
Citation: Villeneuve, Y.; Séguin, S.;

Chehri, A. AI-Based Scheduling

Models, Optimization, and Prediction

for Hydropower Generation:

Opportunities, Issues, and Future

Directions. Energies 2023, 16, 3335.

https://doi.org/10.3390/en16083335

Academic Editors: Abdul-Ghani

Olabi, Michele Dassisti and Zhien

Zhang

Received: 15 March 2023

Revised: 4 April 2023

Accepted: 5 April 2023

Published: 9 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

AI-Based Scheduling Models, Optimization, and Prediction
for Hydropower Generation: Opportunities, Issues,
and Future Directions
Yoan Villeneuve 1,* , Sara Séguin 1 and Abdellah Chehri 2

1 Group for Research in Decision Analysis (GERAD), Université du Québec à Chicoutimi,
Chicoutimi, QC G7H 2B1, Canada; sara.seguin@uqac.ca

2 Department of Mathematics and Computer Science, Royal Military College of Canada,
Kingston, ON K7K 7B4, Canada; chehri@rmc.ca

* Correspondence: yoan.villeneuve1@uqac.ca

Abstract: Hydropower is the most prevalent source of renewable energy production worldwide. As
the global demand for robust and ecologically sustainable energy production increases, developing
and enhancing the current energy production processes is essential. In the past decade, machine
learning has contributed significantly to various fields, and hydropower is no exception. All three
horizons of hydropower models could benefit from machine learning: short-term, medium-term,
and long-term. Currently, dynamic programming is used in the majority of hydropower scheduling
models. In this paper, we review the present state of the hydropower scheduling problem as well
as the development of machine learning as a type of optimization problem and prediction tool. To
the best of our knowledge, this is the first survey article that provides a comprehensive overview
of machine learning and artificial intelligence applications in the hydroelectric power industry for
scheduling, optimization, and prediction.

Keywords: hydropower; hydropower scheduling; machine learning; optimization; stochastic
programming; linear regression; random forest; reinforcement learning; deep neural networks

1. Introduction

Hydropower generation is a complex problem that needs to be defined in its many
aspects in order to have a good grasp of how models are built in this field [1–3]. The pub-
lication of [4] aims to survey the various research advances in hydropower generation
while providing a detailed description of the optimization process over a short, medium,
and long-term horizon.

The authors of [2] looked at how machine learning has been used to address the issue
of reservoir inflow during the past decade, but they did not look at the most recent models.
The authors of the same work covered modeling principles for hydroelectric plants. They
also presented the underlying methodology of hydropower generation and the concerns
that need to be considered while developing a decision model within this context.

There are three different kinds of hydroelectric power plants: run-of-river, pumped
storage, and reservoirs (which are large dams). The majority of hydroelectric power
facilities that generate electricity are of the reservoir variety. This power plant is situated in
close proximity to a dam, which serves as a reservoir for water that is used to control the
amount of electricity produced by the facility.

A reservoir gives the power plant the ability to control the amount of water that is
consumed. Because of this characteristic, the power plant’s energy production is very
adaptable [5], and as a result, it can better satisfy demands for electricity.

The production of electricity at run-of-river power plants does not require the use of a
reservoir because the plants instead rely on the flow of the river.
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The lack of a reservoir makes it impossible to maintain a consistent water level, which
results in a high rate of overflow in these rivers and lakes. Because of this, the amount of
power produced is highly dependent on the intensity of the current and the volume of
water entering the penstock. The impact of the climate also plays an important role in the
production, as in the model of [6].

Reservoir power plants and pumped-storage power plants both function by storing
energy in a reservoir. The key distinction is that the water is collected in a reservoir that is
positioned downstream after it has been processed by the power plant. This reservoir is
connected to the reservoir upstream of it by a pipe, and as a result, it is possible to pump
water from the lower reservoir into the upper reservoir. This power plant acts in a manner
analogous to that of a battery and is used to store excess energy [7]. As a result of the
fact that these plants are not connected to a watershed, they are unable to generate any
additional electricity.

The pumped-storage power plant is the most cost-effective energy storage method,
with an energy retention efficiency of around 80%. It is Europe’s most common energy
storage method [8]. This infrastructure can also be coupled with intermittent energy sources,
such as the hydro-wind power plant in El Hierro, which allows the storage of additional
energy produced by the nearby offshore wind farm [9].

Hydroelectric power generation requires a turbine to receive a flow of water. The main
variables to consider when producing electricity are the efficiency η of a turbine, the net
water head hnet in meters of the dam, and the water discharge Q in m3/s.

The function representing the electricity produced by a turbine is nonlinear and
non-convex. The power produced for a turbine P in Kilowatt (kW) is obtained by:

P = η(Qturb)× g×Qturb × hnet(Qtot), (1)

where g is the gravitational acceleration constant 9.8 m/s2, Qturb the water discharge,
and Qtot is the total amount of water discharge. The gross water head is calculated by
evaluating the difference in elevation between the water level in the forebay e f and the
tailrace elevation et. The water level is then adjusted in (2) by considering the energy losses
φ due to the friction of the water passing through the penstock:

hnet(Qtot) = (e f − et)− φ(Qtot). (2)

The energy loss φ is approximated in meters, but the equation to calculate its value
depends on the hydroelectric powerplant observed.

The authors in [2] provide a review of the role of machine learning in water conserva-
tion in a reservoir of a power plant.

In this study, we investigate the current state of hydropower scheduling, optimization,
prediction, and production forecasting, and draw conclusions based on our findings. Both
of these subjects are discussed in great depth. In addition, the paper analyzes the other
possible functions that machine learning and artificial intelligence (AI) may have taken on
over the course of the past few years. To the best of our knowledge, this is the first survey study
that summarizes the application of machine learning and artificial intelligence in a hydroelectric
power for scheduling models, optimization, and prediction.

Briefly, this article brings a new look to the existing literature in the following areas.
Section 2 introduces the basis of hydropower production and scheduling models. Section 3
closely defines the concept of short and medium-term optimization in hydropower pro-
duction. This Section examines the various optimization models created for hydropower
generation and published in recent scientific literature, with an outlook on the limitation of
these methods. Section 4 is about mathematical optimization in machine learning and how
machine learning utilizes unconstrained optimization to achieve better model accuracy.
This Section also provides a comprehensive review of historical and present advancements
in artificial intelligence-based optimization strategies. Section 5 discusses the state of ma-
chine learning in hydropower. This Section reviews the recent paper on the hydropower
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model that explores machine learning implementation in different horizon terms and how
they compare to traditional stochastic dynamic algorithms. This section also aims to re-
view the different types of machine learning algorithms used and their relevance to the
hydropower problem. Section 6 concludes the paper by proposing interesting problems as
future work.

2. Hydropower Scheduling Models

When optimizing hydroelectric power facilities, the goal is often to increase the amount
of energy produced by the plant while simultaneously increasing the amount of money
made from selling that energy. On the other hand, it is much more frequent in the optimiza-
tion model research to concentrate on efficiency and/or profit.

As a result of the fixed price of electricity that is imposed by a state-owned company
in Canada and Quebec in particular, the models that are developed in this region tend
to place a greater emphasis on energy production. This is caused by the management of
hydroelectricity by the government enterprise Hydro-Québec.

Private enterprises in other parts of the United States and Europe are in charge of
the generation of hydroelectric power; these businesses’ primary objective is to sell their
hydroelectric output to the highest potential buyer.

This strategy is supported by the authors [10] on the grounds that it reduces produc-
tion costs while maintaining a high level of reliability. Typically, the sale of electricity is
conducted through an auction in which producers put offers based on their production
costs and purchasers place bids depending on their consumption needs.

In this economic setting, the purpose of these models is to maximize profit from the
sale of energy produced. There are a number of ways to calculate the price of energy
produced per hour, including those proposed by [10].

Most models take into account the operational costs of the plant when optimizing for
profit. For example, this can be represented in short-term optimization by the starting and
stopping of turbine units, or in the long term by breaking even with the expense of the
plants. In older hydro plants, maintenance of generator units may even require its own
optimization model, since maintenance occurs quite frequently and can easily offset energy
production if not carried out properly [11].

There are also hydroelectric systems operated by energy-intensive industries, such as
the Rio Tinto facility that operates the Saguenay Lac-Saint-Jean hydroelectric system. These
companies have set electricity needs, which makes the unpredictability of the power plants
in relation to the need for energy output more adaptable.

A hydroelectric power plant is frequently connected to other power plants located
upstream and downstream. This is referred to as a hydroelectric system, which may include
numerous reservoirs, powerplants, and run-of-river powerplants along interconnected
rivers and lakes.

The illustration depicting a cascade system is shown in Figure 1. Each hydroelectric
plant is situated within a watershed, from which water will ultimately flow into one of the
territory’s reservoirs. Hydrology is the study of the distribution, flow, and quality of water,
as described in detail by [12].

