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Abstract: With the deepening reform of the power system, power sales companies need to adopt new
power sales strategies to provide customers with better economic marketing solutions. Customer-
side configuration of an energy storage system (ESS) can participate in power-related policies to
reduce the comprehensive cost of electricity for commercial and industrial customers and improve
customer revenue. For power sales companies, this can also attract new customers, expand sales
and quickly capture the market. However, most of the ESS evaluation models studied so far are
based on historical data configuration of typical daily storage capacity and charging and discharging
scheduling instructions. In addition, most models do not adequately consider the performance
characteristics of the ESS and cannot accurately assess the economics of the energy storage model. This
study proposes an intelligent power sales strategy based on load forecasting with the participation
of optimal allocation of ESS. Based on long short-term memory (LSTM) artificial neural network
for predictive analysis of customer load, we evaluate the economics of adding energy storage to
customers. Based on the premise of the two-part tariff, the ESS evaluation model is constructed with
the objective of minimizing the annual comprehensive cost to the user by considering the energy
tariff and the savings benefits of the basic tariff, assessing the annualized cost of ESS over its entire
life cycle, and the impact of battery capacity decay on economics. The particle swarm optimization
(PSO) algorithm is introduced to solve the model. By simulating the arithmetic example for real
customers, their integrated electricity costs are significantly reduced. Moreover, this smart power
sales strategy can provide different sales strategies according to the expected payback period of
customers. This smart sales strategy can output more accurate declared maximum demand values
than other traditional sales strategies, providing a more economical solution for customers.

Keywords: energy storage systems (ESS); smart power sales; peak-valley electricity arbitrage;
demand control; load forecast; particle swarm optimization (PSO); long short-term memory (LSTM)

1. Introduction

In order to reduce peak carbon dioxide emissions and achieve the carbon neutrality tar-
get background of power security and supply, strengthen power operation regulation and
deepen power load management, China’s National Development and Reform Commission
issued a series of policies: (1) “Notice on Improving the Implementation of Basic Electricity
Tariff for Users of the Two-Part Tariff System”, (2) “Implementation of the ‘Guidance on
Promoting Energy Storage Technology and Industry Development’ 2019 to 2020 Action
Plan”, and (3) “Notice of the Comprehensive Department of the National Energy Adminis-
tration on Promoting the Construction of a New Electricity Load Management System”.
The first policy calls for changing the energy tariff for commercial and industrial customers
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to a two-part tariff consisting of the energy tariff and the basic tariff. The second policy ad-
dresses energy storage technology, which is widely used in various areas of power systems
due to its flexible throughput and increasing economics by using battery storage systems.
The third policy comes into play after users configure the energy storage system (ESS).
Users can reduce their own maximum energy demand and gain basic tariff savings [1–8]
or they can choose low storage and high generation, i.e., peak-to-valley arbitrage, to gain
revenue [9–15]. In addition, according to the user’s load history data, the ESS can predict
the user’s future need for grid enterprises and report the maximum demand value period
load data [16,17]. This allows for more accurate capacity allocation for energy storage
systems and output of energy storage charging and discharging schedule commands to
provide maximum benefits to the user.

Broadly speaking, load forecasting models can be divided into classical forecasting
methods and modern forecasting methods. The classical forecasting methods are more
mature, and the forecasting results have some reference value. However, to further improve
forecasting accuracy, it is necessary to introduce modern methods, such as support vector
machine (SVM) [18], K nearest neighbor (KNN) [19], LSTM [20], etc. For example, based
on convolutional neural network and LSTM, Pramono et al. proposed a load forecasting
method to support demand response planning in hybrid energy systems [17].

Zhang et al. considered the effect of charge/discharge multiplier on the life cycle of
energy storage based on a genetic algorithm to achieve a balance between the life cycle
and charge/discharge rate of ESS [21]. Hassan et al. proposed a time-of-use electricity
price-based optimal dispatching method for ESS charging and discharging and evaluated
the economic benefits of ESS in distribution networks [22]. Lo et al. investigated the
charge/discharge state of ESS with daily and seasonal load variations [23].

