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Abstract: In the restructured electricity market, retailers are intermediaries between the electricity
wholesale market and consumers. Considering the uncertainty of wholesale market price, retailers
should consider the risks of their profit caused by the uncertain wholesale price when participating in
the retail competition. Indeed, retailers’ risk preferences will impact their price bidding strategies. To
examine the effects of retailers’ risk preferences on their strategies and equilibrium outcomes in the
retail market, an equilibrium model for price-making retailers is proposed by employing the mean–
variance utility theory to model the risk preferences of retailers. The market share function is used
to characterize consumers’ price-elasticity and switching behavior in the retail market. Few works
in the literature address the issue of bidding strategies of retailers with different risk preferences in
the electricity market with switchable consumers. Moreover, the existence and uniqueness of the
Nash equilibrium are theoretically proved. A theoretical analysis is presented to investigate the
impacts of wholesale price uncertainty and retailer’s risk preference on the bidding strategy. By
adopting the nonlinear complementarity approach, the proposed game model is transformed into a
set of nonlinear equations, which is further solved by the Levenberg–Marquardt algorithm. Finally,
examples are included to verify the effectiveness of the proposed theory, and the results show that
the bidding price of a retailer will increase with the increasing uncertainty of the wholesale price and
the increasing risk-averse levels of itself and its rivals.

Keywords: electricity market; equilibrium; risk preference; electricity retailers

1. Introduction

Nowadays, the power industry has been globally experiencing significant changes
due to the restructuring and deregulation [1–3]. The major goal is to create competitive
electricity markets. In the restructured electricity market, retailers are intermediaries
between the electricity wholesale market and consumers. On the one hand, retailers
purchase electricity in the wholesale market at wholesale price. On the other hand, retailers
will offer a retail price to consumers, and consumers will send their load to retailers in
retail market [4]. In this process, on account of the wholesale price uncertainty caused
by the massive integration of renewable generations, retailers will be exposed to risks
when designing their retail bidding prices [5–7]. Therefore, retailers need to make tradeoffs
between their profits and risks through bidding strategies in the retail competition.

Given the fact that different types of retailers are promoted to entry in the retail
competition, they can be simply divided into regional incumbents and entrants [8]. The
regional incumbents, who can rely on a core business of sticky consumers, may have a
certain competitive advantage compared with entrants who are new competitors in the
retail market. Since retailers are heterogeneous in their reputations, consumer base, and
risk attitudes, they will choose different retail bidding strategies [9]. Particularly, the risk
preference of individual retailers is an important factor that should be carefully considered.
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Retailers with different risk preferences can control risks by designing bidding strategies in
the retail market.

Currently, relevant research works on retailers’ bidding strategies in the retail market
can be roughly divided into two categories: (1) optimization-based studies, in which a
single retailer pursues its maximum profit by determining the optimal bidding strategy;
and (2) game-theory-based studies, which consider the strategic interaction among multiple
retailers participating in the retail competition. The game-theory-based models can be used
to simulate multiple participants’ bidding strategies and equilibrium outcomes; thus, they
have been widely applied to analyze the strategic behaviors and market power issues in the
electricity wholesale market [10–12]. The review in [13] has shown that the first category has
drawn lots of attention. According to the risk optimization of electricity retail enterprises
in the literature [14], electricity retailers can guide users to respond to demands through
value-added services and reduce the income risk of electricity retailers. The review in [15]
indicated that the optimization of income and risk can improve the market competitiveness
of the electricity retailers. The optimization of power purchasing is the crucial part to
enhance the core competitiveness of electricity retailers, which can help electricity retailers
achieve economic-efficiency improvement and risk reduction [16]. The conclusion that the
retail market is more favorable to risk-seeking retailers is proved by the optimization model
in [17]. A two-stage stochastic optimization model proposed in [18] aims to support the
aggregator of prosumers in day-ahead electricity market and reserve market by considering
the prosumers’ preferences. An economic optimization model proposed in [19] considers
retailers’ trading with the virtual power plant (VPP) and consumers, in which the retail
tariffs have two components, fixed charges and variable charges. The variable charges
are based on the consumers’ consumptions. On the other hand, the literature works on
game theory-based modeling and equilibrium analysis of the retail market are still limited
for now. According to [20], a supply function equilibrium (SFE) model is proposed for
capturing the features of prosumers in the retail market. The Bertrand-based game model
of the retail market is proposed in [21] by taking consumers’ switching behavior and
retailers’ contract trading into consideration. The equilibria in the competitive retail market
is analyzed in [22] by considering retailers’ risk management; however, retailers’ risk
preferences on strategic bidding behaviors and equilibrium outcomes are not well studies.
Moreover, some works in the literature have integrated market players’ risk preferences
into game analysis of the electricity market [23–26]. Uncertainty of wind power production
is considered, and SFE models are proposed by taking into account market participants’
risk preferences in [23,24]. In [23], a single-level equilibrium model is used to study the
impacts of conventional generators’ risk preferences on strategic behavior and market
equilibrium. In [24], the impacts of energy storage systems’ risk preferences on strategic
behaviors and market equilibrium are studied by using a bi-level equilibrium model.
Uncertainties of both wind power production and demand are considered in [25], in which
a stochastic bi-level equilibrium model is established to analysis the strategic behaviors of
wind generators and conventional generators. A game model of the electricity wholesale
market integrated with risk-averse characteristics of generators is proposed in [26]; the
CVaR method is used to assess generators’ risk aversion. To the best of our knowledge,
electricity market research has not been well developed in terms of integrating market
participants’ risk-averse characteristics into the equilibrium analysis. Moreover, the above
literature mainly focuses on the wholesale market.

