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Abstract: This paper presents a comprehensive study of model-based fault diagnosis (FD) and a
fault-tolerant control (FTC) scheme for sensor and actuator faults of turbojet engines. For actuator
FD, an unbiased estimation scheme with a modified Kalman filter (KF) was developed. For sensor
FD, two approaches, the generalized likelihood ratio with robust KF and the pseudo actuator model
with modified KF, were investigated in a comparative study. For fault detection and isolation, test
statistics are commonly employed to detect fault behavior. For FTC, integral-type sliding mode
control using control reconfiguration and the reconstruction of the sensor signal was adopted with
the FD schemes. The effectiveness of the employed methods was demonstrated in this study and
discussed with numerical simulations.
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1. Introduction

The safety and reliability of turbojet engines are dependent on the engine control status.
Major parts in the engine control system are vulnerable to faults or failures. Fault-tolerant
control (FTC) with fault diagnosis (FD) for impaired conditions of actuators and sensors
can prevent or minimize this issue. Here, FD stands for fault detection and isolation (FDI)
by a certain threshold level regarding the onset, as well as the location and identification of
severity of any fault [1].

A significant amount research has been conducted on aircraft engine systems regarding
the methodology of FD and/or FTC [1–8]. Active FTC (AFTC) requires FD information
on the faults of engine parameters. In the FD of the engine system, actuator and sensor
faults are addressed using the state and the parameter estimations [2,5–8], respectively,
whereas engine component faults affect performance parameters such as efficiency and
mass flow rate, which are estimated from the gas path analysis (GPA) [3,4]. Jinquan et al. [3–
5] proposed several methods for FD and FTC of aircraft engines. FTC with proper FD
can maintain performance even if an actuator or sensor is faulty. It may allow the faulty
actuator or sensor to be replaced with analytical redundancy or physical replacements
using FDI, guaranteeing stability and saving on operating costs [5,8].

In model-based FD and FTC methods, the robust observer [2,4,6,8–18] and Kalman
filter (KF), as stochastic observer methods, are the most well-known [3,7,19–25]. In FTC
methodology, passive-type FTC [8,9,14] using system robustness irrespective of FD is
suitable for a limited range of faults. AFTC can address a wide range of faults, including
significantly unanticipated faults [5–7,10–13,15–20,25]. For FTC laws, sliding mode control
(SMC), associated with sliding mode observer (SMO), is regarded as a powerful technique
due to its robustness and ability to cope with disturbances and model uncertainties [5,6,11–
18]. Edwards et al. [11–13] built frameworks for FTC with SMC by developing an adaptation
mechanism for actuator faults and robust fault reconstruction for sensor faults. Ebrahim
et al. [14] proposed sensor FD and FTC with SMO, utilizing an optimization of the H∞
technique, which is similar to an adaptive control technique [8,15].
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In aircraft engine control, an integral action in SMC ensures rapid and accurate follow-
ing of feedback signals to a reference input. This increases the robustness of the system by
moving instantly to a system state on a sliding manifold, such that it spans the entire state
space over the switching hyperplane by eliminating the reaching phase properly [13,15–18].
Regarding the integral-type SMC, Shen et al. [17] proposed a compensation scheme without
controller reconfiguration for actuator faults, and Yabin et al. [18] proposed an estimation
technique for an actuator fault deviation with augmented SMO for nonlinear systems.

For a critical sensor such as the RPM sensor in the control loop, the FD scheme that
supervises the loop with FDI, whether an analytical redundancy or physical redundancy is
activated, provides the information in the FTC that reconfigures the actuator or reconstructs
the sensor signal [7,17,25–27]. Prakash et al. [25] presented a compensation scheme using
the FD technique as a generalized likelihood ratio (GLR) with KF for sensor and actuator
faults. Edoardo et al. [26] investigated switching the supervisory behavior of actuator faults
and the feedback loop behavior for sensor faults. Hao et al. [27] proposed a supervisor
using a pre-computed controller without an FDI scheme.

Although the works described here apply to aircraft engines and other areas, most
were limited to FD or FTC in actuator or/and sensor faults. An integrated study of FD
and FTC in actuator and sensor faults is still required. In this paper, based on the existing
research, a comprehensive study of FD and its applications to FTC in real engines is
presented. For AFTC, using a model-based method, modified and robust KF schemes
were employed with statistical analysis of the fault occurrence, which is an advantage of
KF over SMO for achieving accurate fault estimation. Here, other than those stochastic
estimators such as extended KF, unscented KF, particle filter, and some generalized filters
that are efficiently utilized for a nonlinear model, KF was adequately adopted regarded as
an effective estimation scheme for a linear model employed in this work [24].