In the field of optimization, the quality of a model is frequently judged based on how
accurately it predicts the amount of water that will be added to a system.
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Figure 1. An example of a hydropower system with three reservoirs and two powerhouses. The
arrow shows the direction of water movement, which can be held and released when interacting with
a reservoir (triangle) and a powerhouse (rectangle).

2.1. Approximating Hydropower Production

A nonlinear and non-convex function represents the power produced by a turbine in a
hydroelectric facility. This sort of function is far more difficult to optimize than its linear
convex equivalents.

Depending on their complexity, nonlinear functions can be more challenging to work
with, but the non-convexity of the production function is the fundamental issue in math-
ematical optimization. However, it is still possible to design non-convex optimization
models, such as [13], who experimented with a medium-term model. In addition, they
observed that this form of model soon becomes computationally expensive as the size
of the problem increases, particularly when constraints are added to their model. In ad-
dition, the performance improvement is deemed insufficient to warrant the increase in
computing time.

The authors in [14] evaluate the linearization of a nonlinear mixed integer model. The
transformation from a nonlinear function to a linear one improves the efficiency of the
resolution time but necessarily causes a loss of the precision of the results.

On the other hand, adopting a mixed integer linear programming model has en-
abled the addition of various constraints, mitigates the losses associated with the linear
approximation, and permits an increase in the problem’s complexity.

The authors in [15] discussed the impact of linear function transformation in hy-
dropower. They evaluate the effectiveness of their linearization method for hydroelectric
dam models by contrasting it with the performance of a nonlinear model.

The link between the flow of water, the movement of the water in the headrace, and
the level of the water in the reservoir is the first nonlinear function. This function looks
at how the three variables affect each other. The resistance of the water in the penstock is
assumed to be constant, so this function can be expressed linearly.

The link between the water level in the reservoir and the discharge rate, as well as the
rotation speed of the turbine, is the subject of the second nonlinear function. The Taylor
Theorem of the first order is used to create an approximation of the true value. A compari-
son is made between the linear model and a nonlinear model over a period of time in order
to assess the performance of the linear model. Furthermore, the same authors in [15] found:

• The linear approximation of the water level produces more accurate results than the
estimation of the turbine’s rotational speed.

• The mean absolute error (MAE) of the linear estimates for the rotational speed of the
turbine is less than 10%, while the MAE of the linear estimates for the water level in
the reservoir is less than 1%.

• When significant changes occur in the opening and closing of the valves, the perfor-
mance of the estimations decreases.

2.2. Scenario Tree

Water inflows are unpredictable in hydropower. Because of this, it is hard to anticipate
with accuracy the water level in the reservoirs. Despite the fact that a turbine’s electrical
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energy output is reliant on the water level in the reservoir, it is nevertheless feasible
to achieve fully ideal hydroelectric production. This is accomplished by constructing
a scenario tree of the anticipated influx. This is why stochastic models are frequently
mentioned in the literature on hydropower. A stochastic model contains at least one
uncertain variable.

In order to predict water inflows for power generation purposes, the authors in [16]
address the problem in a short-term optimization model. To predict hydroelectric genera-
tion, a scenario tree structure is used. They investigate and analyze, among other things,
three strategies for estimating the input scenario on the production of the hydroelectric
system in the Saguenay region, Quebec, Canada.

Using a black-box optimization solver, the first method identifies the set of scenario
trees that maximizes energy production. The scenario tree has three input parameters:
the number of stages, the number of child nodes for each node, and the aggregation level
for each day. The scenario tree is optimized to maximize hydroelectric production by
returning water flows, reservoir volume, and working turbines based on the output of an
input scenario.

Another model uses this last result to maximize the number of turbines by restricting
each turbine’s start-up and shut-down times. Each day, a new scenario tree is constructed
based on meteorological data, and the water level in the reservoir is computed. The second
approach employs the median scenario determined by the black box, whereas the third
method, scenario fans, allows only the tree’s root to have several child nodes.

The selection of these two methods is influenced by the calculation time and complexity
of the black box algorithm used to anticipate contribution.

This study uses 31 days of production data and 30 days of input forecasting. The
obtained results indicate that the daily scenario selection is mainly impacted by the number
of inputs rather than by the structure of the scenario trees. Thus, scenario fans derived
from the third technique proved to be the most effective, as it is simpler to compute and
yields comparable results to the first method. This result demonstrates that scenario trees
do not need to be intricate to be effective.

The building of scenario trees is a promising endeavor, as the outcomes are generally
effective. Many scenario-building algorithms already use some form of unsupervised
learning such as k-means. However, this technique can be sensitive to outliers, which may
cause monetary loss or environmental hazards. Other methods, such as backward reduction
and neural gas, in [17], can help reduce the number of possible scenarios while preserving
the expected outcomes. In any case, water inputs still need to be determined. Therefore,
the chosen scenario does not necessarily reflect reality.

3. Hydropower Optimization Models, a Review

In the context of hydroelectric production, a great variety of models has been con-
structed [18]. Depending on the description of the problem, these models typically try to
maximize energy production or profit.

A hydropower system is typically not restricted to a single optimization model, as the
complexity of the hydropower problem grows rapidly. The hydroelectric scheduling prob-
lem involves many decision variables, parameters, and restrictions that impact production
over multiple time horizons, as well as nonlinear and non-convex functions.

In addition, many parameters are stochastic, meaning that they are influenced by
random factors or are partially the result of chance. The problem’s dimensionality also
limits the calculation time of a model, as it must be computed in set time intervals based
on the time horizon. An optimization model focuses on three different time horizons: the
short, medium, and long term.

This section examines the various optimization models created for hydropower gener-
ation and published in the scientific literature.

A two-stage short-term stochastic optimization model is developed by [19] to predict
hydropower generation with uncertain water inflows. This paper is related to [16], where a
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black-box optimization model is developed to build inflow scenario trees. While a medium-
term optimization model determines the water level in the reservoir, this short-term model
considers water inflow uncertainty, weather forecasts, and historical weather data to predict
energy production. Initially, the model optimizes the quantity of water discharged, the
volume of water, and the number of turbines required to maximize energy output. This
model is subject to constraints regarding the equilibrium of the downstream water level,
the selection and number of operating turbines, the water volume in the reservoir, and the
discharged volume. The outcome of the first model is used to determine the exact number
of turbines that will be turned on. This process aims to discover the optimal combination
of turbines that will optimize production while minimizing the impact of turbine start-ups
and shut-downs. To acquire the input values, the authors utilize a k-means scenario tree
in [20]. The scenario tree will always have the same number of nodes and steps when it is
created. In order to aggregate the data, the clusters that were produced by the k-means
algorithm over 3038 different water supply scenarios are rounded. The accuracy of the tree
can be improved by randomly generating additional influx situations that are based on the
existing scenarios. Following a number of rounds of iteration, the techniques eventually
converge on a single viable design. The model was tested on five hydroelectric plants over
a 31-day period. The computation time of the decision tree is 5 s, while the optimization
model’s resolution is 42 s per computed day. The computation time is acceptable for a small
set of plants, but it becomes problematic for larger hydroelectric plant systems. The results
reveal an improvement ranging from 0.016% to 0.068% when compared to the median of
the months examined. This improvement represents a considerable gain in the quantity of
energy produced during these times.

An integer linear quadratic programming model was established in the research paper
referenced above [21], with the goal of optimizing in real time (hourly) the amount of
electricity produced by the Brazilian hydroelectric plant of Santo Antônio. This research
aims to develop a more advanced approach to modeling real-time alternating current (AC)
hydropower generation, where the AC is often a set rate for simplifying the model.

The purpose of the AC-constrained optimization model is to ascertain which turbines
should be turned on or off, the amount of power generated by each turbine, and the quantity
of energy that should be transferred to the power transformers in the plant. In order to make
it practicable to execute the algorithm once every hour, the author suggests linearization of
the model constraints, which would include the AC constraint.

The nonlinear and non-convex production functions are transformed using the piece-
wise linear application algorithm. For the linear approximation of the AC constraints, these
were approximated using their equivalence by Taylor’s series expansion. The model is
solved in three phases. First, the model is solved without AC constraints to determine each
turbine’s activation status and power level.

The second model calculates the ultimate power per turbine using AC restrictions.
The turbine activation parameters are then reset, and the model is run in a loop until the
AC constraint convergence condition is met. The model’s performance is evaluated using
three scenarios, two real-time optimization phases, a 24 h horizon, and an algorithm that
runs every 30 min.

The time required to compute a result for one hour is 67.41 s. The results demonstrate
a small decrease in energy losses. In comparison to an existing fixed model, the proposed
model provides improved management of turbine startup and shutdown while requiring
less computing work.

The authors show that AC limitations can be applied to a real-time hydroelectric
generation optimization function. Nevertheless, it needs to be shown whether the model
can support a system on a bigger scale.

