority 9, but the fuzzy-FMECA assigned it priority 4,
replacing the failure mode FM08 “electrical operational failures in cables caused by transient
short circuits”. We consider that fuzzy-FMECA risk priority is more appropriate because
it ponders the strong impact and the low detection of FM01 and because a busbar failure
impact can be more significant than a cable failure impact.

Another busbar-type failure mode, the FM03 “loss of structural integrity of busbar
caused by cracking of connection welds”, has the same severity, occurrence, and detection
as FM01. Classical FMECA ranked FM03 as priority 10, but fuzzy-FMECA increased its
classification to 5, replacing the failure mode FM27, "switch operational failure by locked
up"; this priority change is evident in Figure 8. As in the previous analysis, we consider
the new ranking appropriate because the causes of failure mode FM03, its impact, and low
detectability increase the overall failure mode risk.

In addition, a busbar failure directly affects the system operation and can affect its
integrity; instead, an ethernet switch failure comprises the system’s remote communication
and control, but the grid can continue functioning using the local control and monitoring
functions.

Regarding busbar failure mode FM02 “loss of structural integrity of busbar caused
by break of the support insulators,” the classical FMECA ranked it as priority three, while
the fuzzy-FMECA decreased its classification to 7, replacing FM05. In the same way, the
classical FMECA ranked the failure mode FM05 “electrical disturbances caused by short
circuits between busbars,” as priority 7, while the fuzzy-FMECA ranked it as priority 3,
replacing FM02. FM02 has its Severity classified as 7, the occurrence classified as 6, the
Detection classified as 9, and the RPN equal to 378; FM05 has its Severity rated as 8, the
Occurrence rated as 4, the Detection rated as 10, and the RPN is equal to 320. Although the
RPN for FM02 is higher than the PRN for FM05, the risk perception of FM05 is different.
FM05 has a higher Severity and Detection than FM02, while the Occurrence of FM02 is
higher than FM05. The impact of both failures on the system is significant; however, the
perception of risk represented by severity and detection is higher for FM05, although FM02
can occur more frequently. From the previous analysis, we consider that fuzzy-FMECA
more appropriately ranked the failure mode FM05 as priority 3 instead of FM02 because
the fuzzy inference system allows it to better represents the FMECA team members’ risk
perception.

It is clear that all failure modes associated with busbars had their priority augmented
by the fuzzy-FMECA. This is foreseeable since the busbars, being the strongest connecting
element in the cyber-power grids test system, its relevance must be put in evidence of what
was made by the fuzz-based FMECA.

Since the FRPN includes the abovementioned characteristics, we can consider that
the ranking obtained using the fuzzy-FMECA is much more adequate than the classical
FMECA regarding the assumptions the FMECA team members introduced into the fuzzy
mechanism.

6.2. Classical FMECA × Fuzzy-FMECA: Failure Modes with the Same FRPN

Table 10 shows that when using the fuzzy-FMECA, failure modes FM32, FM39, FM41,
and FM42 achieved the same FRPN = 7.049 despite being ranked with priorities as 24, 25,
26, and 27, respectively. Let us analyze first the failure modes FM32 and FM39 that have
the same ratings for Severity with S = 7, Occurrence with O = 3, and Detection with D = 10.
These ratings activate the following four fuzzy rules:

Rule 59: If (S is SM) and (O is OVU) and (D is DL), then (RPN is RM)
Rule 60: If (S is SM) and (O is OVU) and (D is DAI), then (RPN is RH)
Rule 84: If (S is SVH) and (O is OVU) and (D is DL), then (RPN is RH)
Rule 85: If (S is SVH) and (O is OVU) and (D is DAI), then (RPN is RH)