Compared with [23], in which the impacts of conventional generators’ risk preferences
on strategic biddings and market equilibrium are studied by using a single-level equilib-
rium model, and compared with [27] and [28], in which the risk preferences of renewable
generator and price-maker VPP are considered, this paper focuses on the price-making
retailers by using the game model to simulate the retail market competition. Then, con-
sidering the uncertainty of wholesale price, the mean–variance utility theory is employed
to explicitly model retailers’ risk-averse characteristics [5,29]. Moreover, with the devel-
opment of smart grid and the recent advances of smart home technologies, consumers
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would be more sensitive and active to retail prices in retail market. The smart home tech-
nologies include sensors, electric vehicles, and home energy management systems that are
adopted with control, communication, and monitoring functionalities [30–32]. Therefore,
retailers should also consider the flexibility of consumers’ demand. That is, if the retail
price increases, consumers will reduce their demand from this retailer and/or switch some
of the reduced demand to other retailers with relatively lower prices. Previous works in the
literature generally model the consumers’ demand as stochastic variables [13,33], which
cannot explicitly reflect consumers’ elasticity and switching behavior against retail prices.
To deal with this issue, a market share function (MSF) is adopted. The MSF is formulated
by assuming a representative consumer from the retail market, who decides retail loads
for all retailers in order to maximize the overall payout [21]. For now, the impacts of
consumers’ switching behavior on strategic bidding behaviors of retailers with different
risk preferences were not examined.

Problem statement: Under the background of a large proportion renewable energy
power penetration and electricity market deregulation, retailers are inevitably making
tradeoffs between their profits and risks when participating in retail competition. Nowadays,
most relevant studies are either based on optimization models or the wholesale market, and
they are not focused on the retail market involving competitive retailers with risk preferences.
To fill the research gap, considering uncertainty of wholesale price, this paper integrates
electricity retailers’ risk preferences into the game analysis of the retail market. Each retailer’s
optimization problem is expressed as a utility-maximization problem. The game model
obtained in our paper gathering all individual retailer’s optimization problems.

Specifically, the novelty and contributions of this paper are summarized as follows:

• A game model for price-making retailers is formulated in the electricity retail market
while considering the risk caused by uncertain wholesale prices. The MSF of each
retailer with risk preference is adopted to describe the elastic and switching behaviors
of consumers to the retail prices provided by all retailers.

• The existence and uniqueness of the Nash equilibrium of the proposed model is proved.
Then the equilibrium results are derived by the nonlinear complementary approach.

• A theoretical analysis is presented to investigate impacts of wholesale price uncertainty
and risk preference on retailer’s bidding strategy. Numerical examples are used to
demonstrate the effectiveness of the theoretical analysis.

The remainder of this paper is structured as follows: Section 2 introduces the mar-
ket framework and formulates the retail market game model. Then the existence and
uniqueness of the Nash equilibrium are provided by theoretical analysis and rigorous proof.
Furthermore, the nonlinear complementarity approach is used to obtain the equilibrium
outcomes. In Section 3, mathematical results and discussions are provided. Finally, some
relevant conclusions are explained in Section 4.

2. Formulation of Retail Game Model with Risk Preference
2.1. Assumptions

Before establishing the proposed game model, fundamental assumptions are made
as follows:

1. Considering that the existing electricity markets are all operated as ex ante markets
to ensure the security of real-time operation. This paper assumes the proposed retail
mechanism to be an hour-ahead market.

2. By utilizing an open information network and smart home technologies in the dereg-
ulated electricity market [32], it can be predicted that intelligent consumers will have
the ability to switch retailers in real time in the future. Therefore, we consider that
multiple price-making retailers participate in the retail market competition, from
which consumers will choose and switch their electricity supplies during a single time
period (1 h).