Richard Bellman conceived of the dynamic programming model [22]. This method
permits the recursive solution of optimization issues by decomposing the primary problem
into subproblems. Frequently, a collection of little difficulties is easier to address than a
single major difficulty.
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Due to its recursive structure, this approach, like many others, is subject to the so-
called curse of dimensionality, as described in [23]. This implies that as the number of
variables and sub-problems increases, so does the computing time of the model.

In the paper of [24], a medium-term dynamic programming method with stochastic
sampling is designed to anticipate water inflows on a four-reservoir system in less than
four minutes.

Deploring the rising difficulty of solving the hydroelectric scheduling model when
more than three reservoirs are involved, this model makes it possible to calculate the precise
amount of water to accumulate in the reservoirs in order to maximize energy production.
To do this, the production functions have been approximated using a discretized set of
functions to determine the appropriate amount of water to be turbined at each reservoir
storage level.

This research also uses stochastic sampling to limit the number of potential reservoir
water level states by incorporating the cost of unknown influx scenarios into the goal
function. The curse of dimension manifests itself in the reservoirs’ storage level values.

To reach a solution in a fair period of time, the number of water level states and
discretization value were streamlined. Using the water level and inflows for each reservoir,
a set of potential scenarios is constructed.

The number of created scenarios is restricted by merging related historical scenarios.
The concept is implemented to allow parallel calculation on many processors in order to
achieve faster computation speeds.

The model was written in Python 2.7 [25], uses the COIN-OR solver, and operates on
a 125-thread cluster comprised of 10 servers with 2 CPUs and 8 cores each. Using a 63-year
dataset of water supply forecast horizon, the model generates 63 supply possibilities. It is
put to the test on the Saguenay Lac-Saint-Jean hydroelectric system, which consists of four
reservoirs and five power units.

Model computation time is approximately three min. Compared to historical data, the
model reduced production costs by 2% and reservoir spill risk by 0.01% for one of the reser-
voirs. In terms of the net water head, the initial plants showed a substantial improvement.

This article illustrates the difficulty of hydropower optimization. To attain such low
processing times, the model had to simplify the problem by all means. This indicates that
better solutions may be possible, but require additional data manipulation. In addition,
Python is not regarded as the quickest language, thus the computation time could be
improved by employing a more robust language.

This article currently indicates that dynamic programming is unsuitable for hy-
dropower issue systems with five or more reservoirs.

The authors in [26] develop two versions of an optimization model, one deterministic
and the other stochastic. The goal is to compare their efficiency. Furthermore, the work was
carried out in the context of a Turkish hydroelectric plant, where the uncertainty stems from
the value of the market price of electricity as well as the inflows of water into the reservoir.
The model’s decision-making is done at every hour to maximize the profit related to the
production and sale of electricity relative to the market price. An interesting feature of this
model is the planning horizon that spans over 8760 h, totaling one year. Furthermore, the
authors specify that this is a short and long-term model. For each hour, the model looks
at the difference between profit and expense, forming a nonlinear function. The profit
calculated is relative to the energy produced and the value of the electricity. At the same
time, the expenses are relative to the costs of energy production, the investment cost of the
plant’s construction, and the interest rates. The model’s restrictions include the following:
the level of the reservoir for each hour; the limitations of the Francis turbines; the limitations
of the ecological system; the amount of energy produced each hour; and the value of the
reservoir once the optimization has been completed. After that, the authors solved the
model by employing the Monte Carlo technique, which allowed them to pick each day
at random. The Monte-Carlo algorithm uses a pipeline of operations on the daily data,
a medium-term optimization model for calculating the water distribution, and a short-term
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optimization model to maximize profit every day. This is due to the fact that the horizon
of this model is on both the short term and the long term. Electricity has been generated
at the facility, which can be found in the eastern part of Turkey and has been operational
since 2013 thanks to a set of three Francis turbines. In the deterministic model, the water
inflow and the cost of energy are both fixed, whereas, in the stochastic model, they are
left free to fluctuate. The Quasi-Newton method is used for optimizing, and a solution is
obtained after 105 min on a 2-core I3 Intel CPU. The results show that the stochastic model
is better for maximizing income, especially when resources are limited. The use of the
Monte-Carlo algorithm is a good compromise between the precision of the results and the
calculation time. After 105 min of computing 120 trials, the decrease in errors seems trivial.
This model’s results show that the plant’s hydroelectric production is financially viable
for the next 30 years. This model is very innovative since it is a hybrid of each horizon of
the hydroelectric production problem. However, given the complexity of the model, a lot
of simplification had to be applied, and certain particularities of each horizon were not
addressed in the model. Nevertheless, the model results seem robust.

Hydropower systems often grow much larger than four plants and reservoirs, which
means that a medium to short-term optimization model is not well suited when scaled to a
realistic problem. Further advances in the field of hydropower optimization should be made
in future research. Furthermore, the utilization of stochastic programming and scenario
trees to account for incomplete information means that models aim at optimizing the
efficiency of central production. However, this approach may lead to missed opportunities
if a scenario yields better results than expected or to losses if a scenario’s outcome is
much worse than anticipated. Additionally, constraints within the model, such as water
level bounds, may have unforeseen consequences for the plant’s location and cost. Thus,
finding ways to minimize uncertainties in the model would positively impact the quality
of the solutions.

4. Applications of Artificial Intelligence Techniques for Optimization Problems

Mathematical optimization and machine learning are disciplines associated with the
search for issue solutions. Mathematical optimization often seeks the optimal solution to a
problem expressed using functions and constraints, but machine learning attempts to antic-
ipate the outcome of a data input by assessing a similar and preferably big data collection.

The paper [27] provides a comprehensive review of historical and present advance-
ments in artificial intelligence-based optimization strategies. In their article, they address
three questions:

• What kinds of challenges in optimization can be solved using machine learning? What
is it that makes them so challenging?

• When it comes to machine learning on a big scale, which optimization strategies have
shown to be the most successful, and why?

• What new developments have been made recently in the design of solution algorithms,
and what questions still need to be answered in this field of research?

In the subsections that follow, an attempt will be made to provide a concise response
to these three questions.

4.1. Optimization Algorithms in Machine Learning

Two case studies are presented to explain the role of optimization in classical machine
learning problems. The first case study deals with text classification, a convex optimization
problem where an algorithm must predict the topic of a text based on its content.

The need for machine learning for this problem stems from the lack of a pre-established
rule to accurately classify the turn of a sentence. This model’s formulation starts with a
dataset containing n text instances x and their classification y.

The model has formulated pred(xi), which provides a prediction on the value of yi,
where i ∈ n. The model aims to minimize the sum of instances where pred(xi) 6= yi. The
data set is divided into a training set and a test set.
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The training set is used to generate a classification model, and the test set is used to
determine the accuracy of the predictions. A careful selection of these two sets decreases
the model’s error rate. When the data in the set are sparse, it is possible to represent the
prediction function as pred(x; w, τ) = wTx − τ where w and τ define the precision and
recall variable, i.e., a proportion of the good and bad predictions.

These variables allow us to approximate a loss function and compute the cost of the
prediction pred for the value of y. This loss function represents our objective function,
which allows the formulation of a convex optimization problem aiming at minimizing the
bad prediction rate of the model.

min
w,τ

1
n

n

∑
i=1

loss(pred(xi; w, τ), yi) +
λ

2
||w||22. (3)

The addition of the parameter λ > 0 regulates the loss function to obtain a convex
function. The optimal solution (w∗, τ∗) is obtained by experimenting with different values
of λ until the best-performing model is obtained.

The second case study deals with speech or image recognition using Deep Neural
Networks (DNN). This problem consists of making a classification according to the arrange-
ment of multimedia files. Because there are nearly infinite possibilities of representing a
number using an arrangement of pixels, it goes to machine learning methods to predict
its value.

Neural networks apply successive transformations on input data x where each trans-
formation step is represented by a layer j. For a network consisting of J layers, x0 represents
the data input, and the prediction is given by xj.

Each layer of the DNN consists of neurons with weight values linked to each. Each
weight is determined during the training phase of the model. The prediction function is
pred(x; w), where the variable w represents the set of neurons in the network.

The optimization problem involves a training set of N instances (xn, yn), where y is
the classification of x. Concerning the optimization of the algorithm, the loss function
(Equation (4)) is chosen according to the nature of the problem:

1
n

n

∑
i=1

loss(pred(xi; w), yi). (4)

The optimization of a DNN is nonlinear and non-convex. In order to be able to work
efficiently with these methods, the backpropagation of the gradient algorithm is applied to
minimize the error rate at each neuron during training. This technique involves finding the
value of xj

i by traversing the neural network, then computing the error between xj
i and yi.

The error ei is propagated in the reverse direction of the neural network, modifying the
value of the weights contained in w in order to reduce the risks that pred(xi; w) 6= yi. These
risks are represented in Equation (5) as a cost function C, which is the squared difference
between the result and the value to be predicted for each neuron at layer J.

