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Abstract: The subject of the research involved fly ashes from several power plants in Poland, produced
in the process of hard coal and lignite combustion. The objective of this article was to determine
the concentration and distribution of elements strategic for the EU economy in ashes and in their
two finest grain classes (below 20 µm and 45 µm). The differences in grain size of these ashes, as
shown by granulometric tests, were significant. The concentrations of elements in the ashes and
in grain classes were compared with the world average (Clarke value) for this raw material. For
the majority of critical elements, a dependence of the concentration on the size of ash particles was
observed. The content of REY (Rare earth elements and yttrium) and other critical elements in hard
coal ashes increases with decreasing particle size. Despite the increase in the concentration of REY in
the class below 20 µm, the Clarke value of these elements was not exceeded. Pearson’s correlation
coefficients confirmed the interdependence between some elements of the ashes. The distribution
of trace elements in grain classes of the ash was determined on the basis of observations using a
scanning electron microscope equipped with an EDS (Energy Dispersive Spectroscopy) detector.
Components of fly ashes that can be treated as an alternative source of strategic elements for the
European Union were indicated.

Keywords: critical elements; grain classes; fly ash; rare earth elements; particle size

1. Introduction

While fly ash is an attractive resource in itself, there are ways to make it even more
attractive. The transition to a circular economy model forces us to change our approach to
the management of wastes, which should be transformed into products [1–8]. Separation
of the finest grain class from ash can change its properties, and thus create new potential
and new areas of application. Such qualified ashes can be an ideal additive, e.g., to
new generation high-quality concretes, self-compacting concretes, or as an additive to
plastics. Many studies have demonstrated that the addition of the finest FA (Fly ash) to
cement, with a high proportion of spherical particles, results in a material with improved
performance properties [9–15]. Separation of the finest particles can also be an important
step in the pre-processing of ashes, during the recovery process of some critical elements
from them. The presence of over 80 metals, including rare earth elements, have been found
in power plant ashes [16]. The recovery of such elements from combustion products may
be promising due to the decreasing resources of rare earth metals and their increasing use
in new technologies [17–21]. An extensive description of the selected recovery methods
of such valuable metals from fly ashes can be found in the work [22]. Obviously, in order
to develop the most effective method for their recovery, the problem of the speciation
of rare earth elements must be solved. Understanding the distribution and speciation of
elements in FA is extremely important for the development of economically viable and
environmentally friendly ash enrichment technologies [22,23]. Research conducted so far
allows for the conclusion that the distribution of elements in combustion products and
in flue gas cleaning products is characteristic for a given element, and it also depends
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on the types of boilers, combustion conditions, the method of dust removal, and flue gas
treatment [24–34]. It was also emphasized that the enrichment of coal combustion products
with chemical elements is a function of not only their physicochemical and morphological
properties, but also their concentration in coal [35,36]. Critical metal enrichment of coal
is attributed to both geological and geochemical factors, including volcanism, regions of
sediments origin, groundwater, and various syngenetic and post-diagenetic fluids [37,38].
It is the origin of critical elements that their size and shape depend on. In coal, REY can be
associated with both inorganic and organic matter [19]. The same is true of coal combustion
products. Based on the research cited in the paper [19], it was found that such metals
may occur in ash in association with amorphous glassy materials Si-Al, with discrete
minerals or compounds, or they may occur in organic associations (with unburned carbon).
Numerous studies have pointed to the relationship between the size of ash particles and
the concentration of selected elements [21,39–42]. In general, higher concentrations of REE
(Rare earth elements) were found in the finer grain class. Yet, other grain classes have often
been studied. For example, Lin et al. [17] obtained the highest REE concentrations in the
38-25 class and below 20 µm, and Wu et al. [36] in the grain class below 5 µm, which had
the highest REE enrichment factor of 1.45. In addition to REE, high concentrations in the
fine grain class of FA with a large specific surface area were also found for F, V, Zn, and
Pb [43]. Fei et al. [21] found Li, Ga, Nb, Ta, and REY mainly in small aluminosilicate glass
particles. Prior to that, Martinez-Tarazona and Spears [44] indicated a clear increase in
the concentration degrees of As, Ba, Cr, Cu, Mo, Nb, Ni, Pb, V, and Zn in progressively
finer particle classes of FA. These are mainly elements that evaporate in the boiler, and
then they are passed to electrostatic precipitators where the temperature decreases. As a
result of such changes, vapor condensation occurs on fly ash particles. Since the smallest
particles have a larger surface area, the condensation mainly occurs on their surface [28].
However, unlike some elements, such as Zn, As, Cd, and Cr, the concentration of REE is
not a function of their volatility [45,46]. Along with trace elements, the distribution of basic
elements was studied. The concentrations of Si, Al, Fe, Ca, K, Na, and Mg were lower in
fine ash particles [47–49]. It was also demonstrated that there is a group of elements, P, Nb,
Cr, Ta, U, W, Rb, and Ni, that does not change concentration with change in particle size.
Uniform distribution of these elements in all grain classes indicates a weak relationship
between the enrichment and the surface area of the particles. These elements are probably
evenly distributed in the inner part of the FA particles.