Chen et al. studied in depth the theory and application of ESS in auxiliary services
based on the premise of the characteristics of the Chinese electricity market environ-
ment [24]. Mu et al. proposed a tariff package for ESS configuration that takes into account
the reliability of power supply and energy tariff saving requirements of customers, which
reduces the cost of electricity for customers [25]. Yang et al. studied the analysis model for
calculating the economic benefits of ESS under different business operation models and
analyzed in detail the composition structure and calculation methods of various economic
benefits under various business operation models [26]. Based on hierarchical analysis,
Xiu et al. proposed a method to evaluate the configuration of energy storage systems
considering demand response as well as peak-to-valley arbitrage from the perspective of
techno-economic indicators [27]. Chen et al. proposed an optimal operation model for ESS
considering physical, variable and lifetime constraints based on the maximum demand
lower bound calculation and transformed it into a linear model for solution. Gao et al. pro-
posed an optimal allocation model for customer-side ESS with the objective of full life-cycle
net present value of ESS in order to solve the ESS planning problem affected by two-part
tariff and full life-cycle [28]. Song et al. considered the investment cost and operation and
maintenance cost of the energy storage system, set up an ESS evaluation model with the
highest return as the goal, and proposed two energy storage revenue schemes based on the
number of daily storage charges and discharges [29].

Most of the above-mentioned scholars in the literature have studied the customer
electricity savings with the participation of ESS. However, most of the models do not
perform predictive analysis of the customer load, and the result is a typical daily ESS
capacity and charging and discharging scheduling instruction based on historical data
configuration. It does not consider the difference in electricity consumption per day within
a month or the change in maximum demand per month in different years. The capacity and
charging/discharging state of the derived ESS cannot meet the actual changing demand.
In addition, most models do not adequately consider the performance characteristics of
the ESS, such as the effect of the number of ESS charges and discharges on the battery
capacity. This results in the inability to accurately assess the economics of the ESS model
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and output the optimal configuration. The key contributions of this study, when compared
to the current literature, can be summed up as follows:

1. Based on the premise of two-part tariff, this paper predicts the future electricity con-
sumption load of customers by LSTM. It also analyzes the performance of LSTM
models under different training times according to MAE, MAPE and RMSE evalua-
tion metrics.

2. Economic analysis is conducted for the cost and benefit model of customer-side ESS,
considering the savings benefits of energy tariffs and basic tariffs. It evaluates the
full life-cycle annualized cost of ESS and the impact of ESS capacity degradation on
economics. It also constructs an ESS evaluation model with the goal of minimizing
the comprehensive annual cost to the user.

3. The particle swarm optimization (PSO) algorithm is introduced to solve the ESS
evaluation model and its performance is analyzed by the number of iterations of PSO.
Using the electricity load data of a commercial and industrial customer in Beijing as
an arithmetic example, the economic evaluation analysis after the participation of the
smart power sales strategy in this paper is verified.

Section 2 describes the LSTM-based load prediction method. Section 3 proposes an
ESS evaluation model that integrates the energy tariff saving benefit, basic tariff saving
benefit, ESS investment cost, ESS decay equivalence function, and ESS penalty function.
Section 4 describes the smart power sales strategy based on load forecasting and optimal
allocation of ESS participation. Section 5 uses an industrial and commercial customer in
Beijing, China, as an arithmetic example to verify the economics of the smart power sales
strategy proposed in this paper. It also proposes different smart power sales strategies
according to different expected cost recovery cycles of customers and it also compares the
superiority of this smart power sales strategy with the general strategy. The work is finally
summarized in Section 6.

2. Customer Power Load Forecasting Model

Considering the problem of large initial investment and the need for a long business
time to recover the cost of the user configuration ESS, in this paper, we analyze the historical
load data of industrial and commercial customers to forecast their loads. It is possible to
more accurately evaluate the economics of a smart power sales strategy for the full life cycle
of ESS and to output more accurate declared maximum demand values and storage charge
and discharge commands to assist users in making energy storage investment decisions in
specific scenarios to create economic returns.

2.1. Principles of Artificial Neural Networks for LSTM

LSTM is a type of temporal recurrent neural network. It is widely used because it can
solve the long-term dependence problem of general recurrent neural network (RNN) [30]
and can compensate for the shortcomings of RNN gradient descent. Its memory unit
structure is shown in Figure 1.