C =
n

∑
i=1

(pred(xi, w)− wj)2 (5)

The negative gradient of the cost function (−∇C) allows for modifying the weight of
the neurons to reduce the error rate.

As a DNN can be composed of several layers J, each containing several neurons,
this process can take up to several weeks of computation before obtaining an accurate
prediction model.

4.2. Unconstrained Optimization

The various kinds of optimization issues that can be solved with machine learning
all fall under the category of “unconstrained optimization problems”. The presence of
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a significant number of choice factors is frequently a defining feature of situations of
this nature.

In the article [3], the authors provide an in-depth discussion of the essential approaches
for tackling unconstrained optimization issues. When it comes to overcoming issues
that are associated with machine learning, the most popular solution is to use first-order
optimization approaches.

Gradient descent is a commonly used first-order method for this type of optimization
and is the basis for many other first-order techniques. In gradient descent, the objective is
to find the global minimizer of f (x), where f is convex, and the optimal value is x∗.

The derivative of this function gives us the gradient ∇ f (x). Obtaining the gradient
on a point xk results in a linear function related to the rate of change at this location,
where ∇ f (x∗) = 0 and k represents the iteration of Equation (6), an iterative function that
gradually comes closer to x∗:

xk+1 = xk + αkdk, (6)

where αk represents the step length and dk the descent direction. In general, the method
used to find the values of αk and dk defines the type of resolution algorithm. The book
from [28] gives a lot more detail about unconstrained optimization and optimization as
a whole.

In the technique known as gradient descent, the direction known as dk is determined by
the inverse of the gradient of the objective function −∇ f (xk). It is also necessary to iterate
as little as possible in order to progress along the goal function curve in the most effective
manner. To accomplish this, a suitable value for the step length variable αk is selected.
Figure 2 gives an abridged representation of the algorithm in a two-dimensional space.

Figure 2. The dot at xk on a convex f moves towards the next iteration xk+1 with a step size αk.
The descent direction is given by the gradient ∇ f (xk), which is equal to zero when ∇ f (x∗).

Finding a prospective step that can deliver a significant reduction to the function
f (xk+1) is the method used to accomplish this goal. If the step length is too large, there is a
chance that the desired value of x∗ will not be achieved, but if the step length is too short,
the number of iterations will be increased.

The Hessian matrix can be found by computing the double derivation notation
∇2 f (xk). The Hessian makes it possible to create a quadratic curve on xk, which is helpful
when trying to determine the best step length to utilize.

When discussing optimization, Hessian is frequently a reference to either Newton’s
method or a method that is derived from it. When the matrix is positive definite, the step
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length can be calculated as an equivalent of ∇2 f (xk)
−1 by selecting the position of xk+1

that corresponds to the point where the curve is at its lowest.
Equation (7) represents the iterative second-order version of Newton’s method, which

ultimately converges to the value f (x∗):

xk+1 = xk −∇2 f (xk)
−1∇ f (xk), (7)

4.3. Machine Learning as an Optimization Problem

According to [3], the integration of mathematical optimization with machine learning
can be broken down into three distinct stages: machine learning formulated as an optimiza-
tion problem, fundamental optimization methods, and the creation and application of an
optimization model based on the type of machine learning algorithms.

Almost every method used in machine learning can be recast as an optimization issue.
However, the precise formulation of the problem changes depending on the algorithm that
is being applied.

When dealing with difficulties involving supervised learning, the goal is to find a way
to minimize the loss function L that is associated with the prediction function f (x). In a
manner analogous to that of Equation (4), the loss function is written as:

1
N

N

∑
i=1

L( f (xi, θ), yi). (8)

where N represents the sample size, θ is a parameter in the function, xi is an instance of
sample data, and yi is its classification.

For this type of problem, there are a few different loss functions that have been
discussed, including squared Euclidean distance, cross-entropy, contrast loss, hinge loss,
and information gain.

Structured risk minimization, which is used for support vector machines, is a strategy
that is quite common.

In order to prevent the problem of overlearning with regard to this goal function,
the parameter λ was included. It is decided by a cross-validation step that involves
multiple different values of lambda greater than zero (λ > 0) in order to find the one that
results in the best outcome. When it comes to text categorization, this approach is identical
to the one that is used in Equation (3).

1
N

N

∑
i=1

L( f (xi, θ), yi) + λ||θ||22. (9)

Learning through semi-supervision can be used in problems, including classification,
clustering, and regression. These issues are distinguished by the presence of a dataset that
contains both labeled and unlabeled data.

The support vector machine is one of the approaches that is used rather frequently for
addressing issues of this kind. Labeled data are defined using x, y.

The unlabeled data are limited by the use of an unrestricted variable denoted by ζ
(slack variable). The goal is to ensure that there is as little unintentional mixing of marked
and unlabeled data as possible.

Equation (10) represents the objective function to minimize the number of prediction
errors, where the variable C is a penalty coefficient and the variables ε and z are the
misclassified and successful values.

min
ζ,ε
||w||+ C

[
l

∑
i=1

ζ i +
N

∑
j=l+1

min(εi, zj)

]
, (10)
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Unsupervised learning is used when all data are unlabeled. It is up to the learning al-
gorithm to classify the data according to their features. The k-means partitioning algorithm
is a popular method for solving this problem.

The loss function in Equation (11) is used to optimize this type of model, where K
represents the number of partitions, µk the centre of partition k, and Sk the subset of data
related to partition k:

min
S

K

∑
k=1

∑
x∈Sk

||x− µk||22, (11)

In the last step of reinforcement learning, an entity known as Agent is in a state that is
defined by its environment. This state is denoted by s. The task given to the Agent is to
take action based on the situation of its environment.

The goal is to maximize the value of the function Vπ(s) while adhering to a policy
π(s) in which each accurate prediction makes the solution better. Additional details on
reinforcement learning can be found in Section 4.6.

4.4. Overview of Different Optimizers for Neural Networks

In [3], a section is dedicated to optimization methods for different types of learn-
ing. Among the optimization algorithms, the most popular algorithms are first-order and
second-order optimization methods. To meet the need of machine learning, these algo-
rithms are slightly modified to perform better in this environment. Among the common
first-order methods, there are:

• AdaGrad [29]: an improvement of the Stochastic Gradient Descent (SGD) method [30].
Instead of having a constant learning rate, it evolves at each iteration using the
gradients of each previous iteration.

• AdaDelta/RMSProp: One of the problems with the AdaGrad method is that the
learning rate tends towards zero when there is a large number of iterations. In order
to avoid this fate, AdaDelta [31] and RMSProp [32] use only the gradients of the most
recent iterations. Moreover, each iteration is subject to a degenerative average of the
previous gradients, allowing the calculation of a cumulative momentum.

• Adam: Adaptive moment estimation (Adam) is a method reusing the advances of
AdaDelta/RMSProp in a more efficient formula for problem solving [33].

• SAG: Stochastic Average Gradient (SAG) is an attempt to improve the convergence
time compared to the previous methods [34]. As the name implies, the SAG method
uses only a sample of the previous gradient history while keeping the totality of the
gradients of the previous iterations computed this way.

The DNNs are automatic learning algorithms that are becoming increasingly popular
for their effectiveness in predicting large problems.

In optimization, most first-order algorithms have been sidelined in favor of second-
order methods because convergence is always a problem for first-order problems regardless
of the algorithm used.

This difficulty affects the SGD and more advanced methods, such as Adam. In neural
network optimization, an effort has been made by [35] to develop the SWATS technique,
which works quite well for training DNNs.

It is a hybrid strategy using an adaptive solving method, such as Adam, for the initial
solving of the problem. Adaptive approaches are perfect for the initial training when
presented with a sizeable problem but perform less well towards the last iterations.

The SWATS method adds a criterion for changing the solution method to SGD, which
performs much better for generalizing the solution and obtaining much more accurate
results. Despite a fast learning rate, first-order methods suffer from a bad convergence,
a crucial criterion for solving large problems such as DNNs.

The Recurrent Neural Networks used for predicting sequential data, such as audio
files, are strongly dependent in the long run. Momentum and NAG [36] methods seem to
be promising in this aspect.
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Second-order methods provide information about the curvature of the function, mak-
ing them a much more popular choice for training. With second-order methods, the infor-
mation obtained from the adapted Hessian matrix for DNNs allows for a near-optimal rate
of convergence.

However, the objective function of a DNN is not convex, which requires an adapta-
tion of the Hessian matrix. This operation becomes possible thanks to the Hessian-free
optimization method [37,38].

In the usual Newton method, the problem is optimized using the Hessian matrix H,
a costly computation when the matrix’s dimension N × N becomes moderately large.

When performing Hessian-free optimization, two different adjustments are performed
to the standard technique. To begin, in order to determine Hd for a directional vector d of
dimension N, one need only perform a simple calculation between any two points on the
curve in order to arrive at this value.