The research presented in the paper was aimed at determining the concentration of
elements strategic (REY, Sc, Be, Co, Ga, Hf, Nb, Sr, Ta, V, W, Sb, and Bi) for the European
Union economy in the smallest grain classes of FA. Such elements have been specified on the
list submitted by the European Commission [50], which is systematically expanded upon
along with the development of new technologies. The basic criterion in the development
of such a list was the expected economic importance of a raw material for the needs of
the economy in the 21st century and the supply risk. Such studies may contribute to
the extension of the existing knowledge necessary for the development of technology for
recovery of critical elements from FA. This paper is the continuation of the works [51,52].

2. Materials and Methods

These ashes come from pulverized coal boilers with natural circulation in which the
combustion temperature in the core of the combustion chamber reaches 1450–1600 ◦C.

Ash samples were taken from retention tanks collecting waste from electrostatic
precipitators. The collected samples were therefore an averaged mixture of fly ashes
produced in these power plants.

The chemical composition of grain classes (below 20 and 45 µm) of FA was investigated
in a laboratory at Bureau Veritas Mineral Laboratories in Canada using inductively coupled
plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). In
addition to basic chemical elements, the study analyzed the elements considered to be
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critical by the European Commission: Be, Sc, Co, Ga, Nb, Sr, Ta, V, W, Sb, Bi, and REY. All
samples were analyzed by Lithium Borate Fusion.

The obtained results were compared with the concentration of those elements in the
FA from which the individual grain classes were obtained. The data on the chemical com-
position of those ashes had already been presented in articles on magnetic fraction [51,52].
For the selected ashes, measuring sensor QICPIC by Sympatec GmbH (Clausthal-Zellerfeld,
Germany) was used to obtain full information about particle size. The sensor is based on
Dynamic Image Analysis (DIA) technology, which allows for measurement of particle shape
and size distributions as well as characterization of individual particles. The chemical and
granulometric studies were supplemented with studies making use of a high-resolution
scanning electron microscope (SEM) JSM 7200F by JEOL (Tokyo, Japan), equipped with
an EDS detector (Octane Elite Super (EDAX, Inc. (Pleasanton, CA, United States)). The
microscope allows for the determination of the elemental composition of samples having a
size of a few micrometers, or to create a distribution map of chemical elements over a larger
area. The test samples were embedded in resin, and then metallographic microsections
were prepared, which were sputtered with a Cu layer ~5 nm thick in order to ensure that
the charge from the surface of the samples is taken away (Leica EM SCD500 (Germany)
sputtering machine). The observations were made using a BSE detector. The tests were
carried out using the accelerating voltage of 15 kV. Designation of samples used for testing
is presented in Table 1.

Table 1. Designation of samples used for testing.

Sample
Number Fly Ash Sample

Number
Grain Class

below 45 µm
Sample
Number

Grain Class
below 20 µm

1

from hard coal

145

ash from hard coal

120

ash from hard coal

3 345 320

7 745 720

11 1145 -

- 945 920

6
from lignite

645
ash from lignite

620
ash from lignite

12 1245 -

3. Results
3.1. Results of the Granulometric Analysis

The results of the analysis of grain composition of FA from which the individual grain
classes were separated are summarized in Tables 2 and 3. The knowledge involving the
share of the analyzed grain classes in the total mass of ash is important in terms of cost-
effectiveness of the recovery of critical elements. Moreover, particle size has a significant
impact on the possible further use of the ashes for other purposes.