3. As shown in Figure 1, retailers are intermediaries between the electricity wholesale
market and consumers. In the wholesale market, retailers purchase electricity at
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wholesale price. Because the competition in the wholesale market is unpredictable,
the wholesale price is treated as a stochastic variable. In the retail market, retailers sell
what they buy to consumers. Through the bidding process, retailers send the retail
prices to customers, and the customers should send the load to retailers.
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Defining I = (1, . . . , n) as the set of retailers, let N = |I| denote the number of retailers.
We discussed that electricity retail competition is based on price, so the decision variable
of each retailer is the retail bidding price. λ = (λ1, λ2, · · · , λN) is a profile of individual
retailers’ price bidding strategies, and λ−i represents the profile of retailers’ price bidding
strategies, except for retailer i. Let x = (x1, x2, · · · , xN) be a profile of retailers’ retail loads,
and let x−i denote the profile of retailers’ retail loads, except for retailer i. Then retailer
i′s (i ∈ I) decision-making process is as follows:

• During the retail bidding process, retailer i offers retail bidding price λi to realize its
profit maximization. Once the profile of all retailers’ bidding prices, λ, is announced,
consumers will adjust their demands. Accordingly, the retail load of retailer i will
change.

• Once retailer i′s retail load is derived, retailer i will purchase xi from the electricity
wholesale market at wholesale price, pw, which is a stochastic parameter, to supply
the consumers’ demand.

Retailer i(i ∈ I)’s profit consists of two parts. One is the revenue from sales to con-
sumers in the retail market. The other is the purchase cost in the wholesale market, which
is given by the following:

Ri = λixi − pwxi (1)

Assuming that the stochastic variable pw follows a probability distribution with a
mean value, µw, and a standard deviation, σw, it is not difficult to obtain the mean and
variance of retailer i’s profit:

E(R i) = λixi − µwxi (2)

and
σ2(Ri) = σ2

wx2
i (3)

In order to capture the price elasticity and switching behavior of consumers in the
retail market, retail prices offered by all retailers should be considered in the MSF of



Energies 2023, 16, 3339 5 of 18

each retail. To formulate this, assume there is a fictional representative consumer on the
electricity retail market who decides the retail load for all retailers in order to maximize the
total return [21]. Then the MSF can be derived as follows:

xi(λi, λ−i) = ∑
j∈I

βi,jaj − βiλi + ∑
j∈I,j 6=i

(
−βi,j

)
λj (4)

where ai > 0, βi > 0, and βi,j ≤ 0. Specifically, the first term in (4), which is ∑j∈Iβi,jaj > 0,
represents retailer i′s potential size [34]. βi indicates that the increase in retailer i’s bidding
price will result in a drop in consumers’ demand, namely retailer i’s retail load. βi,j(j 6= i) is
the switching factor which would interconnect the decision-making problems of all retailers.

βi,j < 0 means consumers have switching behavior between retailer i and j. For
example, if retailer j increases its retail price, consumers will switch a portion of their
reduced demand from retailer j to i, which will lead to a rise of retailer i’s retail load. We
assume that βi,j = β j,i, and a larger

∣∣βi,j
∣∣ implies a greater consumer switching potential.

If βi,j = 0, which means consumers have no switching potential between retailer i and
j, retailer i’s MSF can be reformulated as follows:

xi(λi) = βiai − βiλi (5)

It can be found from (5) that, without considering consumers’ switching behavior,
retailer i′s retail load only depends on its own bidding price and parameters. By varying
the values of ai and βi, we can distinguish between retailers. For instance, if the retailer has
a relatively high reputation and a large number of customers, the size, βiai, of the potential
market will be larger, and sensitivity parameter βi will be smaller to some extent, which
means that this retailer may not easily lose consumers by incrementing its bid.

Furthermore, the parameters in (4) need to satisfy βi > ∑N
j=1,j 6=i

∣∣βi,j
∣∣ and βi > ∑N

j=1,j 6=i

∣∣β j,i
∣∣,

which indicate that a per-unit increase in the bids offered by all retailers is not going to
increase consumers’ demand to retailer i. In another words, a per-unit decrease in the bids
offered by all retailers is not going to decrease consumers’ demand to retailer i when other
parameters in (4) remain unchanged [21].

2.2. Game Model

Higher profit is usually accompanied by a higher risk. Thus, retailers have to consider
the corresponding risks while maximizing their profits in the retail competition. To this
end, each retailer aims to seek two goals. One is to maximize its profits, and the other
is to minimize the corresponding risk; unfortunately, these two things conflict with each
other. Indeed, how to balance the profit and risk depends on the retailer’s risk preference.
Retailer i’s optimization problem can be expressed as a utility-maximization problem, as
the follows, by using the mean–variance utility theory [35]:

max
λi

Ui = (1− ri)E(Ri)− riσ
2(Ri) (6)

where Ui and ri are the utility function and risk preference of retailer i, respectively. Specifi-
cally, ri = 0 represents that retailer i is risk-neutral, and 0< ri < 1 represents that retailer i
is risk-averse; meanwhile, the higher ri representsthe more risk-averse retailer i is.