The conjugate gradient approach, often known as the Newton-CG method, is the
second change that can be made to optimize the quadratic function.

However, most of the current DNNs are trained with the Adam algorithm, which
achieves great result in most cases and is considered easier to use than other alternatives [39].
There are several variations of Adam’s algorithm, such as Adamax [33], a more stable but
usually less efficient way to train a model, or Nadam optimization [40], which incorporates
Nesterov momentum into Adam for faster convergence. Further modification to the Adam
algorithm is possible, but it seems that improving performance is on a case-by-case basis.

4.5. Adapting DNNs for Hessian-Free Optimization

In order to use the Hessian-free optimization approach on DNN issues, the problem
must first be modified in such a way that the objective function becomes convex and positive
definite. Only then can the Hessian-free optimization method be applied. The method is
modified by employing a variety of strategies, such as damping, the generalized Gauss–
Newton matrix, and subsampling, which are outlined in detail in [37].

4.5.1. Damping

Newton’s method performs quite poorly with nonlinear objective functions, such
as those from neural networks. Thus, the minimization of the quadratic approximation
often ends up outside the confidence zone of the approximation due to a too-wide and
inclined curve.

Damping is a method for modifying an optimization model’s quadratic function or
certain constraints so that the next iteration ends at a point on the objective function curve
with considerable progress toward a local minimum.

4.5.2. Generalized Gauss–Newton Matrix

When the objective function is non-convex, the quadratic approximation may require
a candidate for minimization if the Hessian-free optimization approach is used.

The generalized Gauss–Newton approach approximates the Hessian matrix in a
positive and semidefinite manner [41]. Therefore, the guarantee of a positive semidefinite
matrix indicates that the conjugate gradient method will always be functional, even when
using an undampened quadratic approximation.

Using the Hessian approximation yields superior search directions compared to the
Hessian, is twice as quick, and uses half as much memory as the Hessian.

4.5.3. Sub-Sampling

Subsampling is used in optimization when a problem is too large for an algorithm to
tackle efficiently. This approach of optimization is stochastic, as the true Hessian value is
estimated using a fraction of the original data set. This strategy reduces computing time
significantly per iteration.
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4.5.4. Adapting Newton-CG

Although newton-CG is used for the Hessian-to-vector transformation, the method
also needs adaptation to the DNNs problem.

For instance, the stop condition is updated heuristically from minimizing the quadratic
function to minimizing φ(x) below a tolerance level, where the value of φ(x) is determined
by the rate of solution reduction relative to prior iterations.

The search direction information is also shared across iterations. Given that the matrix
of the x iteration will be comparable to the matrix of the x + 1 iteration, the search direction
px is likewise a reasonable starting point for the next iteration.

Due to damping or undersampling, the subsequent iteration may need to be more
representational of the situation. Thus, the answer of each iteration is stored in memory
so that it can be reverted. Experiments indicate that the present direction should not be
altered despite the backtracking if this is the case.

Finally, a preconditioner is used to accelerate the process. The Hessian matrix is
preconditioned diagonally, enhancing the curvature of the quadratic function φ(x).

The following Equation (12) is the preconditioner offering the best improvements:

M =

[
diag

(
D

∑
i=1
∇ fi(θ)�∇ fi(θ)

)
+ λI

]α

(12)

where � denotes the product element-by-element and the exponent α is less than 1.

4.6. Optimization with Reinforcement Learning

Reinforcement learning algorithms are distinguished by a much more robotic approach
to learning. As described in [42], the process is composed of an Agent making decisions
a (actions) with respect to its state and environment s. The actions taken by the agent
influence the environment.

The objective of this model is to obtain the largest number of rewards r(st−1, at−1, st),
which are obtained when the Agent performs a good action at time t.

The policies π(a|s) represent the functions allowing the Agent to decide according
to its environment. The probability p(s′|s, a) represents the probability that the Agent
performs an action transforming the current environment s to s′. In contrast, p(s′, r|s, a)
represents the probability that the state change s′ results in a reward.

Reinforcement learning problems can often be described by the Markov Decision
Process (MPD) < S, A, P, γ, r > where gamma is a discount factor between 0 and 1 [43].

The goal of the model is to obtain the largest value of gamma relative to rewards,
i.e., the following Equation (13):

Gt =
∞

∑
k=0

γkrt+k. (13)

Several reinforcement learning methods use a value function to optimize performance.
A common function is Equation (14) to compute the expected return with respect to the π
policy, depending on the s state.

Another function is that of the action-state of Equation (15), which calculates the
expected return with respect to the choice of action a according to the environment s and
the policy π.

Vπ(s) = Eπ [Gt|St = s]. (14)

Qπ(s, a) = Eπ [Gt|St = s, At = a]. (15)

Another strategy uses policy-based approaches, which involve optimizing each func-
tion separately without considering the value function. The actor-critic algorithm, presented
in [44], is the final method that integrates the previous two approaches.

This reinforcement learning approach employs a critic who evaluates the value func-
tion outcome while an actor who solves a prediction problem is held in place.
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In the paper [45], an attempt was made to combine reinforcement learning and asyn-
chronous convolutional neural networks.

In Deep Reinforcement Learning (DRL), π is represented by DNN, and a first-order
algorithm is used to optimize actions based on this representation.

In addition, the actor-critic using the Kronecker-Factored Trust Region (ACKTR)
technique suggests utilizing the K-FAC method to optimize both the actor and the critic.

When compared to the traditional stochastic gradient descent method, the K-FAC
method that was developed in [46] is shown to be much faster when it is applied to a large
scale than the method that is described in the paper.

Unlike the first-order and second-order approaches, the K-FAC algorithm performs
exceptionally well in situations with a large degree of stochasticity.

In contrast to the Hessian-free optimization technique, the computational cost and
storage space required by the curvature matrix in this method do not depend on the amount
of data employed in the estimation process.

The Fisher information matrix has been proven to be equivalent to the second-order
extended Gauss–Newton matrix, which is the foundation of this method. This method
is based on an efficiently invertible approximation of the Fisher information matrix. De-
spite this, the computation of the inverse of the Hessian matrix presents one of the most
significant challenges when attempting to find an effective solution to a problem with a
high dimension.

In K-FAC, the Fisher matrix is approximated by performing a Kronecker product,
represented by the symbol

⊗
, i.e., the multiplication of two matrices A

⊗
B with differ-

ent dimensions.
The multiplication is carried out block by block, with one of the matrices being

multiplied by each element of the second matrix. This method does not require that the
dimensions of both matrices be the same.

When performing the Kronecker product with the Fisher matrix on a matrix that was
acquired by the multiplication produced by the gradient being applied to the layers of a
neural network, the Fisher matrix is used.

The Fisher matrix approximation also undergoes specific further changes, each of
which plays an essential part in the progression of the algorithm and its eventual conver-
gence on the optimal solution.

The authors of [47] tested several ways of applying the Kronecker product. The method
was tested on three auto-encoders using the datasets MNIST, CURVES, and FACES.

The method K-FAC is compared with a method based on the accelerated Nesterov
gradient, detailed in [48].

For each problem, K-FAC has a faster rate of progress per second than the benchmark.
The method achieves the same error rate as the referent in about 2000 s compared to 10,000 s
of computation for the referent.

The authors note the importance of convergence momentum in their algorithm, as men-
tioned in the publication of [48]. Without this technique, K-FAC would not necessarily be
better than the referent. The authors also recommend their algorithm as a benchmark in
future work.

4.7. Machine Learning Improvements

The computation of the inverse Hessian matrix∇2 f (xk)
−1 at each iteration can be very

expensive in computation and storage space when paired with machine learning because
of the high number of variables in the problem.

The conjugate gradient method and the quasi-Newton methods, such as the Broyden—
Fletcher-–Goldfarb-–Shanno (BFGS) algorithm, are variants of the Newton algorithm aim-
ing at reducing the computational costs related to the Hessian [3,28].

The conjugate gradient method is an algorithm used to handle large linear optimization
problems between the first-order and second-order methods.
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This approach utilizes only the information offered by the first-order gradient yet
guarantees a convergence rate comparable to that of second-order methods. Due to the
difficulties of calculating and storing the inverse Hessian matrix, quasi-Newton techniques
aim to avoid performing this computation.

The latter consists of conducting an approximation of the positive Hessian matrix,
avoiding the whole computation of the matrix at the expense of a modest reduction in
computing precision.

The Hessian matrix is computed at first, then the value of the matrix is estimated
between each iteration. The approximation of the matrix is represented using Bk and the
inverse using Hk.

Generally, the quasi-Newton algorithms are distinguished by the method used to
obtain Bk and Hk. The algorithm BFGS is a quasi-Newton method for solving medium-
size problems.