Table 2. Characteristic values of the particle size distribution of the tested ash samples.

Sample Particle Size Distribution

1 X10.3 = 9.99 µm X50.3 = 68.14 µm X90.3 = 288.44 µm X99.3 = 371.76 µm

3 X10.3 = 8.91 µm X50.3 = 38.66 µm X90.3 = 163.74 µm X99.3 = 220.36 µm

7 X10.3 = 7.73 µm X50.3 = 16.84 µm X90.3 = 60.94 µm X99.3 = 128.02 µm

11 X10.3 = 8.54 µm X50.3 = 35.37 µm X90.3 = 138.25 µm X99.3 = 228.39 µm

6 X10.3 = 18.95 µm X50.3 = 77.01 µm X90.3 = 283.10 µm X99.3 = 371.63 µm

12 X10.3 = 10.51 µm X50.3 = 31.53 µm X90.3 = 100.82 µm X99.3 = 313.25 µm
Explanation e.g., X10.3 is the size X, which 10.3% of all particles are finer.
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Table 3. Share of grain class below 45 and 20 µm in the tested ashes (%).

Sample Grain Class below 45 µm Grain Class below 20 µm

1 40 25

3 53 36

7 82 60

11 55 36

6 31 11

12 64 32

The range of grain size of the tested FA was from 0 to about 400 µm. Differences in
grain size between particular types of ashes are significant. The coarsest grain size was
found for sample 6 from lignite. The share of the coarsest particles above 100 µm was
almost 40%, the class below 45 µm accounted for 31%, and the particles below 20 µm
accounted for only 11%. Sample 1 was also characterized by a high content of coarse
particles above 100 µm, while the content of the finest grains below 20 µm was 25%, and
the class below 45 µm in that sample accounted for 40%. In the context of the investigated
problem, the share of fine grains in sample 7 is noteworthy, compared with the remaining
samples. In that case, the content of grains below 20 µm reached as much as 60% and the
class below 45 µm accounted for over 80%.

3.2. Chemical Composition
3.2.1. Basic Components

The contents of basic components in FA and in two grain classes are presented in
Table 4. Four fly ash samples (1, 3, 7, and 11) were produced as a result of hard coal
combustion [51,52]. Based on the total content of oxides SiO2 + Al2O3 + Fe2O3, they were
classified in accordance with ASTM standard as the class F fly ash. In the samples 6 and
12, produced from the combustion of lignite, the total content of the above oxides does not
exceed 50%. This kind of material belongs to class C. For the lignite ash, a high content of
CaO (22.48–27.03%) is observed, which means that this material can be classified as lime ash.
The value of loss on ignition is in the range of 3.4–6.6%, and only for sample 3 is it much
higher, exceeding 22%, which largely reflects a high content of unburned carbon in this
sample. This parameter plays an important role in the use of ashes as cement components
and as an additive to concrete. When fly ash with a high loss on ignition is used, grains
of unburnt coal can be seen flowing out onto the surface of the concrete mix. Therefore,
some European countries have adopted solutions in their national regulations narrowing
the scope of the application of ashes with a loss on ignition exceeding 5% for concrete.

There was no clear regularity of changes in the concentration of the main chemical
components, depending on the size of ash particles (Table 4). Only the concentration of
Al2O3 was slightly rising with the decrease of particles in the class F ashes. A similar
trend was observed for the subcomponent TiO2. For the lignite ash sample, however,
a clear decrease in the content of SiO2, Al2O3, and TiO2 was noticeable along with the
decreasing particle size, in contrast to Fe2O3 and CaO, where a reverse enrichment trend
was observed. For both types of ash (classes F and C), however, a positive correlation was
observed between particle size and the value of ignition losses, which confirms earlier
studies claiming that unburned carbon accumulates mainly in the coarser grain classes.