Above all, retailer i’s optimization problem in the retail market can be expressed
as follows:

max
λi

Ui(λi, λ−i) = (1− ri)(λixi − µwxi)− riσ
2
wx2

i (7)

s.t.λmin
i ≤ λi ≤ λmax

i (8)

xi(λi, λ−i) = ∑
j∈N

βi,jaj − βiλi + ∑
j∈N,j 6=i

(
−βi,j

)
λj (9)



Energies 2023, 16, 3339 6 of 18

It can be found that the utility of each retailer depends on both its own bidding price
and the bids of its competitors. Thus, by gathering all individual retailer’s optimization
problems, (7)–(9), the game model of this paper can be obtained, considering that the price
bidding among retailers in the retail market is a one-time game and there is no cooperation
among retailers.

Definition 1. In our research, we define the retail market game model as G =
{

I, (λi)i∈I , (Ui(λ) i∈I
}

.

Definition 2. For the game problem, G, the profile of retailers’ strategy, λ∗ =
(
λ∗1 , λ∗2 , · · · , λ∗N

)
,

is an Nash equilibrium if and only if Ui
(
λ∗i , λ∗−i

)
≥ Ui

(
λi, λ∗−i

)
for all i ∈ I and any λi ∈ Ωi ={

λi
∣∣λmin

i ≤ λi ≤ λmax
i
}

.

2.3. Existence and Uniqueness of Nash Equilibrium

Note that the Nash equilibrium will always exist and remain unique in a general
noncooperative game. Therefore, we should investigate whether the proposed game model
contains a unique Nash equilibrium in our paper.

Theorem 1. There must be more than one pure strategy Nash equilibrium in the game problem, G.

Proof. According to [36], a pure strategy Nash equilibrium exists in the game if the
following two conditions hold:

1. Each retailer’s strategy space is closed, bounded, and convex.
2. In regard to the retailer’s strategy of its own, its profit function is continuous and

quasi-concave.

From Definition 2, it is easy to know that retailer i′s(i ∈ I) strategy space, Ωi, is an
enclosed and convex set with clear boundaries. So, Condition 1 is satisfied.

In regard to λi, we take the first and second derivatives of Ui(λ) and obtain
the following:

∂Ui(λ)
∂λi

=
(
1− ri + 2βiriσ

2
w
)[

βi(ai − λi) + ∑
j∈N,j 6=i

βi,j
(
aj − λj

)]
−βi(1− ri)(λi − µw)

(10)

∂2Ui(λ)

∂λ2
i

= −2βi

(
1− ri + βiriσ

2
w

)
(11)

From (10), we can obtain a continuous utility function for retailer i. Owing to βi > 0
and 0 < ri < 1, the right-hand side of (11) is negative. In terms of its strategy space,
the utility function, Ui(λ), of retailer i is strictly concave and is therefore a quasiconcave
function. Consequently, Condition 2 is satisfied.

In conclusion, the game problem, G, has at least one pure strategy Nash equilibrium. �

Theorem 2. The game problem, G, has a unique Nash equilibrium.

Proof. In accordance with [36], the proposed game model has a unique NE if each retailer’s
best response mapping is a contraction of its entire strategy space.

In the game, considering the strategies of the other retailers, λ−i, we find that the
best response function for retailer i is the best strategy for retailer i. Thus, we obtain
the following:

λi(λ−i) = arg max
λi

Ui(λi, λ−i) (12)
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In order to calculate the derivative of (10), we need to take the derivative with respect
to λj, and we obtain the following:

∂2Ui(λ)

∂λi∂λj
= −βi,j

(
1− ri + 2βiriσ

2
w

)
(13)

In order to determine the first-order derivative of retailer i’s λi(λ−i) when compared
to its rival’s bidding price, λj(j 6= i), we can apply the implicit function theorem as follows:

∂λi(λ−i)

∂λj
= −

∂2Ui(λ)
∂λi∂λj

∂2Ui(λ)

∂λ2
i

= −
βi,j

βi
· 1− ri + 2βiriσ

2
w

2(1− ri) + 2βiriσ2
w

(14)

Due to βi > −βi,j > 0, we have the following:

0 < ∂λi(λ−i)/∂λj < 1 (15)

In conclusion, a contract mapping is the best response function of retailer i since it
satisfies

∣∣∂λi(λ−i)/∂λj
∣∣ < 1 [36]. Thus, Theorem 2 is proved: there exists a unique Nash

equilibrium in the game problem, G. �

2.4. Impacts of the Uncertainty of Wholesale Price Uncertainty and Risk Preference on Retailer’s
Bidding Strategy

For the convenience of theoretical analysis, the inequality constraint condition (8) are not
considered her; however, this does not impact the analysis results. Substituting (5) into (7), in
the decision-making problem of retailer i, the optimal first-order condition is as follows:

∂Ui
∂λi

=
(

1− ri + 2βiriσ
2
w

)
(ai − λi)βi − βi(1− ri)(λi − µw), ∀i ∈ I (16)

From (16), we can obtain the optimal bidding price of retailer i, which is as follows:

λi =

(
1− ri + 2βiriσ

2
w
)
+ (1− ri)µw

2(1− ri + βiriσ2
w)