However, more significant problems still require too many storage resources due to
the number of matrices generated sequentially by the algorithm. Thus, the memory-limited
BFGS algorithm remedies this problem by storing only the vector of the computational
sequence leading to Ht, which limits the number of computations.

In the paper by [49], they propose the use of a stochastic curvature method to speed
up the Newton-CG (conjugate gradient) and BFGS optimization methods.

For large-scale deterministic optimization problem classes, the gradient of the objective
function can be computed in an acceptable amount of time. Still, the formation of the
Hessian matrix is not feasible. Recent research considers the Hessian information to be
stochastic, utilizing supervised learning to make predictions on data unknown to the model.

The research study in [49] considers the objective function to be convex with a large
data collection and numerous variables. The objective function of the stochastic approxima-
tion is defined using an average sample approximation to reduce the number of examples.

Hessian information requires less precision than gradient information for performing
the same work [49]. Thus, it is conceivable to operate with a subset of the data set without
a significant loss of precision.

The same research work [49] intends to demonstrate that the second derivative approx-
imation can be beneficial when applied to machine learning. When applied to the Newton-
CG technique, the computing cost is comparable to that of the fast descent method, which
is developed from the gradient descent, but with substantially faster convergent iterations.

The Hessian subset method was tested on a speech recognition problem with 10,191 de-
cision variables and compared with conventional solution methods. The results show
that Newton’s Hessian subset method outperforms the conventional Newton-CG and
BFGS methods.

Using the Hessian subset significantly reduces the number of iterations, three times
faster than Newton-CG and twice as fast as BFGS.

The memory-limited stochastic BFGS algorithm shows similar results to the Hessian
subset. Based on this work, the suitable algorithm depends on the problem, as both are
efficient for machine learning.

5. Machine Learning in Hydropower Production

To contextualize the several prospective hydropower research directions, this article fo-
cuses on machine learning by surveying 23 scientific articles employing various algorithms
and comparing the effectiveness of various machine learning methods [2].

This tendency toward employing machine learning models for predicting inflow is
a consequence of the complexity inherent in simulating the water leveling process using
conventional model methods. The behavior of water is influenced by a number of stochastic
and natural resources, including inflows from upstream river reservoirs, evaporation from
the reservoir surface, temperature variations, and other environmental factors [50].

Since most of the works focus on predicting water inflows to reservoirs, the author
explores the application of machine learning to Cyber-Physical Systems.
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However, the purpose of this study is to examine the application of machine learning
in the new era of convergence of machine learning techniques (supervised–unsupervised
and reinforcement learning), with reference to IoT quality of data and services for industrial
applications. As of now, mathematical optimization is being used to tackle the majority of
hydropower scheduling issues.

With the surge in popularity of machine learning among academics and the signifi-
cance of optimization in their algorithm, we examine many publications that redefine the
hydropower production problem-solving method.

Table 1 is a summary of the papers presented in this section.

Table 1. An overview of the papers reviewed in this section.

Name Machine
Learning Model Year Dataset Objective

[51] LR (LMW) 2017 30 years of annual inflows in 30 regions. Long-term annual prediction for water
inflow prediction.

[52] LR 2014
Monthly data on the production of 132
power stations and the runoff from 1989
to 2008.

Project the trend of changes in
hydroelectric production up to 2039

[50] LR (BDTR) (DFR)
(NNR) (BLR) 2020

12,531 instances containing 34 years of
historical data + a set of 82,057 h of data
recorded between 2010 and 2019.

Predict water level one to seven days in
advance by testing four machine learning
algorithms (BDTR, DFR, NNR and BLR)
for SC1 and SC2.

[53] LR 2021 26 years of precipitation data from 1993 to
2019 measured at 6 different locations.

Predict the electricity production of a
hydroelectric plant.

[54] RF 2020
Analyzing daily auction data for the sale
of hydroelectricity from Norway, data
based on [55].

Observe if the data obtained in their
previous work can be used in a machine
learning classification or regression
models.

[56]
RF (C4.5,

improved C4.5,
ID3-IV, CHAID)

2021 Sample sets of each hydroplant production
and divided into winter and summer.

Make quick decisions (24 h) for
production. Comparison of 4 random
forest algorithms.

[57] ACO-RF-AWT-
LSTM 2021

6205 daily data, from 2005 to 2019,
retrieved from a power station in the
western region of Azerbaijan.

Predicting short-term hydroelectric
production.

[58] DRL (DQN) 2020 Daily precipitation and 10-day inflows of
each reservoir from 1967 to 2015. Optimize a system of three hydroplant.

[59] DRL 2020

Simplified historical dataset with Nordic
European market price scenarios (2008 to
2019) and Water supply from four
reservoirs of Norway between 1958 and
2019.

Optimize annual revenue based on water
supply and electricity price.

[60] RL 2022 1000 years of data simulated by Rio Tinto.

Compare a reinforcement learning model
with traditional medium-term stochastic
optimization methods in a three reservoirs
system. Observe the behaviour of chance
constraints.

5.1. Linear Regression

A Linear Regression (LR) model is a technique for predicting the type of function
based on the relationship between two or more data elements. Typically, the purpose
is to decrease the value of a cost function associated with each point’s distance. This is
accomplished by employing a “closed-form” equation that directly computes the model
parameters that best suit the model.
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However, a high number of features and instances may necessitate using a gradient
descent method to optimize the cost function [39]. Despite this, these models are renowned
for their simplicity and speed of computation.

A study in [51] examines 30 years of water input over an extended time frame (one
year per instance). Their objective is to create a prediction model of annual water inflows for
a hydropower plant—collecting and standardizing data for each place within the dataset.

Using linear regression, the 30-year data for each place is separated into periods
to determine the trend in inflows for each period. This approach, titled Linear Moving
Window, is developed in this study (LMW).

The results demonstrate that the model can estimate the trend of plants separated
by rivers. When a period contains fewer than 30 years, the model is especially sensitive
to outliers.

The emphasis of the work in [52] is creating a strategy for forecasting the change
in the annual hydroelectric output of federal hydroelectric plants in the United States.
This method is based on the correlation between geological runoff data and the yearly
hydroelectric production of 132 U.S. plants.

Monthly data collection occurred between 1989 and 2008, spanning a period of twenty-
nine years. Three types of projection models are utilized: global, regional, and local.
The data indicate that the correlation between runoff and hydropower production is
increasing, with an overall tendency toward a dryer climate.

A seasonal runoff projection model is used by looking at each season separately.
Seasons are separated by a three-month interval, starting in spring (March). Trend seems to
vary a lot based on the region observed.

The linear regression data were utilized to forecast the change in production till 2039.
This forecast offers fresh perspectives on annual and seasonal production that might be
utilized in future endeavors.

Predicting the water level in a reservoir used by a hydroelectric plant using two
different scenarios over a relatively short time horizon is the purpose of the research
presented in the publication cited [50].

In the first scenario, there is rainfall and water level. In contrast, in the second scenario,
there is precipitation, water level, and water release from a power plant.

Four machine learning methods were tested in [50]: Boosted Decision Tree Regression,
Decision Forest Regression, Bayesian Linear Regression, and Neural Network Regression.

When looking at the results on a Taylor diagram and comparing them with other
machine learning performance metrics (MAE, MSE, RMSE, R2, and RAE), the Bayesian
Linear Regression approach produces the best overall outcomes.

The 12531 data set containing 34 years of daily water level and precipitation data
was harvested from 1985 to 2019, and 82,057 h set was recorded between 2010 and 2019.
The results show that all methods are suitable for water level prediction, but Bayesian Linear
Regression is particularly effective for the first scenario and Boosted Decision Tree Regression
for the second scenario.

The authors in [53] discuss the creation of many medium-term regressive models
(monthly and quarterly) to anticipate the amount of energy produced by a hydroelec-
tric plant.

Four types of regressive algorithms include power regression, multiple linear re-
gression, Gaussian process regression, and support vector regression. The precipitation
data in this set spans a period of 26 years, from 1993 to 2019, and was collected from six
different locations.

The information that was utilized refers to the amount of rainfall, temperature,
and evaporation that occurred from the plant reservoir. According to the findings, the Gaus-
sian process regression model is superior to the other approaches in terms of performance.

Gaussian refers to a method that is defined by the means and standard deviation; this
method does not require any parameters, is appropriate for use with small datasets, and is
able to take into account the uncertainty of the predictions.
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By employing this model, the authors in [53] could establish a connection between
the weather forecast and the amount of power the plant generated. According to the
authors, monthly data are not ideal for forecasting energy generation; instead, quarterly
precipitation generates the most accurate projections with a high correlation. In recent
research, there appears to be an abundance of regressive algorithms, necessitating testing
the same problem on each approach to derive the model.

Despite the simplicity of this type of procedure, the findings achieved with this
instrument are generally of high quality. However, regressive algorithms can only supply
limited information.