3.2.2. Critical Elements

The contents of critical elements in the tested ashes and their particle size classes
are presented in Tables 5 and 6. The measured levels of critical elements were compared
with the world average (Clarke value) for this raw material [53]. Most elements in hard
coal ashes had comparable, although slightly lower, concentrations than the Clarke value.
Only the concentration of V was higher than the world average. High content of this
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element in Polish hard coals had been already observed by Idzikowski [54]. Due to variable
valence, this element forms a number of complex cations and anions in the form of oxides,
hydroxides, and chelate organic compounds.

Table 4. Basic components’ content in the analyzed FA and the grain class samples.

Sample
Chemical Components (%)

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 LOI Total

1 50.03 25.37 6.58 2.5 2.95 0.95 2.93 1.05 0.53 0.07 0.021 6.6 99.58

145 50.04 25.76 6.9 2.71 3.21 1.32 3.32 1.09 0.56 0.07 0.023 4.5 99.50

120 49.74 27.27 6.67 2.47 3.19 1.34 3.17 1.23 0.94 0.07 0.026 3.3 99.42

3 42.05 21.2 4.34 1.84 3.04 0.6 2.3 0.92 0.43 0.05 0.020 22.8 99.59

345 45.32 24.19 5.1 2.27 4.04 0.78 2.59 1.11 0.57 0.06 0.025 13.5 99.56

320 47.54 27.2 4.92 2.02 3.61 0.96 2.91 1.32 0.59 0.06 0.026 8.4 99.56

7 51.64 20.69 11.27 1.69 4.39 2.17 1.99 0.92 0.22 0.05 0.026 4.3 99.36

745 51.32 20.86 11.54 1.77 4.63 2.37 2.01 0.99 0.24 0.05 0.028 3.6 99.41

720 50.01 21.54 12.67 2.01 4.65 2.86 2.14 1.08 0.22 0.06 0.031 1.9 99.17

6 33.02 28.98 8 0.99 22.48 0.07 0.12 0.7 0.57 0.06 0.025 4.7 99.72

645 22.76 24.68 12.11 1.09 28.32 0.08 0.05 0.55 0.52 0.07 0.012 2.5 92.74

620 17.46 19.84 20.94 1.03 29.49 0.09 0.06 0.46 0.41 0.08 0.016 2.1 91.98

945 51.23 21.1 10.52 2.23 4.74 2.03 2.13 0.98 0.21 0.07 0.025 4.1 99.37

920 49.28 23.18 10.42 2.48 4.86 2.55 2.29 1.1 0.32 0.07 0.032 2.7 99.28

11 50.37 26.28 5.44 2.6 3.54 1.08 2.84 1.09 0.46 0.07 0.023 5.8 99.59

1145 50.77 26.76 4.89 2.83 4.12 1.29 2.86 1.2 0.56 0.08 0.026 4.1 99.49

12 31.68 25.39 9.19 1.27 27.03 0.06 0.14 0.91 0.44 0.06 0.028 3.4 99.60

1245 28.41 24.82 11.67 1.34 29.75 0.09 0.13 0.83 0.44 0.07 0.027 2 99.58

In lignite ashes (class C), higher concentrations of REE were observed, compared with
their concentration in class F ashes. The Clarke value was surpassed in this raw material for
all LREE (from La to Eu) and also for Er, Y, and V. It is noteworthy that the concentration of
W was lower than in class F ashes, which is consistent with research by Bielowicz [55]. Yet,
it has not been confirmed by the research of Zhang et al. [56]. In hard coal ashes, for the
majority of critical elements, a dependence of concentration on particle size is noticeable
(Tables 5 and 6). A similar trend was noticed by [35,43,47]. High enrichment factors relative
to Clarke were noted for Co, Ga, and V (Figure 1). Despite the increase in REY concentration
in progressively finer grain classes, the Clarke value in the class below 20 µm was not
exceeded, as seen in Table 6. A different enrichment trend was observed in sample 6 (lignite
ash). The highest concentration of REY was observed not in the finest class, but in the class
below 45µm (sample 6) (Table 6 and Figure 2). The highest enrichment factor relative to
Clarke was noted for Y (EFC = 2.1—sample 6 and EFC = 2.2—sample 12), as seen in Figure 2.
Despite a high enrichment factor in the tested particle class of Nd (EFC = 1.62) and Co
(EFC—2.71), better results were obtained earlier for the magnetic fraction, with EFm = 1.97
and EFm = 3.1, respectively [52]. Therefore, the combination of both methods, magnetic
separation and the separation of the finest grain class for the mentioned elements, could
yield even better results.
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Table 5. Trace elements content in the analyzed fly ash and their grain class samples.