In the figure: ft is the output of the forget gate; it is the output of the input gate; ot is
the output of the output gate; ht−1, ht are the previous output and the current output; ct−1,
ct are the state before and after the update; c̃t is the content after the update.

As shown in Figure 1, each neural network layer of the LSTM model uses forget gate,
input gate and output gate to protect and control the information. The memory cell is
used to store the status information at a certain moment. The forgetting gate consists of
the current moment input and the previous moment output. The sigmoid function output
and the state memory cell output at the previous moment together determine what needs
to be forgotten in the current state memory cell. The input gate combines current input
and previous output, uses sigmoid and tanh functions to generate new information and
potentially needed information. The product of this, together with the forgotten content in
the current state memory cell generated by the forget gate, generates the complete state
memory cell at the current time. This means that the current state cell has forgotten the
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historical information that needs to be forgotten and retains the new information. The
forget gate and input gate together form the current state memory cell, which compared
with RNN, will not result in a decrease in the perception of past historical information. In
the output gate, the input at the current time and the output from the previous time are
used with a sigmoid function and the state memory cell that has already passed through
the tanh function to determine the current output gate status. In this paper, the LSTM
model for power load forecasting is based on univariate power load forecasting, where the
input variable is a single column matrix.
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2.2. LSTM Model

The calculation of the forgetting gate layer is shown in Equation (1), the calculation of
the input gate layer is shown in Equations (2)–(4), and the calculation of the output gate
layer is shown in Equations (5) and (6).

ft = σ(Wf[ht−1, xt] + bf), (1)

it = σ(Wi[ht−1, xt] + bi), (2)

c̃t = tanh(Wc[ht−1, xt] + bc), (3)

ct = ftct−1 + it c̃t, (4)

ot = σ(Wo[ht−1, xt] + bo), (5)

ht = σttanhct, (6)
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where Wf, Wi, Wc, Wo are the weight matrices of the LSTM; bf, bi, bc, bo are the biases of
the LSTM; σ is the sigmoid activation function.

3. Energy Storage Evaluation Model
3.1. Objective Function

The ESS evaluation model is established by considering the energy tariffs and basic
tariffs saved by users after adding ESS, the annualized investment cost of ESS, and the ESS
power penalty constraint. This can be expressed specifically as follows:

maxF1 = CBE + CEC, (7)

minF2 = Csys−y + BFD + BLSM, (8)

minF = min(F2 − F1), (9)

where F1 is the comprehensive revenue of the ESS; CBE is the basic tariffs savings benefit
from configuring ESS; CEC is the electricity saving benefit of the electricity bill; F2 is the
integrated cost of the ESS; Csys is the annualized ESS investment cost; BFD considers the
discounted cost of the reduction in battery capacity over the remaining life of the battery
by its characteristics; BLSM is the ESS power penalty constraint.

3.1.1. Energy Tariffs Saving Benefit

The revenue from the user’s electricity bill is mainly derived from the peak-to-valley
arbitrage of the user’s electricity after the participation of energy storage in the intelligent
sale of electricity. The formula for calculating the customer′s annual energy tariffs savings
benefit is as follows:

CEC =
Tmon

∑
j=1

Tday

∑
i=1

∫ T

0

[(
ηc · pi,j

bc(t)−
1

ηd
· pi,j

bd(t)
)
· ei,j

p (t)
]

dt, (10)

where Tmon is the number of months of energy storage operation; Tday is the number of

days in the declared demand month; T is the number of daily sampling loads; pi,j
bc(t), pi,j

bd(t)
are the values of the charging and discharging power of the ESS at moment t on day j of
month i, kW; ei,j

p (t) is the price of electricity at moment t on day j of month i, CNY/kWh;
ηc, ηd are the ESS and discharging efficiency, %.

3.1.2. Basic Tariffs Saving Benefits

According to the current regulations in China, customers are required to report the
maximum demand value to the grid enterprise. The basic tariffs amount is charged
according to the declared value, and the basic tariffs for the part exceeding 105% of the
declared value is doubled.