(17)

Then, retailer i’s retail load, expected profit, and variance of profit are, respectively,
calculated as follows:

xi =
(1− ri)(ai − µw)βi
2(1− ri + βiriσ2

w)
(18)

E(Ri) =
(ai − µw)

2(1− ri + 2βiriσ
2
w
)
(1− ri)βi

4(1− ri + βiriσ2
w)

2 (19)

σ2(Ri) = σ2
w

[
(1− ri)(ai − µw)βi
2(1− ri + βiriσ2

w)

]2
(20)

From (18)–(20), the first-order partial derivative of the retail price, retail load, expected
profit, and variance of profit of retailer i with respect to σ2

w can be acquired as follows:

∂λi
∂σ2

w
=

βiri(1− ri)(ai − µw)

2
(

1− ri + riσ2
wβ .

i

)2 (21)

∂xi
∂σ2

w
=

(1− ri)(ai − µw)β2
i ri

2(1− ri + βiriσ2
w)

2 (22)
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∂E(Ri)

∂σ2
w

= −
(ai − µw)

2(1− ri)β3
i r2

i σ2
w

2(1− ri + βiriσ2
w)

3 (23)

∂σ2(Ri)

∂σ2
w

=

[
(1− ri)(ai − µw)βi
2(1− ri + βiriσ2

w)

]2(1− ri − βiriσ
2
w

1− ri + βiriσ2
w

)
(24)

It can be found from (21)–(24) that ∂λi/∂σ2
w > 0, ∂xi/∂σ2

w < 0, and ∂E(Ri)/∂σ2
w < 0,

which demonstrate when the uncertainty of wholesale price increases (i.e., a larger vari-
ance), and the retailer will increase its retail bidding price, and both its retail load and
expected profit will decrease. From (24), it can be found that ∂σ2(Ri)/∂σ2

w > 0 when
σ2

w < (1− ri)/βiri; namely, the variance of retailer’s profit will increase with the increase
in the variance of wholesale price. Moreover, ∂σ2(Ri)/∂σ2

w < 0 when σ2
w > (1− ri)/βiri;

namely, the variance of retailer’s profit will decrease with the increase in the variance of
wholesale price.

The first-order partial derivatives of retailer i’s bidding price, retail load, expected
profit, and standard deviation of profit with respect to its risk preference, ri, are further
examined as follows.

∂λi
∂ri

=
(ai − µw)βiσ

2
w

2(1− ri + riσ2
wβi)

2 (25)

∂xi
∂ri

=
(ai − µw)βiσ

2
w

2(1− ri + βiriσ2
w)

2 (26)

∂E(Ri)

∂ri
= −

(ai − µw)
2β3

i riσ
4
w

2(1− ri + βiriσ2
w)

3 (27)

∂σ(Ri)

∂ri
= −

(ai − µw)β3
i σ3

w

2(1− ri + βiriσ2
w)

2 (28)

It can be seen from (25)–(28) that ∂λi/∂ri > 0, ∂xi/∂ri < 0, ∂E(Ri)/∂ri < 0, and
∂σ(Ri)/∂ri < 0, which show that the increase in the risk-averse level of retailer i will lead
to the increase in its retail price and the decrease in its retail load, expected profit, and
standard deviation of profit.

2.5. Solution Method

The Nash equilibrium of the game model, G, mentioned above can be attained by
collecting the optimization issues of each retailer and then solving them simultaneously.
Note that the Nash equilibrium λ* =

(
λ*

1, λ*
2, · · · , λ*

N

)
should fulfill the Karush–Kuhn–

Tucker (KKT) conditions [12,37] of each retailer’s optimization problem.
The KKT conditions of retailer i(i ∈ I) are calculated as follows.

(λi, ∀i) :
(
1− ri + 2βiriσ

2
w
)[

βi(ai − λi) + ∑
j∈N,j 6=i

βi,j
(
aj − λj

)]
−βi(1− ri)(λi − µw) + µ1i − µ2i

(29)

(µ1i, ∀i) : µ1i ≥ 0,
(

λi − λmin
i

)
≥ 0, µ1i

(
λi − λmin

i

)
= 0 (30)

(µ2i, ∀i) : µ2i ≥ 0, (λmax
i − λi) ≥ 0, µ2i(λ

max
i − λi) = 0 (31)

where µ1i and µ2i represent the lower and upper bounds of retailer i’s retail price, respectively.
We can obtain the equilibrium outcomes by solving the problem of all retailers’ KKT

conditions simultaneously. However, it can be seen that the complementarity conditions,
such as (30) and (31), are included in each retailer’s KKT conditions. By adopting the
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nonlinear complementarity method [12], expressions (30) and (31) can be reformulated as
nonlinear equations, as shown in (32) and (33):

(µ1i, ∀i) : µ1i + λi − λmin
i −

√
µ2

1i +
(
λi − λmin

i
)2

= 0 (32)

(µ2i, ∀i) : µ2i + λmax
i − λi −

√
µ2

2i +
(
λmax

i − λi
)2

= 0 (33)

Accordingly, a group of nonlinear algebraic equations is generated from the KKT con-
ditions of each retailer’s optimization problem. Using the Levenberg–Marquardt algorithm,
the Nash equilibrium of the game problem, G, can be derived by solving the nonlinear
equation sets of all retailers.