In general, the result of the predictions made by this class of algorithms reveals more
information about the situation, allowing for a more precise examination of the projected
data. On a bigger scale, linear regression algorithms appear better suited as complementary
to more advanced machine learning algorithms with a broader definition of the hydropower
production problem.

5.2. Random Forest

A decision tree is a type of machine learning algorithm that is able to perform tasks
involving classification as well as regression. The authors in [39] develop a model with the
help of a labelled dataset by basing their decisions on the characteristics of the input data.
They are the fundamental building blocks of the Random Forest (RF) model, which is one
of the most effective machine learning algorithms.

According to the authors in [57], in comparison to linear regression models, random
forest makes use of ensemble learning by constructing a large number of distinct trees.
These trees are then used to make many predictions based on an input and to provide a
more accurate inference from the variables.

The bagging method is often described as the main reason as to why ensemble methods
work so well in the random forest algorithm. This is done by training the decision trees of a
random forest with a slightly different subset of a training set in order to obtain a different
prediction each time [61].

This study in [54] examines daily auction data for the sale of Norwegian hydropower.
The purpose of this study is to determine whether the data gained in their earlier work can
be applied to machine learning [55]. In order to accomplish this, two random forests are
created, one for classification and the other for regression.

The development of neural networks has also been tried, but this model was aban-
doned due to a low convergence rate caused by inadequate data samples.

Observing the links between market price and inflows and labeling each feature as
stochastic or deterministic in order to construct a model that classifies each occurrence as
deterministic or random.

The second regression model is trained to forecast a decision heuristic for determining
if a deterministic approach should be employed for the current market. The dataset was
altered to obtain more accurate predictions. By comparing the performance of some data
to the market price, the strategy gap function was introduced. To examine the relation-
ships between the features in the set, a correlation matrix with Spearman’s coefficient
was generated.

No feature reduction was undertaken based on the results of test models. The gradient
boosting decision tree approach was employed as the random forest algorithm [62].

The selection of the model’s hyperparameters was based on 1000 random parameter
selections applied to five random sets. The performance of the models was determined
by calculating the accurate classification rate based on the total number of classifications
conducted, the performance gap, and the average performance of an optimal design.

The set was divided into 2
3 training sets and the remaining for the test sets. Con-

sequently, production and sales data from 2016 and 2017 were utilized to forecast the
2018 results.
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The results indicate that the best classification model achieved an accuracy of approxi-
mately 62%, indicating a significant level of noise in the data.

The regression indicated a 3% decrease in accurate predictions, but a 3% improvement
in the performance gap. The quality of the solutions was ultimately unsatisfactory.

The data used do not appear to provide a good picture of hydroelectric power genera-
tion and sales. Based on this paper, decision tree algorithms do not appear to be well-suited
for this type of prediction, or the dataset utilized for this project may not have accurately
represented the situation.

The paper of [56] makes use of several data analyses and machine learning algorithms,
culminating in the comparison of four decision tree algorithms, namely C4.5, enhanced
C4.5 (improved C4.5), ID3-IV, and Chi-squared Automatic Interaction Detection (CHAID).

The case study focuses on two cascaded hydroelectric power facilities in China’s
Tianshengqiao, situated on the Hengshui River.

The purpose is for short-term and real-time optimization algorithms to be able to
make rapid judgments for energy generation, which they need assistance in doing swiftly
and efficiently.

The authors acknowledge that fluctuating data may have an impact on performance
and note that safety and environmental constraints are disregarded in this study. Utilizing
a deterministic k-means approach, the production curve of the plant is estimated.

The information utilized for each power plant is divided into two seasons, winter and
summer, and includes the following:

• The time at which the data were collected.
• The level of water in the reservoir.
• The volume of discharged water.
• The energy generated.
• One of the 15 plant schedules must reach its goal.

It is to be noted that the plants experience major differences between winter and
summer seasons. Notably, the water level of the dam is almost constant during winter
due to the rainfall that mostly accumulates as snow, meaning that the regions must rely
more on other energy sources during these periods. On the contrary, there is a lot more
water discharges and inflows during summer, but the demand is also higher because of air
conditioning in rural area.

The C4.5 algorithm has the lowest error rate and an appropriate computation time,
as determined by the results. However, the results and conclusions of this paper are difficult
to interpret.

Due to the split of ensembles into seasons and the need to calculate each plant and
tree, the results are muddled, with error rates ranging from 4% to 30% depending on the
algorithm, plant, and season.

Due to the lack of openness of the data used, particularly with regard to the quan-
tity and duration of data collection, the experiment should be repeated under different
conditions to validate the results.

The article of [57] proposes a hybrid model making use of the algorithms Adaptive
Wavelet Transform (AWT), Long Short-Term Memory (LSTM), and RF to design the AWT-
LSTM-RF model for hydropower prediction.

The ant colony optimization approach is also utilized to determine the significance
of the dataset’s attributes. The research utilizes 6205 daily data collected by the Mahabad
Dam power facility in the Western Azerbaijan Province from 2005 to 2019.

The set includes 52 characteristics pertaining to energy production, reservoir vol-
ume, reservoir area, reservoir water level, evaporation volume, maximum and minimum
temperature, and precipitation.

The training set contains information from 2005 to 2016. The model was constructed
in four stages. Using the ant colony optimization algorithm, the most significant variables
were ranked in order of importance from one to six before their features were extracted.
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Then, the best combination of features was chosen with a random forest algorithm.
Secondly, the features combination and temporal data were decomposed into multi-level
sub-signals called wavelets with the AWT algorithm [63]. This phase is crucial to the
creation of the model because it allows sequential historical data to be represented as
a frequency. Low-frequency components, for instance, show a high pattern, while the
contrary implies erratic variations in the data series.

This provides far more insight into the data, particularly the stochastic (exogenous)
factors. In the third stage, each wavelet was sent via an RNN-LSTM algorithm to forecast
the frequency of future data.

LSTM parameters were tuned using the Back Propagation Through Time technique.
The final phase involves collecting the forecasts of the sub-signals.

A nonlinear ensemble learning technique was used in conjunction with a random
forest to forecast the nonlinear values of the subsignals.

After examining 53 data sequences at various times, the results of the ant colony
algorithm demonstrate six key energy production characteristics.

The random forest results show that the best combination of features was the reservoir
volume at time t, evaporation volume at t− 2, the minimum temperature at t− 5, and en-
ergy produced at t− 1 and t− 4. The null hypothesis was rejected at a 1% significance level.

Subsequently, the five features were used as input to the wavelet analysis. The best
mother wavelet was db4, with decomposition into two layers of low and high frequency.
These frequencies were sent for training and prediction of the LSTM and then aggregated
by a random forest, emphasizing the bagging method.

Among the different models and different combinations of algorithms tested, the test
of the AWT–LSTM–RF model obtains a mean error of 0.185, an error variance of 28.85, and
an R2 of 0.987, that is to say, an excellent result in terms of the predictive algorithm.

However, the model was not compared to traditional stochastic optimization methods,
nor was the computing time of the model specified in detail.

5.3. Reinforcement Learning

Reinforcement learning stands out from other machine learning algorithms by the way
it perceives the problem. As seen in Section 4.6, a problem is defined using the MDP model.

Environment and state are defined in the context of hydropower production by the
data produced by power plants and their reservoirs. A policy can be represented in a variety
of ways. However, this study examines some techniques that employ neural networks.
When neural networks are utilized in a reinforcement learning algorithm, this is referred to
as DRL.

In the paper by [58], a deep reinforcement learning method is used to optimize a
cascade power plant network located on the Hun River in northern China. Specifically,
these use the Deep Q-Network method, introduced in [64], as a prediction model and use
a Bayesian aggregation–disaggregation technique on the three reservoirs to reduce the
dimensionality of the problem.

The DRL consists of an agent with two neural networks as its brain (an action and a
target network), allowing it to make decisions regarding its surroundings. The environ-
ment is represented by the dataset of hydroelectric power facilities. From 1967 to 2015,
the statistics include daily precipitation and 10-day inflows for each reservoir.

After receiving information on the condition of its surroundings, the agent decides
whether or not to utilize the DQN’s network capabilities. The model will mimic this activity
in order to return a reward to the agent based on the divergence of the system’s needs
and the amount of energy that was produced. The agent retains all of its previous states,
actions, and rewards so that it can engage in continuous learning.

The DRL model is compared using three Stochastic Dynamic Programming (SDP)
models. The methods using DRL are said to be better than their SDP counterparts, but few
conclusions are made from this point of view, and the graphs seem to show similar results
between the two methods.



Energies 2023, 16, 3335 22 of 27

The author makes note of the fact that DRL with memory is applicable to the real-
time production problem, and that Bayesian aggregation–disaggregation appears to be
appropriate to the problem of cascading tank systems. Both of these points are taken
into consideration.

The paper [59] uses DRL on a long-term horizon problem to optimize annual revenues
based on water inflow and electricity prices. The reinforcement algorithm is of type actor-
critic with a Q-learning algorithm.