Therefore, the optimal configuration of the ESS can reasonably reduce the basic tariffs
by reducing the maximum customer demand through the ESS storing energy during the
low peak period of electricity consumption and generating during the peak period of
electricity consumption. According to the demand billing rules, the annual savings in basic
tariffs can be expressed as:

CBE =
Tmon

∑
i=1

[
SBE(i)− S′BE(i)

]
, (11)

S =


cdPNM PAC 6 PNM
cdPAC PNM < PAC 6 1.05PNM

cd(2PAC − 1.05PNM) PAC > 1.05PNM

, (12)
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where S′BE(i), SBE(i) are the base electricity charges for the i th month before and after the
energy storage participation, respectively, CNY/kW·month; S is the customer’s basic tariffs,
CNY/kW·month; PNM is the maximum demand value declared by the user, kW·month;
PAC is the actual maximum demand value, kW·month.

3.1.3. ESS Investment Cost

The investment cost of ESS can be generally divided into the equipment cost of battery
body and power conversion system (PCS), the engineering cost of installing ESS and
its supporting devices, and the subsequent operation and maintenance cost of ESS. The
investment cost of the energy storage system can be expressed as:

Csys = Ceq + Cwb + Cope, (13)

where Csys is the comprehensive investment cost of the ESS; Ceq equipment cost of the
battery body and PCS; Cwb is the engineering cost of installing ESS and its supporting
devices; Cope is the operation and maintenance cost of the ESS.

To simplify the calculation processing consideration, the cost of the battery body is
proportional to the capacity of the ESS, the PCS cost is proportional to the rated power of
ESS, and the operation and maintenance cost and engineering cost are proportional to the
capacity of ESS.

Setting the ESS to operate with a full life cycle of Ny years and setting a discount rate
of r%, the annualized battery energy storage investment cost can be expressed as:

Csys−y =

[(
cE

η
+ cW + cO

)
Er + cPPr

]
r(1 + r)Ny

(1 + r)Ny − 1
, (14)

where cE is the cost factor of battery body per unit capacity; η is the charge/discharge
conversion efficiency of the ESS, %; cW is the engineering cost factor for installing ESS and
its supporting devices per unit capacity; cO is the cost factor for the annual operation and
maintenance of the ESS per unit capacity; Er is the rated capacity of the ESS, kWh; cP is
the cost factor of PCS per unit of power; Pr is the rated power of the ESS, kW; Ny is the
operating cycle of the ESS project, in years.

3.1.4. Battery Decay Equivalence Function

The charging and discharging working condition of ESS will increase its capacity
decay, which in turn brings down the economic return of ESS. Equating the ESS capacity
loss function to the annualized cost of the ESS, it can be expressed as:

BFD =
1
2
(

Ny − 1
)[

Ei,j
pv + (N − 1) · Ei,j

ps

]
CFD, (15)

where Ei,j
pv, Ei,j

ps is the peak-to-valley tariff difference and peak-to-shoulder tariff difference
on the j th day of the i th month; N is the set number of daily cycles of the energy storage
system; CFD ESS capacity decay amount.

The depth of discharge (DOD) and the number of cycles are the main factors affecting
the amount of ESS capacity decay. At a certain maximum DOD, the capacity decay of the
ESS is approximately proportional to its set number of daily cycles. Therefore, considering
the simplified computational treatment, it can be expressed as follows:

CFD =
Ss − Se

2dod
· D

Mc
·

Tmon

∑
i=1

Tday

∑
j=1

∫ T

0
(η ·

∣∣∣pi,j
b (t)

∣∣∣dt), (16)

where Ss, Se are the capacity of ESS before and after decay, respectively, in kWh; dod is the
depth of discharge of ESS, %; Mc is the number of cycles of the whole life cycle of ESS,
times; D is the number of days of ESS operation in the year.
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3.1.5. ESS Penalty Function

When ESS is connected to the distribution grid, its objectives are demand control and
peak-to-valley arbitrage. Without additional constraints, the charging and discharging
action of the ESS will be uncertain. Therefore, the randomness of the ESS power action
should be limited here as a constraint to reduce the impact of power fluctuations on the grid
system. Converting constraints into penalty terms for constrained optimization problems,
converting from constrained optimization problems to solving unconstrained optimization
problems, and constructing penalty functions. Constructing the function by least squares,
it can be expressed as:

BLSM =
1
2
· β ·

Tmon

∑
i=1

Tday

∑
j=1

∫ T

0
(pi,j

b (t) · B · pi,j
b

(
t)T
)

dt, (17)

where β is the constraint coefficient; B ∈ Rt·t is the symmetric matrix.