3. Numerical Examples
3.1. Impacts of Wholesale Price Uncertainty on Equilibrium Outcomes

Given the fact that retail prices offered by retailers are highly linked to the wholesale
price in the real-time pricing scheme, the impacts of wholesale price uncertainty are firstly
discussed. Assume that two symmetric retailers participate in the retail competition. The
parameters in each retailer’s MSF are ai = 80 $/MWh, βi = 16 (MW)2 h/$, and

∣∣βi,j
∣∣ = 2

(MW)2 h/$ (i, j = 1, 2 and i 6= j). The electricity wholesale price follows a lognormal
distribution, with a mean value of µw = 60 $/MWh and a standard deviation, σw. It should
be noted that the data defined in MSF coefficients are an academic exercise, not realistic [34].

When the two retailers are risk-neutral, i.e., r1 = r2 = 0, their equilibrium retail prices,
retail loads, and expected profits are 69.33 $/MWh, 149.33 MW, and 1.394 × 103 $/MWh,
respectively. These equilibrium outcomes remain unchanged when the uncertainty of
wholesale price varies (i.e., with different standard deviation values).

Furthermore, considering that the two retailers have risk-averse characteristics. Their
risk-preference coefficients are r1 = 0.05 and r2 = 0.10, meaning that the risk-averse level of
Retailer 2 is relatively larger. Table 1 shows the equilibrium outcomes under different σw
values. It can be seen that, with the increase in σw, the retail prices provided by the two
retailers will increase and the retailer loads of the two retailers will decrease. Moreover, in
the case of the same σw, Retailer 2, with a relatively higher risk-averse level, will offer a
relatively higher retail price than Retailer 1. Meanwhile, the expected profit of Retailer 2
and the standard deviation of Retailer 2’s profit are relatively smaller. These results are
consistent with the theoretical analysis in Section 2.4.

Table 1. Impacts of the standard deviation of wholesale price on equilibrium outcomes.

Equilibrium Outcomes σw = 0.2 σw = 0.4 σw = 0.6

λ1 ($/MWh) 69.68 70.59 71.80
x1 (MW) 145.09 133.51 117.55

E(R1) (103 $/h) 1.404 1.414 1.387
σ(R1) ($/h) 29.02 53.40 70.53

λ2 ($/MWh) 69.98 71.50 73.19
x2 (MW) 139.74 117.24 92.56

E(R2)(103 $/h) 1.394 1.348 1.221
σ(R2) ($/h) 27.95 46.90 55.54

Total demand (MW) 284.83 250.75 210.11
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3.2. Impacts of Retailers’ Risk Preferences on Equilibrium Outcomes

Considering the fact that the electricity retail market is more akin to oligopoly in
many countries, it is significant to analyze the strategic bidding of retailers by oligopoly
equilibrium models. Meanwhile, given the fact that different retailers have different risk
preferences, the change of one retailer’s risk preference not only affects its own bidding
strategy and utility but also affect its rivals’ bidding strategies and utilities. In order to
display the interaction, numerical simulations are conducted as follows, which can help
policymakers to find the market power issues.

Assume that the mean value and standard deviation of the electricity wholesale price
are µw = 60 $/MWh and σw = 0.6 $/MWh, respectively. The parameters in two symmetric
retailers’ MSFs are the same as those in Section 3.1. Figures 2–5 show the impacts of two
retailers’ risk preferences on Retailer 1’s equilibrium retail price, retail load, the expected
profit, and the standard deviation of profit, respectively.
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It can be found from Figures 2–4 that, with the increase in Retailer 1’s risk-averse level,
its bidding price will go up, while its retail load, expected profit, and standard deviation of
profit will decrease. These results are consistent with the theoretical analysis in Section 2.4.

It can be seen from Figure 2 that Retailer 1 will raise its bidding price with the increase
in its rival’s (i.e., Retailer 2’s) risk-averse level. It also can be seen that, with the increase in
Retailer 2’s risk-averse level, its own bidding price will increase, as discussed in Section 2.4.
Meanwhile, the magnitude of the increase in Retailer 2’s bidding price is significantly larger
than that of Retailer 1, as shown in Figure 2. As such, with the increase in Retailer 2’s
risk-averse level, the bidding price of Retailer 2 will be higher than that of Retailer 1,
and this will incentivize consumers to reduce the demand from Retailer 2 and switch to
Retailer 1. Therefore, Retailer 1’s retail load will increase with the increase in its rival’s
risk-averse level, as shown in Figure 3.