Sample
Element (ppm)

Sc Be Co Ga Hf Nb Sr Ta V W Sb Bi

1 28 7 39.3 33.8 5.8 21.5 621 1.6 241 4.7 4 0.9

145 29 8 48.9 47.4 5 21.1 649.3 1.5 295 5.5 6.3 1.2

120 32 11 56.1 69.6 5.9 24.3 830.9 1.5 353 7.7 9.8 1.7

3 24 8 30.5 30.1 4.3 17.2 476.7 1.2 196 4.8 3 0.8

345 29 5 39.5 37.1 5.2 20.5 543.5 1.7 252 5.5 5.5 0.5

320 32 12 52.7 48.8 4.4 23.2 677 1.9 330 6.3 6.7 1.3

7 29 4 28.4 25.7 6.3 17.4 815 1.1 344 3.5 5.9 0.5

745 31 7 27.8 29.3 6.2 16.7 845.5 1.1 361 3.9 6.4 0.6

720 31 8 42.4 44 7 21.5 1228.6 1.2 422 8.4 8.1 0.7

6 24 3 30.1 27.3 4 13.7 458.1 0.9 192 1.7 0.1 0.6

645 22 2 48.6 25.6 4.3 12.2 587.2 1 244 1.3 0.3 0.9

620 20 2 70.4 25.1 4.3 11 529.5 0.6 248 3.2 0.4 1.4

945 26 5 31 27.8 6.3 17.7 874.7 1.2 315 5.1 5.9 0.5

920 30 10 43.6 47.8 6.2 21 1064 1.3 410 7.3 9.7 0.9

11 28 10 37.7 35 5.6 21.3 578.4 1.7 235 5.2 3.9 1.3

1145 30 9 41.9 44.7 6.3 23.6 657.8 1.6 268 6 5.7 1.4

12 27 1 42 34.5 5.9 22 586.1 1.5 274 2.7 5.7 1.4

1245 29 5 46.9 32.1 5.5 18 572.9 1.2 288 2.4 0.4 1.3

CVH 24 ± 1 12 ± 1 37 ± 2 36 ± 1 9 ± 0.3 22 ± 1 730 ± 50 2 ± 0.1 170 ± 10 7.8 ± 0.6 7.5 ± 0.6 7.5 ± 0.4

CVB 23 ± 1 6.7 ± 0.5 26 ± 1 29 ± 1 7.5 ± 0.4 18 ± 1 740 ± 70 1.4 ± 0.1 140 ± 10 6 ± 1.7 5 ± 0.4 4.3 ± 0.8

CVH/CVB—The value of the Clark of the researched element (coal ashes hard/coal ashes brown) [53].
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Table 6. REY content in the analyzed fly ash and their grain class samples.

Sample
Element [ppm]

Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑ REY

1 49.7 62.9 123.5 14.59 56.2 10.92 2.33 9.82 1.47 8.69 1.72 4.82 0.72 4.55 0.71 353

145 49.9 58 109.7 13.87 53 10.86 2.36 10.16 1.49 8.78 1.72 4.99 0.71 4.64 0.72 331

120 56 67.7 125 15.69 60.4 12.16 2.67 11.33 1.73 9.6 1.94 5.65 0.8 5 0.76 376

3 42 48.9 93.5 12.37 46.7 9.5 1.98 8.63 1.3 7.69 1.52 4.38 0.63 4.04 0.59 284

345 48.5 52.7 104.8 13.74 51.9 10.72 2.29 9.72 1.52 8.82 1.79 4.87 0.7 4.64 0.68 317