3.2. Binding Conditions
3.2.1. ESS State of Charge (SOC) Constraint

The power constraint of the ESS should be satisfied that its charging and discharging
power does not exceed the power limit. In order to improve the normal service life years of
ESS and keep it in a suitable operating environment, the SOC of ESS needs to be constrained.
It can be expressed as:

Smin 6 Si,j(t) 6 Smax, (18)

where Si,j(t) is the SOC at moment t on day j of month i of ESS; Smin is the lower limit of
SOC; Smax is the upper limit of the SOC.

3.2.2. ESS Charge/Discharge State Constraint

To ensure the service life of the ESS, the ESS is set to be charged and discharged for N
cycles per day. In addition, to make the ESS cycle in the same SOC at 0:00 and 24:00 every
day, the ESS charge and discharge state is constrained. It can be expressed as:

T
∑

t=0
η · pi,j

b (t) = 0 j ∈ Tday, i ∈ Tmon, (19)

T
∑

t=0
η ·
∣∣∣pi,j

b (t)
∣∣∣ 6 2 · N · dod · Er j ∈ Tday, i ∈ Tmon, (20)

3.2.3. ESS Power Constraint

The ESS operating state charging and discharging power under the rated power
constraint can be expressed as:

|Pb(t)| 6 Pr ∀t ∈ T, (21)

where Pb(t) is the ESS charging and discharging power for any time t.

3.2.4. Load Peak and Valley Constraints

In order to avoid the formation of new load spikes by ESS guided by peak and valley
tariffs difference, the charging and discharging power of ESS leads to backward power
delivery or exceeds the control demand. The power control constraint for the load power
after the ESS participation with the grid can be expressed as:

pij
b (t) + pij

l (t) = pi,j
n (t) t ∈ T, j ∈ Tday, i ∈ Tmon, (22)

Pi,j
n (t) > Pmin t ∈ T, j ∈ Tday, i ∈ Tmon, (23)
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Pi,j
n (t) 6 PNM(i) t ∈ T, j ∈ Tday, i ∈ Tmon, (24)

where pi,j
b (t) are the operating power values of the ESS at moment t on day j of month i,

kW; Pi,j
n (t), pij

l (t) is the load power before and after the user adds ESS at moment t on day j
of month i, kW; PNM(i) is the declared maximum demand value to be requested by the
user in month i, kW·month.

4. Smart Power Sales Strategy
4.1. PSO Algorithm Solving Model

On the basis of completing the construction of the energy storage evaluation model,
the model was solved using a PSO algorithm [31].

The initialized particle population moves within the region of the optimal solution and
gradually approaches the limit by continuously adjusting its speed and position according
to its distance from the extreme value of the individual and the extreme value of the
population. On this basis, the extreme value of the individual is the best population fitness
that can be obtained by searching within the range of a particular optimal solution. In
addition, the extremum of the population means that almost all individual particles in
a particular population or population system can be searched within its most efficient
solution, thus obtaining a better population fitness.

Assume that a population is in some J-dimensional solution space and the population
x = (x1, x2, . . . , xn) consists of n particles. The spatial relative spatial position of each
particle i in the D-dimensional solution space group can be represented by the vector
xI J =

(
x1J , x2J , . . . , x3J

)T , I = 1, 2, . . . , n. By finding the objective function of each
particle, the value of the adaptation degree of each particle xI J is found.

The velocity and position of the particle keep changing as the number of iterations
increases, and the update formula can be expressed as:

vK+1
I J = ωvK

I J + c1r1

(
pK

I J − xK
I J

)
+c2r2

(
gK

I J − xK
I J

)
, (25)

xK+1
I J = xK

I J + vK+1
I J , (26)

where K is the number of iterative behaviors occurring; vK
I J is the training velocity of the Kth

iteration particle swarm algorithm; ω is the inertia weight of velocity; c1is the individual
learning factor; c2 is the social learning factor; r is the polar coordinate; pK

I J is the Kth
iteration particle I individual polar in space coordinate; gK

I J is the population polar in space
coordinate; xK

I J is the position where the K th iteration particle is located; J is the dimension
of the particle in space.