To sum up, the retail bidding price of a retail will increase not only with the increase
in its own risk-averse level but also with the increase in its rival’s risk-averse level, and
the retail price is more affected by its own risk-averse level. Moreover, it can be concluded
that, with the increase in a retailer’s risk-averse level, its own retail load will drop, and its
rival’s retail load will increase. As a result of its own retail load decreasing more than the
competitors’ retail loads increasing, the total retail demand in the retail market decreased,
as shown in Figure 6.
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From Figures 4 and 5, it can be observed that a retailer’s expected profit and standard
deviation of profit will decrease with the increase in its own risk-averse level and increase
with the increase in its rival’s risk-averse level. In other words, increasing the risk-averse
level of a retailer itself will reduce the risk of its profit, but increasing the risk-averse level
of its rival may have an adverse effect on the risk of its profit.

The above results also indicate that, for a certain retailer, when its rival retailer’s
risk-averse level goes up, this retailer may have a chance to enhance the retail bidding price
by bidding more strategically, occupy a larger market share, and make more profit.

We further consider three asymmetrical retailers participating in the retail competition.
As mentioned in Section 2.1, there are three retailers that can be distinguished by ai and
βi, as indicated in Table 2. It can be found from Table 2 that Retailer 3 has a fairly higher
reputation and larger consumer base than Retailers 1 and 2. Meanwhile, assuming that the
switching factor in each retailer’s MSF is

∣∣βi,j
∣∣ = 2 (MW)2 h/$ (i, j = 1, 2, 3 and i 6= j), let

Retailers 1 and 2 be risk-neutral. Table 3 shows the equilibrium outcomes when Retailer 3’s
risk preference equals 0, 0.05, and 0.1.

Table 2. Parameters in MSFs.

Retailer ai ($/MWh) βi ((MW)2 h/$)

1 80 20
2 90 18
3 100 17

Table 3. Impacts of Retailer 3’s risk preference on equilibrium outcomes.

r3 Retailer λi ($/MWh) xi (MW) E(Ri) (103$/h) σ(Ri) ($/h)

0
1 68.07 161.44 1.303 96.86
2 73.13 236.38 3.104 141.83
3 78.31 311.20 5.695 186.72

0.05
1 68.31 166.20 1.381 99.72
2 73.40 241.11 3.230 144.67
3 82.80 235.76 5.376 141.46

0.10
1 68.47 169.35 1.434 101.61
2 73.57 244.25 3.314 146.55
3 85.78 185.78 4.789 111.44
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From Table 3, it can be observed that, with the increase in the risk-averse level of
Retailer 3, its retail bidding price will increase, and its expected profit, retail load, and
standard deviation of profit will decrease. Meanwhile, affected by the increase in Retailer 3’s
risk-averse level, retail prices supplied by Retailers 1 and 2 will increase. Moreover,
Retailers 1 and 2’s loads are increased because of consumers’ switching behavior. That is,
as Retailer 3’s bidding price is higher, consumers will switch a portion of their demands to
be supplied by Retailers 1 and 2, whose bidding prices are lower than Retailer 3’s. Both
Retailers 1 and 2’s expected profit and the standard deviation of profit will increase with
the increase in Retailer 3’s risk-averse level. The above results are consistent with the
aforementioned analysis under the symmetrical case.

3.3. Impacts of Consumers’ Switching Behavior on Strategic Bidding Behaviors of Retailers with
Different Risk-Averse Levels

As consumers will adjust their demand and/or switch retailers according to retail
prices in the deregulated retail market, which will inevitably impact retailers’ bidding
strategies in the retail market, integrating consumers’ elasticity and switching behaviors into
the game analysis is significant. This section focuses on analyzing the impacts of consumers’
switching behavior on retailers’ price bidding strategies and equilibrium outcomes, with
different standard deviations of the wholesale price.

Considering that three retailers with different risk-averse levels participate in the
retail market competition, the parameters of each retailer’s MSF are ai = 80 $/MWh and
βi = 16 (MW)2 h/$ (i = 1, 2, 3). Assume that three retailers are risk-averse and the risk-
averse level of Retailer 3 is relatively higher, namely r1 = 0.10, r2 = 0.20, and r3 = 0.30.
In Case 1, the mean and the standard deviation are µw = 60 $/MWh σw = 0.5 $/MWh,
respectively. In Case 2, the standard deviation of the wholesale price is relatively larger,
i.e., σw = 1.0 $/MWh. For the sake of comparison and analysis, we take Retailers 1 and 3
as examples. Figures 7–10 show the equilibrium outcomes of Retailers 1 and 3 in the two
cases, with respect to switching factors

∣∣βi,j
∣∣ (i, j = 1, 2, 3 and i 6= j), including retail price,

retail load, expected profit, and standard deviation of profit.
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It can be seen from Figure 7 that the bidding prices of Retailers 1 and 3 will decrease
as switching factors increase in both cases, thus demonstrating that consumers’ switching
behavior can contribute to the mitigation of retailers’ market power abuse. Moreover, under
the same σw, the magnitude of decrease in Retailer 3’s bidding price is larger than that of
Retailer 1. In other words, the more risk-averse a retailer is, the more obvious the mitigative
effect of consumers’ switching behavior on its market power will be.