For FD schemes including FDI using test statistics, the actuator fault is addressed as an
unbiased estimator with a state vector, and the estimations of sensor faults are performed using
two approaches: GLR [25,28] and the pseudo actuator model (PAM) [5,12–14,16]. Here, for
FTC laws, the integral-type SMC-based AFTC was adopted with an accommodation scheme
for the actuator fault. For the FTC of the fault of RPM sensors in an SMC control loop, the
supervisory approach was employed in conjunction with the FD scheme.

The rest of this paper is organized as follows. Section 2 presents the engine dynamics
and its state space model. Section 3 investigates FD methods and integral-type SMC for
FTC schemes of actuator and sensor faults in the control system of the engine. Section 4
demonstrates the simulation results to validate the effectiveness of the employed methods
and schemes for this engine. Section 5 draws conclusions related to this work.

2. Mathematical Model of the Engine Control System

The target model was a one-spool turbojet engine with a 4500 N thrust level, which is
shown in Figure 1a. Its mathematical model, which precisely reflects the real engine, was
employed from the component characteristic data maps developed by the GPA with the
component level model (CLM) [3,4,29], which is shown in Figure 1b. Detailed descriptions
of the overall cycle analysis are omitted for brevity. Some primary relations peculiar to the
turbojet engine are presented here.
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Figure 1. Schematic of the turbojet engine cycle analysis: (a) engine configuration; (b) process of gas 
path analysis (GPA) with component level model (CLM); (c) process of overall cycle analysis. 

  

Figure 1. Schematic of the turbojet engine cycle analysis: (a) engine configuration; (b) process of gas
path analysis (GPA) with component level model (CLM); (c) process of overall cycle analysis.
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2.1. Steady State Thermodynamic Cycle Analysis of the Turbojet Engine

From the compressor characteristic map, the surge margin (SM) with a pressure ratio
(P2/P1), efficiency (η1−2), and normalized mass flow rate (

.
m0∗ =

.
m0
√

θ/δ), is defined by

Kp =

[ .
m0 ∗ /(P2/P1)

]
op[ .

m0 ∗ /(P2/P1)
]

sp
(1)

where θ = T2/288.15, T2 in K, δ = P2/101.33, P2 in kPa,
.

m0 denotes a mass flow rate,
and subscripts “op” and “sp” denote the operating point and surge point, respectively.
From the burner map, the fuel air ratio ϕ is given with enthalpy increase ∆H(T2, T3), which
is a function of T2 and T3, and fuel lower heating value LHV(T3), which is a function of T3,
expressed by

ϕ =
∆H(T2, T3)

ηb LHV(T3)
=

f ′ (T2, T3)

ηb
(2)

where the superscript ′ denotes a stoichiometric combustion process, T3 and P3 are ob-
tained from the relations with normalized mass flow rate (

.
m3∗ =

.
m0(1 + ϕ)

√
T3/P3) and

pressure drop in combustor, and the burner efficiency ηb is determined experimentally with
aerodynamic load Ω, such that

Ω =

.
m0

P31.8 A3D30.75 exp(T3/30)
(3)

ηb = 1−Ω/100 (4)

where A3 and D3 are the combustor section area and combustor linear diameter, respectively.
From the turbine map, T4 and P4 are obtained from the relations with normalized mass flow
rate (

.
m3∗ =

.
m0(1 + ϕ)

√
T4/P4), corrected rotational speed N∗ = N/

√
T4, and expansion

ratio P3/P4.
In a relatively a small size engine such as the turbojet engine, the boundary layer

during passing through the compressor blades influential as it can change the engine
performances. Hence, the compressor efficiency associated with relating parameters is
corrected with the Reynolds effects, such that

ηc 1−2 = ηp 1−2 re f + Reop/Rere f

(
1− ηp 1−2 re f

)
(5)

ηp 1−2 re f = log
(

1 + η1−2 re f ∆T2 re f /T2 re f

)
/ log

(
1 + ∆T2 re f /T2 re f

)
(6)

∆T2 re f = T2 re f /η1−2 re f

[
(P2/P1)re f

γre f −1
γre f − 1

]
(7)

where subscript “ref ” represents the reference condition as sea level, 288.15 K, and 101.33 kPa,
and Rere f and Reop denote the Reynolds numbers at the reference condition and the op-
erating one, respectively. The turbine efficiency is corrected by the corresponding overall
efficiency (ηc 1−2 × η3−4), for which the thermodynamic cycle is reiterated with other
performance parameters.