The Equation (25) for the particle velocity contains three random components. The
first component ω · vK

I J denotes the initial velocity of the particle, and as the parame-
ter ω increases, the particle the initial velocity also increases. The second component
c1r1

(
pK

I J − xK
I J

)
represents the current optimal fitness of each particle and is optimized for

each particle. If the Ith particle finds a better solution than the others, extreme value of the
individual pK

I J is updated. The third component c2r2

(
gK

I J − xK
I J

)
represents the best fitness

value among all particles, the extreme value of each particle is saved, and the superiority
and inferiority of each particle gK

I J is compared.
The optimal value of the energy storage assessment model is iterated according to the

above equation. A globally optimal particle solution is obtained after the iteration, and this
solution is taken as the optimal solution of the energy storage assessment model.
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4.2. Smart Power Sales Process

The smart power sales strategy designed in this paper is based on the pre-acquisition
of electricity load data from commercial and industrial customers. This section analyzes
their forecasts and evaluates the projected electricity savings for commercial and industrial
customers after retrofitting ESS.

In the evaluation phase of the smart power sales strategy, the first step is to determine
whether the customer’s load characteristics have the potential to save money and whether it
is suitable to add ESS. The optimal ESS capacity configuration is output for users suitable for
retrofitting based on the optimal solution solved by the PSO algorithm in Section 4.1. At the
stage of optimizing ESS charging and discharging, monthly ESS charging and discharging
scheduling instructions are formulated for users based on the load forecast results of the
month in which the user declares the maximum demand value and the optimal ESS capacity
configuration. The maximum demand value is reported to the grid enterprise based on
the load optimized by the smart power sales strategy. The specific optimization process is
shown in Figure 2.
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4.3. The Benefit for the Energy Provider

For customers, this smart power sales strategy can effectively reduce their electricity
costs and increase their revenue. For energy providers, the benefits of this smart sales
strategy can be seen in the following areas [32]:

1. This smart power sales strategy can attract consumer attention and increase sales.
Especially for customers with high electricity consumption, lower electricity costs
are often one of the main deciding factors for consumers when shopping for an
energy provider.

2. This smart power sales strategy can help brands to better promote their products
and increase their market share. It also enables consumers to have more access to
the products.
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3. This smart power sales strategy can counteract the growth in sales of competing
branded products and reduce customer interest in competitive products. In addition,
by promoting consumers to buy in large quantities or in advance, to capture market
share and combat competitors.

4. This smart power sales strategy can generate a certain advertising effect for energy
provider, creating an image of quality products at low prices and attracting similar
consumers to buy them.

5. Users have a certain payback period after adding ESS, which can be a long-term
trading contract between users and energy provider to form a stable existing con-
sumer base.

5. Case Study

In this paper, the electricity load of an industrial and commercial customer in Beijing,
China, is selected as an example for calculation. We begin by applying the forecasting
model in Section 2.2 for load forecasting based on the customer’s historical electricity load
data and apply the method in Section 2.1 to construct the objective function. The capacity
of ESS is optimally configured to determine the charging and discharging power of the
ESS and the maximum demand value reported by the user to the grid enterprise. The
return on investment from the participation of ESS in the smart power sales strategy is
predicted using the expected maximum fee saving benefit of the whole life cycle ESS as the
main criterion.

Because lithium iron phosphate battery is widely used, the cost is low, so it is selected
as the type of ESS battery. Lithium iron phosphate battery charge and discharge is not
greater than 0.5 C. The upper and lower limits of the operating SOC of the ESS are set to
10% and 100%. The basic parameters of the energy storage system are shown in Table 1.

Table 1. Relevant parameters of energy storage system.

Lithium Iron Phosphate Battery Parameters Value

Maximum DOD (%) 90
Maximum number of cycles (times) 3500

ESS unit capacity cost (CNY·kWh−1) 1600
PCS unit power cost (CNY·kW−1) 600

ESS charge/discharge conversion efficiency (%) 95
Discount rate (%) 0.08

The basic tariff of demand-based metering for this commercial and industrial customer
tariff is CNY 48 /kWh, and the time-of-use electricity price is shown in Figure 3.