Considering the four fuzzy rules and the membership functions in Figures 6 and 7,
the rating S = 7 implies that the failure mode can be considered Severity Moderate (SM) with
a membership of 0.286 and Severity Very High (SVH) with a membership 1. Moreover, the
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rating O = 3 means that the failure mode can be considered an Occurrence Very Unlikely
(OVU) with a membership of 0.857. At last, the rating D = 10 means that the failure mode
can be considered a Detection Low (DL) with a membership of 0.1379 but has a Detection
Almost Impossible (DAI) with a membership of 0.7742. Figure 10 shows the “fired” fuzzy
rules and the resulting output (fuzzy and defuzzified) for FM32 and FM39. For FM32 with
S = 7, O = 3, and D = 10, the resulting output for rules 60, 84, and 85 is the fuzzy set RH fired
at α = 0.857, α = 0.138, and α = 0.774, respectively, as shown in Figure 9. If we apply the
max(•) operator to aggregate these three outputs, one obtains the same area under the fuzzy
set RH resulting from rule 85. The conclusion of this is that rule 59 and rule 85 determine
the shape of aggregated output, thus defining the FRPN = 7.049 for failure modes FM32
and FM39.
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Figure 10. Fired fuzzy rules and aggregated output for failure modes FM32 and FM39.

Now, one advance for the other failure modes, FM41 and FM42. These have the same
ratings for Severity S = 4, Occurrence O = 3, and Detection D = 10. These ratings activate the
following two fuzzy rules:

Rule 59: If (S is SM) and (O is OVU) and (D is DL), then (RPN is RM);
Rule 60: If (S is SM) and (O is OVU) and (D is DAI), then (RPN is RH).

Considering these rules, the rating S = 4 implies that the failure mode can be considered
Severity Moderate (SM) with membership 1. Rating O = 3 means that the failure mode can
be considered as having an Occurrence Very Unlikely (OVU) with membership 0.857. At last,
rating D = 10 means that the failure mode can be considered a Detection Low (DL) with a
membership of 0.138 and activating the risk factor of a Detection Almost Impossible (DAI)
with a membership of 0.774.

Figure 11 shows the fired fuzzy rules and the resulting output (fuzzy and defuzzified).
Notice that the resulting output of rule 59 stays the same for FM32 and FM41. That is, the
fuzzy set RM is fired at α = 0.138. For FM41 with S = 4, O = 3, and D = 10, the resulting
output for rule 60 is the fuzzy set RH fired at α = 0.774. When comparing rule 85 (Figure 10)
and rule 60 (Figure 11), we can verify that the fuzzy set DAI with D = 10 determines
the resulting output for both rules. Hence, the shape of the aggregated output and the
FRPN = 7.049 becomes the same for FM32 and FM41.
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Figure 12 shows the aggregated fuzzy output for the failure modes FM32 (FM39) and
FM41 (FM42), with the same FRPN = 7.049. This explains this equality in the FRPN values
and the equality obtained for other failure modes with equal FRPN and similar ratings.
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It is then vital to reduce the existence of failure modes with equal FRPN. One proposal
then considers the following procedures:

• Establish individual categories for the risk factors rankings, that is, ten categories
instead of 5;

• Adjusting the overlapping between fuzzy categories and;
• Adjust the membership function parameters or use non-linear membership functions.
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7. Conclusions

This paper used a type-I fuzzy inference system to improve risk prioritization in
classical FMECA analysis, now considering a more natural risk definition based on expert
knowledge, the fuzzy-based FMECA. The proposed approach is relevant since the classical
approach does not consider any relative importance between the risk factors to obtain the
failure modes’ risk level. In general, it does not necessarily represent the real risk perception
of the FMECA expert members expressed using linguistic terms. Hence, the criteria of the
expert members will constitute the principal source of uncertainty in the classical FMECA
analysis.

This weakness related to the classical FMECA analysis motivated us to find the first
alternatives to integrate the uncertainty into FMECA risk assessment. Fuzzy membership
functions were used to represent the risk categories, and a rule-based inference mechanism
was applied for the risk computation value or the fuzzy RPN. While the classic FMECA
considers strict membership for each category, the fuzzy FMECA is flexible, and ratings may
belong to two risk categories simultaneously, with different membership values. Because
our fuzzy-based FMECA considered a different level of importance for the risk factors, the
failure modes previously ranked as the riskiest by classical FMECA could reallocate to the
correct priority levels.