2.2. Transient Thermodynamic Cycle Analysis of the Turbojet Engine

Based on the steady state thermodynamic cycle analysis, the transient thermodynamic
characteristics of the power balance, energy conservation, and flow matching conditions in
each engine component were written in time-dependent forms, respectively, as follows:

.
m0 ∆H1−2 =

.
m3 ∆H3−4 + (2π/60)2 IR

dN
dt

(8)
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.
mo|n Ho|n =

.
mi|n Hi|in − Cv, o|nPo|n Vn/ (R To|n)

dTo|n
dt

(9)

.
mo|n =

.
mi|n −Vn/ (ρnR To|n)

dTo|n
dt

(10)

where subscripts “n”, “o”, and “i” represent the component number (shown in Figure 1a),
the component output, and the component input, respectively, and IR, R,

.
m, P, T, N, H, V,

Cv, and ρ are the polar moment of inertia of the rotor, universal gas constant, mass flow rate,
total pressure, total temperature, RPM, enthalpy, component volume, specific heat at a con-
stant volume, and density, respectively. As shown in Figure 1c, which describes the process
of the overall cycle analysis, substituting the transient thermodynamic characteristics into
the steady state thermodynamic cycle analysis, the engine dynamic equations interrelated
with CLM were acquired from the computation in every time step until

∣∣Kpc − Kpi
∣∣ < ε,

(Kpi is initial surge margin, Kpc is new calculated one, and ε is an admissible accuracy),
with the condition Kp > 1, as follows

.
xt = f (xt, ut) (11)

yt = h (xt, ut) (12)

where subscript t is time, xt= [RPM, compressor exit pressure (P2) compressor exit tempera-
ture (T2) turbine inlet pressure (P3) turbine inlet temperature (T3) turbine exit pressure (P4)
turbine exit temperature (T4)] T ∈ R n,yt= [RPM P2, T2, P4, T4] T ∈ R p and ut = fuel input
∈ Rm represent the state vector, measurement vector, and control input vector, respectively,
and, m, n, and p denote the corresponding dimensions (here, m = 1, n = 7, p = 5) of ut, xt
and yt, respectively.

Note that the control input ut is a fuel input driven by an actuator of engine fuel
systems. Therefore, ignoring a time lag between the actuator and the fuel system, the
actuator controls directly the fuel injected to the burner, which determines the operation
condition of the state vector and the performance.

2.3. State Space Model of the Engine Control System

At an operating point xO, uO, substitutions of the perturbed values, while ignoring
higher order terms ∆ xt = xt − x0, ∆

.
xt =

.
xt −

.
x0, ∆ ut = ut − u0 and ∆ yt = yt − y0, into

dynamic Equations (11) and (12), resulted in the following linear models:

∆
.
xt = A ∆ xt + B ∆ ut (13)

∆ yt = C ∆ x + D ∆ ut (14)

where subscript t is a time, A ∈ R n × n, B ∈ R n × m, C ∈ R p × n, and D ∈ R p × m are
Jacobian matrices, which can be efficiently computed from the scheme as in [30], such
that applying the conditions for constant input ∆ u = 0 and equilibrium ∆

.
x = 0 to

∆x = A −1 ∆
.
x−A −1B ∆ u in Equation (13), respectively, A and B are computed from

A ≈ ∆
.
x/∆ x and A −1B ≈∆ x/∆ u, respectively, and from the constant input ∆ u = 0 to

∆ y = CA −1 ∆
.
x−CA −1B ∆ u +D ∆ u in Equation (14), C and D are computed from

CA −1 ≈ ∆ y/∆
.
x and D ≈ ∆ y/∆ u − C ∆ x/∆ u, respectively.

For real implementations, Equations (13) and (14) were transformed to the discrete
state space form with time index k, omitting ∆ for notational simplicity, and reflecting noise,
as follows [24]:

xk+1 = Φxk + Γuk + wk (15)

yk = Cxk + Duk + vk (16)
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where Φ =
∫ TS

0 eA τdτ ∈ R n × n, Γ =
∫ TS

0 eA τ B dτ ∈ R n × m, TS is the sampling
period, wk ∈ R n ∼ N(0, Q k) and vk ∈ R P ∼ N(0, R k) are uncorrelated zero-mean
Gaussian noises of process and measurement, respectively, and Q k and R k are the process
noise covariance matrix and measurement noise covariance matrix, respectively.