5.1. Load Forecasting

Based on the LSTM prediction method mentioned in Section 2.2, load prediction
is performed by reading and analyzing this customer’s historical load data, as shown
in Figure 4.

The smart power sales strategy is able to solve the ESS configuration and the ESS
charging and discharging power for different loads of different customers. In the paper, a
representative power consumption curve of one day is selected in this prediction result for
analyzing the ESS configuration, as shown in Figure 5.

According to the test results in Table 2, MAE, MAPE and RMSE gradually increase
after 400 training steps, which means that overfitting starts to occur at 500 training steps.
Therefore, the number of training steps in the LSTM model should be 400.

5.2. Optimal Allocation of ESS

As can be seen from Figures 4 and 5, the peak electricity consumption of this customer
occurs during the daytime, and a lower electricity consumption load is used to maintain
basic operation at night. Secondly, the load of this customer shows obvious cyclical



Energies 2023, 16, 3341 11 of 18

characteristics. Combined with the load characteristics of such diurnal load with large
peak-to-valley differences, it is concluded that the customer is suitable for retrofitting ESS
with good economics and can apply smart power sales strategy.
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Table 2. Comparison of training times test results.

Training Times MAE (KW) RMSE (KW) MAPE (%)

100 30.239 33.687 2.717
200 28.866 31.475 2.366
300 28.003 30.361 2.247
400 27.774 29.792 2.154
500 27.956 30.432 2.239
600 28.637 31.539 2.216
700 29.396 31.997 2.413
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In this paper, the capacity configuration of the ESS is solved using the PSO algorithm
in Section 3.1 by combining the predicted load power of this customer with the objective
function in Section 2.1 and setting different number of daily cycles. The results of the
solution are shown in Table 3.

Table 3. Results of optimized configuration of ESS.

Daily Cycle Limit (Times) 1 1.5 2

Optimal rated capacity of ESS (kWh) 2400 1600 897
Optimal power rating of ESS (kW) 300 293 256

Initial investment cost of ESS (CNY million) 4.0721 31,905 18,437
ESS full life cycle annualized revenue (CNY million) 0.5546 0.4754 0.3565

Expected payback period (years) 7.34 6.71 5.17
ESS operating life (years) 20 14 10

Return on Investment (ROI) (%) 172.39 108.61 93.36

As shown in Table 3, this customer can recover the investment cost within the ESS life
cycle after applying the smart power sales strategy. Over the full working life of the ESS,
the user can realize more than 90% return on investment.

In addition, as the number of ESS charging and discharging cycles set for a single
day changes, the configured value of ESS capacity and power decreases as the number of
cycles decreases, and the total revenue and ROI of the project decreases. However, this can
also reduce the ESS investment cost and shorten the expected payback time. Therefore, for
customers who want a low investment and fast payback, the smart power sales strategy
will recommend a single-day, multi-cycle configuration.

From Figure 6, it can be seen that the particle swarm algorithm converges to the global
optimum after more than 200 iterations when calculating the annualized income over the
full life of the ESS. The maximum annualized revenue of ESS over its full life cycle is
calculated to be CNY 55,467.

In order to more visually illustrate the impact of ESS configuration capacity on the
customer’s revenue, the integrated cost of electricity consumption and the trend change
of total expected revenue over the whole lifetime of this customer under different ESS
configuration capacities were calculated separately, as shown in Figure 6.

As shown in Figure 7, the trend of the combined cost and total expected benefits over
the whole life of this customer can be seen in the analysis of different ESS configuration
capacities. The rated capacity of ESS and the combined cost to the user tend to decrease
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first and then increase, while the expected benefit to the user is the opposite. This is mainly
because after the rated capacity of ESS increases to a certain value, the rate of growth of the
monthly basic and electricity tariff savings benefits are limited by the customer load and
cannot continue to grow. Meanwhile, the growth of ESS cost is not limited, so it results in
the situation that the comprehensive cost to users first falls and then rises, and the expected
revenue first rises and then falls. It can be seen that the best economy of adding energy
storage for users is when the capacity of ESS configuration is 2400 kWh.
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The load curves before and after the smart power sales for this customer are shown in
Figure 8, which shows results under the guidance of ESS charging and discharging obtained
from the smart power sales strategy, charging during low tariff periods and generating
electricity during high tariff periods according to the time-of-use electricity price. At the
same time, the maximum customer demand is reduced by reducing the customer demand
and smoothing the load curve to maximize customer benefits. The ESS in a typical day’s
operation is shown in Figure 9.