The proposed fuzzy-FMECA approach was tested on a cyber-power grid test system
composed of a four-bus 30kV power system and a cyber network. This was previously used
by authors using the classical FMEA. Hence, one can compare which better information
can be obtained concerning the risk priority number. From the initial 107 failure modes
(FM) identified, the fuzzy-based FMECA indicates that only 42 failure modes represent the
riskiest values. These were selected for further analysis.

The proposed fuzzy-based FMECA still has the following limitations that need to be
addressed:

1. The use of integers-based classical rankings to assess the three risk factors restricts the
exploitation of all fuzzy features of the proposed method;

2. The limits of the risk categories of the classic FMECA analysis were taken from IEC
standards. They may not adequately represent the risk thresholds in real cases and
should be calibrated with experimental data, and;

3. The use of 5 risk categories can constrain the diversity to represent the risk criteria of
the experts.

Additional aspects are under development by this group and are intended to be
included in future works. The main aspects are as follows:

• Definition of tailor-made risk categories and scales for the FMECA risk factors in the
context of cyber-power grids;

• The use of ten risk categories to represent the risk factors;
• A sensibility analysis of the overlapping between the membership functions;
• The use of non-linear membership functions;
• The application of Type-II fuzzy inference systems for the fuzzy-FMECA analysis in

cyber-power grids and;
• The proposal for a statistical-based comparison method for different FMECA ap-

proaches.
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Appendix A

This appendix describes the 125 fuzzy if-the rules defined for the Type-I fuzzy-based
FMECA proposed in this work.