The problem has been tested on simplified historical data, as this work aims to demon-
strate the viability of reinforcement learning for seasonal hydro planning problems.

The water level inside a reservoir symbolizes the environment, and the agent’s goal is
to achieve a state of equilibrium in the reservoir’s water level to minimize the amount of
water that spills out and increase the amount of money the agent makes each week.

The activity that needs to be completed by the agent is to determine, based on the
current price of power on the market, what percentage of the water in the tank should be
converted into energy.

The reward function for action is computed with respect to the greatest capacity of
power that can be produced in proportion to the reservoir’s capacity, the electricity price
on a weekly basis, and the importance connected to this price. All of these factors are taken
into account.

The critic is composed of four neural networks, including a network describing the
value of the state, a target network allowing a better convergence of the error backpropaga-
tion algorithm, and two Q-networks to obtain the Q value.

The decisions that the actor makes are determined by a neural network designed to
represent the policies in place in the state. It is important to emphasize using RMSprop to
optimize their network, which is one of the hyperparameters.

This decision was made because, compared to Adam, it has less momentum de-
pendence when applied to non-stationary data and a constantly shifting environment.
In addition, using RMSprop helps to level out the differences in learning rates and prevents
an excessive investigation into a local minimum.

The model is trained on an artificial scenario set in addition to a scenario set developed
using data from 2008 to 2019 on European Nordic market value data from 1958 to 2019 on
Norwegian water supply, and four reservoirs with comparable meteorological conditions.
The model converges after one day of training with 300,000 weeks on a processor with
3.1 GHz and 16 GB of RAM [59].

This work demonstrates the viability of a reinforcement-based model in a minimalist
hydroelectric generation problem from the perspective of the field in which hydroelectric
optimization models dominate. Specifically, this is done by looking at the problem from
the point of view of the hydroelectric optimization models. The author incorporates
the option of pushing the model farther with the use of algorithms such as aggregation–
disaggregation [59].

This paper [60] proposes a reinforcement learning model for the hydroelectric generation
problem using chance constraints in conjunction with a gradient-based policy technique.

This paper aims to compare the reinforcement learning model with traditional medium-
term stochastic optimization methods in a three-reservoir system and to observe the behav-
ior of chance constraints in a hydroelectric context.

An MDP is used to represent the problem, defined with the tuple < S, V, P, r >.
The variable S represents the states at time t, defined for each reservoir by the amount of
water in storage, a measure of the layer of snow (and ice) and natural inflows; the variable
V represents the amount of water discharged for the period t; the variable P is a transition
function to the state t + 1; and the variable r is the reward function at time t, dictated by
the reservoir water level, the variable V at time t and with the natural water supply.

Due to the stochastic nature of the inflows, the reward is expressed as the sum of
the expected rewards over a time horizon. The policy to be chosen by the agent at time
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t uses the same parameters as the reward function used to obtain the decision variable
corresponding to V. This policy is stochastic and is represented by a neural network.

The policy uses the gradient ascent method to choose the direction of the step in the
direction of the gradient of the objective function. The turbine constraints are complex,
while the storage constraints, subject to many stochastic factors, are soft constraints.

To update their policy, a slightly altered version of REINFORCE is used [65], with Adam
for the parameter update step. The added chance constraint is joint, meaning that the prob-
abilities of all inequalities are joined in a single constraint.

It introduces a parameter that penalizes the objective function of the policy with a
fixed value, usually resulting in stringent restrictions on the model.

The variable backoffs is added to the storage constraints, i.e., a vector of all backoffs
preceding the time t. The backoffs is used to regulate the level of satisfaction of the constraint.

The value of backoffs is initiated by computing all storage constraints at all times t.
Then, the constraints being violated most often are assigned larger values of backoffs.

The backoffs are adjusted during the algorithm’s course to minimize its value, decreas-
ing the risk of function violation. An SDP model using the same chance constraints has
been designed as a performance benchmark.

The case study was conducted on the Rio Tinto system in the Saguenay Lac-Saint-Jean,
Quebec (Canada). The model was tested on 1000 years of data simulated by the company
with an i7-8565U 1.80 GHz processor and 16 GB of RAM.

After testing different parameters for the chance constraint, the policy computation
time of the model by reinforcement was 41 h compared to 49 h for the SDP.

A decrease of 1.5% in hydroelectric production was observed in the reinforcement
model. However, for each of the tests (one, two, and three reservoirs), the reinforcement
model showed less loss in the water discharged and less loss in the amount of energy pro-
duced.

In addition, the model was much more prone to power shortages and major water
losses than the reinforcement model. The results show that the reinforcement approach is a
viable method with respect to production, constraint satisfaction, and computation time.

6. Conclusions

The current state of mathematical optimization in the fields of hydropower and
machine learning is the topic of discussion in this article. In addition, we investigate their
interaction within the context of the existing hydropower generation scheduling issue.

Given that machine learning is still a relatively new area of research with numerous
potential applications, it is quite likely that machine learning will play a significant role in
the development of future models for the production of hydropower.

We believe that the role of machine learning in hydroelectricity should be investigated
further in future research. Given the rapid evolution of the machine learning field and its
impact on many, if not most, fields of science, it is critical to transition the hydropower
generation problem away from deterministic and stochastic optimization models. This work
is an attempt to address the sudden shift in strategy for developing hydropower models.

Furthermore, researchers should investigate which aspects of hydropower production
could benefit from this technology (i.e., ML) in the near future. To be more specific, every
feature bound by uncertainty in the hydropower scheduling problem should be investigated
using machine learning. This relates to water inflows, energy demand, weather forecast,
and market price. The goal is to determine which strategies should rely on stochastic
programming strategies and which should rely on machine learning algorithms to predict
these values.

Given that mathematical optimization is the norm, a novel approach to the hy-
dropower planning problem could change how water inflows are modeled. The scenarios
can be easily incorporated into stochastic optimization and produce very satisfying results.
Because of the nature of the problem, scenario trees already employ machine learning
methods to help in scenario generation; for more information, see [2]. Although the ma-
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chine learning literature on water inflow forecasting is extensive, the remainder of the
fundamental hydropower planning problem has yet to be thoroughly investigated.

Furthermore, by employing predictive algorithms, some stochastic variables could be
treated as deterministic, potentially reducing the complexity of the current optimization
model. Machine learning could be used to approximate the function of constraints, allowing
them to be linearized.

Further to that, a decision-making algorithm is a topic that could be investigated.
Most hydropower scheduling decisions are made by human operators in power plants.
Optimization models are currently used as tools to guide operator decisions.

Each of the time horizons, short, medium, and long term, could be improved in its
own way. Particular attention should be paid to the problem of short-term hydropower pro-
duction scheduling. This includes supervised, unsupervised, and reinforcement learning
algorithms, all of which have shown promise in medium and long-term problems. It would
be interesting, in our opinion, to develop a short-to-medium term hydropower model that
uses both mathematical optimization and machine learning algorithms to predict daily
energy production while also monitoring reservoir level and water inflows.

In conclusion, it is important to note that the introduction of Industry 4.0 and the
Internet of Things means that hydropower plants will profit from the ongoing industrial
revolution. Because of the widespread use of cutting-edge technologies and Cyber-Physical
Systems, an ever-increasing quantity of data is being gathered, which will be of tremendous
assistance to the development of future applications of machine learning.
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Nomenclature
The following abbreviations are used in this manuscript:

P Power produced for a turbine in Kilowatt
η Efficiency of a turbine
φ The energy loss approximated in meters
e f The water level in the forebay
et The tailrace elevation
g Gravitational acceleration constant 9.8 m/s2

hnet the net water head in meters of the dam
Qtot total amount of water discharge in m3/s
Qturb total amount of water discharge in m3/s
R2 R-Squared
w and τ Precision and recall variables
AC Alternating Current
ACKTR Actor-Critic using the Kronecker-Factored Trust Region
AdaGrad Adaptive Gradient Algorithm
Adam for adaptive moment estimation
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AI Artificial Intelligence
AWT Adaptive Wavelet Transform
BDTR Boosted Decision Tree Regression
BFGS Broy-den–Fletcher–Goldfarb–Shanno
BLR Neural Network Regression
DFR Decision Forest Regression
DNN Deep Neural Networks
DQN Deep-Q Learning
DRL Deep Reinforcement Learning
K-FAC Kronecker-factored Approximate Curvature
LMW Linear Moving Window
LR Linear Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MPD Markov Decision Process
MSE Mean Square Error
NAG Nesterov Accelerated Gradient
NNR Bayesian Linear Regression
RAE Relative Absolute Error
RF Random Forest
RMSE Root Mean Square Error
RMSprop Root Mean Squared Propagation
RNN Recurrent Neural Network
SAG Stochastic Average Gradient
SDP Stochastic Dynamic Programming
SGD Stochastic Gradient Descent
SWATS Switching from Adam to SGD
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