320 52.7 59.7 120.1 14.75 55.1 11.14 2.57 10.74 1.66 9.51 1.88 5.73 0.79 5.11 0.78 352

7 47.1 44.6 85.8 11.04 42.8 8.57 1.76 8.12 1.3 8.03 1.74 4.91 0.68 4.61 0.69 272

745 47.4 43.8 82.7 10.88 41.8 8.3 1.82 8.03 1.26 7.97 1.59 4.91 0.7 4.47 0.68 266

720 55.6 52.3 104.4 12.23 45.7 9.44 2.258 9.74 1.54 9.14 1.91 5.54 0.8 5.16 0.79 317

6 81.8 93.2 168.9 22.43 86.3 16.06 3.3 15.14 2.12 12.16 2.38 6.87 0.91 5.56 0.81 518

645 92.7 113.5 202.1 23.94 94.2 16.92 3.55 16.3 2.35 13.38 2.6 7.58 1 6.36 0.88 597

620 83 95.6 174.5 21.41 81 15.11 3.24 14.39 2.1 12.71 2.47 6.8 0.9 5.53 0.86 520

945 47 45.5 86.3 10.82 40.5 7.89 1.75 8.1 1.25 7.47 1.56 4.67 0.65 4.28 0.65 268

920 52 50.4 93.9 11.76 45.1 8.72 2.04 9.08 1.4 8.32 1.83 5.13 0.76 4.76 0.77 296

11 48.2 61.8 122.4 14.13 53.5 10.78 2.35 9.84 1.51 8.72 1.78 5.27 0.73 4.55 0.69 346

1145 53.2 65.1 126.9 14.89 58.6 11.33 2.4 10.22 1.63 9.21 1.89 5.42 0.81 4.98 0.75 367

12 92.7 113.5 197 24.05 90.6 17.33 3.66 16.07 2.42 13.76 2.79 7.76 1.06 6.71 1.02 590

1245 97.1 113.1 202.2 25.06 96.9 18.25 3.69 17.31 2.53 14.44 2.88 8.26 1.15 6.88 1.04 611

CVH 57 ± 2 76 ± 3 140 ± 10 26 ± 3 75 ± 4 14 ± 1 2.6 ± 0.1 16 ± 1 2.1 ±0.1 15 ± 1 4.8 ± 0.2 6.4 ± 0.3 2.2 ± 0.1 6.9 ± 0.3 1.3 ± 0.1 -

CVB 44 ± 3 61 ± 3 120 ± 10 13 ± 2 58 ± 5 11 ± 1 2.3 ± 0.2 16 ± 1 2 ± 0.1 12 ± 1 3.1 ± 0.3 4.6 ± 0.2 1.8 ± 0.3 5.5 ± 0.2 1.1 ± 0.1 -

CVH/CVB—The value of the Clark of the researched element (coal ashes hard/coal ashes brown) [53].
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Therefore, the multi-stage REE recovery method proposed in [22], combining magnetic
and size separation with acid-base leaching, is appropriate. The next step in the recovery of
these metals may be the removal of the Si-Al matrix, followed by membrane separation.

The latter is characterized by the high efficiency of recovery of rare earth elements and
is an alternative to conventional techniques.

Pearson’s correlation coefficients confirmed an interdependence between some ele-
ments of hard coal ashes. Among others, a strong positive correlation was reported between
the content of REY and Al2O3, with r = 0.94 (Figure 3). Thus, the results are in line with
the research of Taggart et al. [57], who tested over 100 fly ash samples, mainly from the
USA, and demonstrated, among other things, a positive correlation between the total REE
content and Al2O3. The authors assume that the same geological factors responsible for the
content of alumina in coal ashes may influence enrichment in REE.
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The research previously conducted by Querol et al. [58] confirmed the relationship
between rare earth elements with aluminosilicates. Thus, the results suggest that the
extraction of REE from the aluminosilicate glass fraction should allow for the recovery of a
significant part of these elements from fly ash. For Ga and Al, a strong positive correlation
(r = 0.6808; p = 0.01) was found, which results from the proximity of the ionic radii of the
mentioned elements. Thus, future research should focus on the joint recovery of REY and
Ga from fly ash, as already suggested in [21].