1. If (S is SMI) and (O is OR) and (D is DAC), then (RPN is RMI)
2. If (S is SMI) and (O is OR) and (D is DH), then (RPN is RMI)
3. If (S is SMI) and (O is OR) and (D is DM,) then (RPN is RL)
4. If (S is SMI) and (O is OR) and (D is DL), then (RPN is RL)
5. If (S is SMI) and (O is OR) and (D is DAI,) then (RPN is RM)
6. If (S is SMI) and (O is OVU) and (D is DAC), then (RPN is RMI)
7. If (S is SMI) and (O is OVU) and (D is DH), then (RPN is RMI)
8. If (S is SMI) and (O is OVU) and (D is DM), then (RPN is RL)
9. If (S is SMI) and (O is OVU) and (D is DL), then (RPN is RL)
10. If (S is SMI) and (O is OVU) and (D is DAI), then (RPN is RM)
11. If (S is SMI) and (O is OO) and (D is DAC), then (RPN is RMI)
12. If (S is SMI) and (O is OO) and (D is DH), then (RPN is RL)
13. If (S is SMI) and (O is OO) and (D is DM), then (RPN is RL)
14. If (S is SMI) and (O is OO) and (D is DL), then (RPN is RM)
15. If (S is SMI) and (O is OO) and (D is DAI), then (RPN is RH)
16. If (S is SMI) and (O is OP) and (D is DAC), then (RPN is RMI)
17. If (S is SMI) and (O is OP) and (D is DH), then (RPN is RL)
18. If (S is SMI) and (O is OP) and (D is DM), then (RPN is RL)
19. If (S is SMI) and (O is OP) and (D is DL), then (RPN is RM)
20. If (S is SMI) and (O is OP) and (D is DAI), then (RPN is RH)
21. If (S is SMI) and (O is OF) and (D is DAC), then (RPN is RL)
22. If (S is SMI) and (O is OF) and (D is DH), then (RPN is RL)
23. If (S is SMI) and (O is OF) and (D is DM), then (RPN is RM)
24. If (S is SMI) and (O is OF) and (D is DL), then (RPN is RH)
25. If (S is SMI) and (O is OF) and (D is DAI), then (RPN is RH)
26. If (S is SL) and (O is OR) and (D is DAC), then (RPN is RMI)
27. If (S is SL) and (O is OR) and (D is DH), then (RPN is RMI)
28. If (S is SL) and (O is OR) and (D is DM), then (RPN is RL)
29. If (S is SL) and (O is OR) and (D is DL), then (RPN is RL)
30. If (S is SL) and (O is OR) and (D is DAI), then (RPN is RM)
31. If (S is SL) and (O is OVU) and (D is DAC), then (RPN is RMI)
32. If (S is SL) and (O is OVU) and (D is DH), then (RPN is RL)
33. If (S is SL) and (O is OVU) and (D is DM), then (RPN is RL)
34. If (S is SL) and (O is OVU) and (D is DL), then (RPN is RM)
35. If (S is SL) and (O is OVU) and (D is DAI), then (RPN is RH)
36. If (S is SL) and (O is OO) and (D is DAC), then (RPN is RMI)
37. If (S is SL) and (O is OO) and (D is DH), then (RPN is RL)
38. If (S is SL) and (O is OO) and (D is DM), then (RPN is RL)
39. If (S is SL) and (O is OO) and (D is DL), then (RPN is RM)
40. If (S is SL) and (O is OO) and (D is DAI), then (RPN is RH)
41. If (S is SL) and (O is OP) and (D is DAC), then (RPN is RL)
42. If (S is SL) and (O is OP) and (D is DH), then (RPN is RL)
43. If (S is SL) and (O is OP) and (D is DM), then (RPN is RM)
44. If (S is SL) and (O is OP) and (D is DL), then (RPN is RH)
45. If (S is SL) and (O is OP) and (D is DAI), then (RPN is RH)
46. If (S is SL) and (O is OF) and (D is DAC), then (RPN is RL)
47. If (S is SL) and (O is OF) and (D is DH), then (RPN is RM)
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48. If (S is SL) and (O is OF) and (D is DM), then (RPN is RH)
49. If (S is SL) and (O is OF) and (D is DL), then (RPN is RH)
50. If (S is SL) and (O is OF) and (D is DAI), then (RPN is RE)
51. If (S is SM) and (O is OR) and (D is DAC), then (RPN is RMI)
52. If (S is SM) and (O is OR) and (D is DH), then (RPN is RL)
53. If (S is SM) and (O is OR) and (D is DM), then (RPN is RL)
54. If (S is SM) and (O is OR) and (D is DL), then (RPN is RM)
55. If (S is SM) and (O is OR) and (D is DAI), then (RPN is RH)
56. If (S is SM) and (O is OVU) and (D is DAC), then (RPN is RMI)
57. If (S is SM) and (O is OVU) and (D is DH), then (RPN is RL)
58. If (S is SM) and (O is OVU) and (D is DM), then (RPN is RL)
59. If (S is SM) and (O is OVU) and (D is DL), then (RPN is RM)
60. If (S is SM) and (O is OVU) and (D is DAI), then (RPN is RH)
61. If (S is SM) and (O is OO) and (D is DAC), then (RPN is RL)
62. If (S is SM) and (O is OO) and (D is DH), then (RPN is RL)
63. If (S is SM) and (O is OO) and (D is DM), then (RPN is RM)