5.3. Smart Power Sales Strategy

According to Figure 10, it can be seen that the declared maximum demand of this
smart power sales strategy is not significantly different from the actual maximum demand
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based on the load forecast. Only one of these months had an actual maximum demand that
exceeded the declared demand and did not exceed 105%, resulting in no additional base
electricity costs. However, the declared demand without load forecasting is significantly
different from the actual demand. In four months, the actual maximum demand exceeded
105% of the declared demand, and in five months the actual maximum demand was much
less than the declared demand, causing customers to incur additional basic tariffs.
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In summary, it can be seen that the annual base cost of electricity for customers under
the no-load forecast would result in an additional cost of CNY 0.4176 million. Compared
with this, the smart power sales strategy proposed in this paper does not generate additional
basic tariffs, and the demand arbitrage of basic tariffs is 58.75% higher. Finally, with the
objective of minimizing the combined annual cost to the customer, the typical monthly
results of the smart power sales strategy optimization, based on the results in Section 4.3,
are shown in Table 4.

Table 4. Optimization results of smart power selling strategy.

Smart Power Sales Strategy Output Results Value

Optimal rated capacity of ESS (kWh) 2400
Optimal power rating of ESS (kW) 300

Annualized revenue over the whole life cycle of the ESS (CNY million) 0.5546
Expected payback period (years) 7.34

Declared maximum demand (kW) 1356.61
Demand arbitrage (CNY·month−1) 8437

Peak-valley arbitrage (CNY·month−1) 37,793
Total monthly revenue (CNY·month−1) 46,230

Return on Investment (ROI) (%) 172.39

According to the output result of the smart power sales strategy, the ESS scheduling
instruction for the declared demand month is output for this industrial and commercial
customer, and the ESS charging and discharging power is shown in Figure 11.

In summary, there is a significant reduction in the overall cost of electricity for cus-
tomers under this smart electricity sales strategy compared to traditional electricity sales
strategies. This makes it more likely that customers will choose to use the smart sales
strategy to increase their revenue. For the electricity sales company, the smart sales strategy
can attract consumers’ attention and increase sales. It can also help brands to better promote
their products, capture market share and combat competitors. Moreover, there is a certain
payback period for customers to add energy storage systems, which can be a long-term
contract between the customer and the power sales company, creating a stable existing
consumer base.
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6. Conclusions

In this paper, we propose an intelligent power sales strategy for optimal allocation of
energy storage based on load forecast data, which is mainly as follows.

Firstly, the historical load power data of industrial and commercial customers is used
as the basis for load forecasting by LSTM for the future months when customers are about
to declare their maximum demand. Secondly, an ESS evaluation model that integrates
ESS equipment, installation and O&M costs, and ESS capacity decay costs to improve the
combined benefits of peak-to-valley tariff arbitrage and lower base tariffs is established.
The PSO algorithm is introduced for solving the model. The results of the algorithm show
that with the use of load forecast-based energy storage participation in smart power sales
strategy, the difference between the user′s declared maximum demand value and the actual
maximum demand is not large, which improves the user′s benefit. Finally, the smart power
sales strategy outputs a series of optimized configurations that deliver a high ROI for the
customer throughout the life cycle of the energy storage system. This strategy provides the
power sales company with the ability to attract consumer attention, increase sales, capture
market share and stabilize existing consumer base.

However, the load forecasting approach adopted in this smart power sales strategy
does not consider the impact of load characteristics on the forecasting results. In addition,
reducing the cost of electricity to the customer will reduce the revenue that the power sales
company receives from that customer. Therefore, the next research in this study focuses on
the uncertainty of different characteristic loads in the forecasting process to further improve
this smart power sales strategy as well as finding a balance between reducing the cost for
customers and the revenue for the power sales company.
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