The concentration of V, which was clearly higher than the world average value in the
tested ashes, was positively correlated (r = 0.788; p = 0.001) with Fe content, which results
from the fact that this element often replaces iron. Since the content of Fe in ashes can vary
within wide limits, the content of V in coal ashes also varies within wide limits, from trace
amounts to several dozen percent [59].

The largest amounts of magnetic iron compounds are contained in silicate ashes. The
obtained high enrichment coefficient V, both in the finest particle size class (Figure 1) and in
the magnetic fraction (EF = 2.5) [52], indicates that also for this element, the combination of
both methods, i.e., magnetic and size separation, can bring an even better enrichment result.

3.3. SEM/EDS

In order to better understand how the critical elements are present in the finest particle
size class of FA and to be able to predict the possibilities of their recovery, research was
carried out using a Scanning Electron Microscope (SEM) equipped with an attachment
for examining elemental composition in micro-areas. This allowed for the study of FA
in terms of grain scale. The characteristics of the smallest grain classes of FA were made
based on the interpretation of images and EDS microanalysis. The results of the analyses
are shown in Figures 4–13. In terms of microstructure, the examined grain classes of ashes
are characterized by a diversified microstructure. The presence of grains with different
surface morphology and grain habits have been reported (Figures 4 and 5). In samples
120 and 720, spherical grains dominate, although grains of irregular shape, often with
visible microporosity, can occasionally be distinguished (Figure 4). In sample 645, only the
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observations at high magnification reveal the presence of spherical forms (Figure 5). They
are generally of aluminosilicate and calcium aluminosilicate character. It is the composition
of the particles that primarily determines their morphology [60]. Single larger grains of
irregular shapes with high porosity mainly consist of carbon. Particularly rich in these
particles is sample 320 (dark fields) (Figure 4). Such unburned carbon indicates combustion
inefficiency, and it is often an obstacle to the further use of FA. The EDS analyses are
consistent with chemical analyses of the samples, and they confirm the presence of such
elements as O, Al, Si, Ca as the main components, accompanied by S and Fe, and also
traces of Na, Mg, P, K, Ti, Mn, Cu, and Zn. The EDS microanalyses showed that REEs are
mainly found in glassy aluminosilicates, which had been noted previously [61–66]. In hard
coal ashes, light elements LREY (Light group (La, Ce, Pr, Nd, Sm)) were more frequently
observed, while in lignite ashes, heavy elements HREY (Heavy group (Ho, Er, Yb, Lu)) and
medium MREY (Medium group (Eu, Gd, Tb, Dy, and Y)) were reported, according to the
division cited in the paper [37].
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Particularly high concentrations of Ce, Pr, and Nd were noted in grains smaller than
5 µm, trapped in the glassy phase of ash, characterized by the finest grain size (sample 720)
(Figure 6). Similar observations were made by the authors of the study [43,66]. Since these
elements are not associated with the surface, their recovery would require separation of the
glassy phase of the ash [39].

Yttrium (although it is not a lanthanide) was mainly associated with P-rich molecules,
generally accompanied by other elements, e.g., Dy, Ge, and Ga (Figures 7 and 12b). The
latter is a typical dispersed element, and it is accumulated in coals probably by sorption.
Mapping in the selected micro-areas of sample 120 also revealed that Y is dispersed in a
spherical particle containing P and Ca, (without Al and Si), which may indicate an apatite
(?) grain Ca5 [F|(PO4)3 (Figure 8). These particles can be released e.g., by wet grinding
of ash [36].

In sample 920, a massive crystal of zirconium with a size of less than 10 µm with
an admixture of Y was observed (Figure 9). Although this mineral has a high melting
point (above 1800 ◦C), the zirconium surface seems to be partially melted. This can be
explained by the fact that the melting of trace phases in multi-component systems occurs at
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temperatures below the temperatures of pure phases. Depending on mass composition and
on Zr content in the alloy, zirconium melting can occur at temperatures much lower than
the boiler temperature (below 1300 ◦C) [62]. Zircon was also identified in a spherical form
of glassy material with mixed composition. Among the elements, there was also Hf, whose
geochemical properties are similar to those of zirconium, and therefore its occurrence in
nature is most often considered against the background of the latter (Figure 10). These
elements were accompanied by Sc, which is probably didactically related to Fe2+.
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Such components, trapped in the glassy phase, can only be released by dissolving the
glassy material. In sample 920, the elemental complex P-Y-Zr-Nb-O was also observed,
indicating the presence of xenotime of mixed composition (Figure 11).