64. If (S is SM) and (O is OO) and (D is DL), then (RPN is RH)
65. If (S is SM) and (O is OO) and (D is DAI), then (RPN is RH)
66. If (S is SM) and (O is OP) and (D is DAC), then (RPN is RL)
67. If (S is SM) and (O is OP) and (D is DH), then (RPN is RM)
68. If (S is SM) and (O is OP) and (D is DM), then (RPN is RH)
69. If (S is SM) and (O is OP) and (D is DL), then (RPN is RH)
70. If (S is SM) and (O is OP) and (D is DAI), then (RPN is RE)
71. If (S is SM) and (O is OF) and (D is DAC) then (RPN is RL)
72. If (S is SM) and (O is OF) and (D is DH), then (RPN is RM)
73. If (S is SM) and (O is OF) and (D is DM), then (RPN is RH)
74. If (S is SM) and (O is OF) and (D is DL), then (RPN is RH)
75. If (S is SM) and (O is OF) and (D is DAI), then (RPN is RE)
76. If (S is SVH) and (O is OR) and (D is DAC), then (RPN is RMI)
77. If (S is SVH) and (O is OR) and (D is DH), then (RPN is RL)
78. If (S is SVH) and (O is OR) and (D is DM) then (RPN is RL)
79. If (S is SVH) and (O is OR) and (D is DL), then (RPN is RM)
80. If (S is SVH) and (O is OR) and (D is DAI), then (RPN is RH)
81. If (S is SVH) and (O is OVU) and (D is DAC), then (RPN is RL)
82. If (S is SVH) and (O is OVU) and (D is DH), then (RPN is RL)
83. If (S is SVH) and (O is OVU) and (D is DM), then (RPN is RM)
84. If (S is SVH) and (O is OVU) and (D is DL), then (RPN is RH)
85. If (S is SVH) and (O is OVU) and (D is DAI), then (RPN is RH)
86. If (S is SVH) and (O is OO) and (D is DAC), then (RPN is RL)
87. If (S is SVH) and (O is OO) and (D is DH), then (RPN is RM)
88. If (S is SVH) and (O is OO) and (D is DM,) then (RPN is RH)
89. If (S is SVH) and (O is OO) and (D is DL), then (RPN is RH)
90. If (S is SVH) and (O is OO) and (D is DAI), then (RPN is RE)
91. If (S is SVH) and (O is OP) and (D is DAC), then (RPN is RL)
92. If (S is SVH) and (O is OP) and (D is DH), then (RPN is RM)
93. If (S is SVH) and (O is OP) and (D is DM), then (RPN is RH)
94. If (S is SVH) and (O is OP) and (D is DL), then (RPN is RH)
95. If (S is SVH) and (O is OP) and (D is DAI), then (RPN is RE)
96. If (S is SVH) and (O is OF) and (D is DAC), then (RPN is RM)
97. If (S is SVH) and (O is OF) and (D is DH), then (RPN is RH)
98. If (S is SVH) and (O is OF) and (D is DM), then (RPN is RH)
99. If (S is SVH) and (O is OF) and (D is DL), then (RPN is RE)
100. If (S is SVH) and (O is OF) and (D is DAI), then (RPN is RE)
101. If (S is SHA) and (O is OR) and (D is DAC), then (RPN is RL)
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102. If (S is SHA) and (O is OR) and (D is DH), then (RPN is RL)
103. If (S is SHA) and (O is OR) and (D is DM), then (RPN is RM)
104. If (S is SHA) and (O is OR) and (D is DL), then (RPN is RH)
105. If (S is SHA) and (O is OR) and (D is DAI), then (RPN is RH)
106. If (S is SHA) and (O is OVU) and (D is DAC), then (RPN is RL)
107. If (S is SHA) and (O is OVU) and (D is DH), then (RPN is RM)
108. If (S is SHA) and (O is OVU) and (D is DM), then (RPN is RH)
109. If (S is SHA) and (O is OVU) and (D is DL), then (RPN is RH)
110. If (S is SHA) and (O is OVU) and (D is DAI), then (RPN is RE)
111. If (S is SHA) and (O is OO) and (D is DAC), then (RPN is RL)
112. If (S is SHA) and (O is OO) and (D is DH), then (RPN is RM)
113. If (S is SHA) and (O is OO) and (D is DM), then (RPN is RH)
114. If (S is SHA) and (O is OO) and (D is DL), then (RPN is RH)
115. If (S is SHA) and (O is OO) and (D is DAI), then (RPN is RE)
116. If (S is SHA) and (O is OP) and (D is DAC), then (RPN is RM)
117. If (S is SHA) and (O is OP) and (D is DH), then (RPN is RH)
118. If (S is SHA) and (O is OP) and (D is DM), then (RPN is RH)
119. If (S is SHA) and (O is OP) and (D is DL), then (RPN is RE)
120. If (S is SHA) and (O is OP) and (D is DAI), then (RPN is RE)
121. If (S is SHA) and (O is OF) and (D is DAC), then (RPN is RM)
122. If (S is SHA) and (O is OF) and (D is DH), then (RPN is RH)
123. If (S is SHA) and (O is OF) and (D is DM), then (RPN is RH)
124. If (S is SHA) and (O is OF) and (D is DL), then (RPN is RE)
125. If (S is SHA) and (O is OF) and (D is DAI), then (RPN is RE)
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