The retail loads from Retailers 1 and 3 will drop with the increase in switching factors
because the mitigation in the retailers’ market power will result in a fall in their willingness
to offer electricity in the retail market [21], as shown in Figure 8. Accordingly, Retailers
1 and 3’s expected profits and standard deviations of profits will decrease as switching
factors increase in both cases, as shown in Figures 9 and 10.

Moreover, compared with the equilibrium outcomes in Case 1, it can be observed from
Figures 7–10 that, as switching factors increase, the magnitudes of decrease in Retailer 3’
bidding price, retail loads, expected profits, and standard deviations of profit are relatively
smaller in Case 2. This can be explained via two reasons: One is because, although the
increase in switching factors will decrease bidding prices, risk-averse retailers also need
to maintain a certain level of bidding prices to hedge against the risk when facing in the
higher uncertainty of the wholesale price. The other is due to the reduction of total demand,
which is caused by the higher uncertainty of the wholesale price; retailers may show less
willingness to attract consumers by decreasing their bidding prices. In other words, in
the situation with relatively lower uncertainty of the wholesale price, the mitigative effect
of consumers’ switching behavior on risk-averse retailers’ market power would be more
significant.

4. Conclusions

Up until now, the research about the bidding strategies of retailers with different risk
preferences in the electricity market with switchable consumers has been very limited. This
paper considered the uncertainty of the wholesale price and how retailers with different risk
preferences will have different strategic bidding behaviors in the electricity retail market.
A game model of the electricity retail market was proposed, while considering retailers’
risk preferences and consumers’ switching behavior. Then the existence and uniqueness
of the Nash equilibrium in the proposed model were theoretically proved. A theoretical
analysis was presented to investigate the impacts of wholesale price uncertainty and risk
preference on retailer’s bidding strategy. The effectiveness of the proposed model was
illustrated through case studies.

The main findings and practical insights are summarized as follows:

• When risk-averse retailers participate in the retail market competition, every retailer’s
bidding price will increase with the increase in the uncertainty of the wholesale price
(i.e., a larger standard deviation). The more risk-averse the retailer is, the more obvious
this effect will be.

• A retailer will raise its retail bidding price when the risk-averse levels of itself and its
rivals increase, and it will be more affected by its own risk-averse level. Meanwhile,
a retailer’s expected profit and standard deviation of profit will decrease with the
increase in its own risk-averse level and increase with the increase in its rival’s risk-
averse level. We also found that a retailer may have a chance to raise its bidding price,
occupy a relatively larger market share, and make more profit by exercising market
power when the risk-averse level of its rival retailer increases.

• Consumers’ switching behavior can help mitigate the strategic behaviors of retailers
and lower the retail prices. Moreover, the more risk-averse the retailers are, the more
obvious the mitigative effect of consumers’ switching behavior on their strategic
behaviors will be. Moreover, in the case of a relatively lower uncertainty level of the
wholesale price, consumers’ switching behavior may have a better mitigative effect on
the market power of risk-averse retailers.
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The above conclusions can provide reference for policymakers to address market
power issues and improve the efficiency of the electricity retail market. Meanwhile, in the
context of the high penetration of renewable energy power, analyzing bidding strategies
of retailers with risk preference can help retailers to cope with risks and find a balance,
and then promote the deregulation of the electricity market and the consumption of
renewablepower. Future directions of this work can include modeling the renewable
generators to better explain the interaction between wholesale price fluctuation and retailers’
bidding strategies.

Author Contributions: Conceptualization, methodology, writing—original draft, investigation, and
validation, C.Z.; data curation, J.S.; writing—review and editing, P.H. and S.Z.; software and visual-
ization, J.S. and Y.J.; supervision, S.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China, under
Grant No. 62203401; and the Scientific and Technological Research Foundation of Henan Province
(Nos. 212102210259 and 222102320198).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Indices and sets
i, j Index of retailer in the retail market, i, j ∈ I
I Set of retailers
λ Set of retail prices
x Set of retail loads
Parameters
N Number of retailers
mw Mean value of wholesale price
sw Standard deviation
b i Consumers’ demand elasticity to retailer i
b i, j Switching factor
ai Potential market size of retailer i
ri Risk preference of retailer i
λmin

i Lower bound of retailer i’s bidding price
λmax

i Upper bound of retailer i’s bidding price
Variables
λi Bidding price of retailer i
xi Retail load of retailer i
pw Wholesale price in electricity wholesale market
Ui Utility of retailer i
µ1i Dual variable related to lower bounds of retailer i’s bidding price
µ2i Dual variable related to upper bounds of retailer i’s bidding price
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