While analyzing the distribution of the remaining critical elements, it was observed
that Ge most often formed associations with many elements, including Mg, As, Si, and W.
Various views have been put forward regarding the reasons for the concentration of Ge
in coals. It is partly of a biochemical nature, but the processes of secondary Ge sorption
by the organic matter of coals are also involved [38,67]. Cobalt was generally observed in
association with Fe, probably occurring within the crystal lattice of iron oxides (Figure 12A).
Therefore, higher enrichment coefficients of this element were recorded for the magnetic
fraction of these ashes [52]. Similar observations apply to Nd.

A frequent coexistence of W with SiO2 and aluminosilicates is thought-provoking
(Figure 13). Extensive studies of ashes and slags by Querol et al. [68] showed the affinity of
W mainly to unburned carbon particles, to iron oxides, and to carbonates. Thus, this element
was probably captured by the aluminosilicate alloy during combustion, in the process of
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mullitization of the clay substance present in coal. The silica separated in the course
of metakaolinite decomposition and the transition phase of the disturbed structure and
approximate composition of 2Al2O3SiO2, partly entered the liquid phase, and was partly
transformed into amorphous SiO2, and the excess crystallized in the form of cristobalite. It
was at that stage that W could be captured and retained inside the SiO2 and Al-Si of the
glassy material.

4. Conclusions

The research carried out as part of this work allowed for formulation of the follow-
ing conclusions:

• The content of critical elements in ashes from Polish power plants is similar to that of
world averages, and in the case of class C ashes, it is exceeded for most REY. It can
therefore be assumed that lignite ashes should be given priority in further research on
the recovery of rare earth elements from them;

• The content of REY and that of other critical elements in hard coal ashes increases
with decreasing particle size. Despite the increase in the concentration of REY in
progressively finer grain classes, the value of their world average, in the class below
20 µm, was not exceeded. High enrichment factors relative to Clarke (1.5; 1.9; 2.5)
were noted only for three elements not belonging to the group of lanthanides: Co, Ga,
and V. Taking into account the economic aspect, in order to recover these elements, it
is important that the share of fine grains in the ashes should be high;

• In lignite ashes, high coefficients of enrichment relative to Clarke (2.2; 1.62; 1.87) were
obtained in the class below 45 µm for Y, Nd, and Co. As demonstrated in previous
studies, better enrichment effects for these elements are obtained by magnetic separation;

• Both the studies of the chemical composition of FA and microscopic observations
combined with EDS microanalyses demonstrated a relationship between the concen-
tration of rare earth elements and the presence of aluminosilicates. A strong positive
correlation was reported between REY and the Al2O3 content, with r = 0.94. Therefore,
it can be assumed that the extraction of REY from the aluminosilicate glass fraction
will allow for the recovery of a significant part of these elements present in the ashes;

• The management of FA brings added value both for the environment and the economy.
On the one hand, ashes do not have to be stored, so they do not affect the environment.
On the other hand, they can be a source of valuable critical raw materials, which are
often expensive to produce. Therefore, it is necessary to continue research on the
content of critical elements in coal and its combustion products in order to identify the
most promising materials for extraction.
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Abbreviations

FA Fly ashes
REE Rare earth elements
REY Rare earth elements and yttrium
LREY Light group (La, Ce, Pr, Nd, Sm)
MREY Medium group (Eu, Gd, Tb, Dy, and Y)
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HREY Heavy group (Ho, Er, Yb, Lu)
EDS Energy Dispersive Spectroscopy
SEM Scanning Electron Microscope
LOI Loss on ignition
EF The enrichment factor
EFc The enrichment factor of the component compared to the Clark
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