3. FD and Its Applications to FTC

Figure 2 shows the proposed concept of the FTC with FD for the turbojet engine
system. The following assumptions were considered for analytical convenience.
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Assumption 1. Only one fault in each of the actuators and sensors occurs sequentially in time,
which is realistic in practical situations. Therefore, the FD and FTC of the actuator and the sensor
are addressed separately.

Assumption 2. Provided that the mathematical model of the turbojet engine is described precisely
and the fault estimations reflecting process noise handle some of the uncertainties of the system, we
strongly assume that the modeling error and disturbance effect are not considered.

3.1. FD and FTC of the Actuator

For actuator faults, the multiplicative fault model with the control effectiveness of the
control input in Equations (15) and (16) was introduced [10,19–21,25]. In order to estimate
the unknown loss of the control effectiveness due to the actuator fault, we managed βk as
an additive mechanism in the control parameters, as follows:

xk+1 = Φxk + Γuk + Υ f ,kβκ + wk (17)

yk = Cxk + Duk + Θ f ,kβκ + vk (18)

where βκ = diag[β1
k, β2

k, . . . , βm
k ], 0 ≤ βi

k ≤ 1 (0: no fault, 1: completely fail, partial fault
elsewhere) is the i-th component of βκΥ f ,k = −ΓUk ∈ Rn×m, Υ f ,k = −ΓUk ∈ Rn× mΘ f , k =

−D Uk ∈ R p × m and Uk = diag[u 1
k , u 2

k , . . . , u m
k ], where u i

k is the i-th component of the
control vector.
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3.1.1. Actuator FD with Modified KF (Estimation of Control Effectiveness)

In the diagnosis of a faulty control parameter, two solution approaches have been used:
a bias estimator that estimates an input fault as a parameter-wise two-stage KF [19–21], and
an unbiased estimator that treats an input fault as a state vector [22,25]. In this work, the
unbiased estimator approach with the control effectiveness factor is employed as a random
walk process with an additive noise wβ,k ∈ Rm , such that [19,21,25]

βκ+1 = βκ + wβ, k (19)

and combining these into a state parameter reduces the one state vector represented by

xxβ, k+1 = Φ xβ, k xxβ, k + Γxβ uk + wxβ, k (20)

yk = Cxβ, k xxβ, k + D uk + vk (21)

where xxβ, k = [xk βk]
T , Φ xβ, k =

[
Φ Υ f , k

0 m × m I m × m

]
, Γxβ = [Γ 0 m × m ] T , wxβ, k =

[
wk wβ, k

]
T ,

Cxβ, k =
[
C Θ f , k

]
.

KF activates as a tracking filter to observe an unknown state parameter in Equations
(20) and (21). It normally provides an optimal estimate of the state; however, if the true state
is significantly different from the normal status, i.e., in the presence of an actuator fault, the
state estimate may produce a poor accuracy. Such an error is tuned to forget [19,20,24]. The
estimate scheme by KF is modified with tuning factor λ|k, as follows:

Pxβ, k | k−1 = λ|k Φ xβ, kPxβ, k−1 | k−1 Φ T
xβ, k + Qxβ, k (22)

Kk = Pxβ, k | k−1 C T
xβ, k (C xβ, kPxβ. k | k−1 C T

xβ, k + Rk)
−1

(23)

x̂xβ, k | k−1 = Φ xβ,k x̂xβ, k−1 | k−1 + Γxβ uk−1 (24)

x̂xβ, k | k = x̂xβ, k | k−1+ Kk ( yk − C xβ,k x̂xβ, k | k−1 − D xβuk−1) (25)

Pxβ, k | k = (I− KkC xβ, k )Pxβ, k | k−1 (26)

where E(wxβ, k) = 0 and E(vk) = 0, Qxβ, k = E(wxβ, k w T
xβ, k), and Rk = E(vk v T

k ) are
uncorrelated zero-mean Gaussian process and measurement noise sequences, process noise
covariance and measurement noise covariance matrices, respectively, and E[·] denotes a
statistical expectation.

Remark 1. A proper value of λ|kwill give the filter credence to the measurements with the process
noise. Analytical bases to adjust the value have been suggested in [19,21,24]. However, its
applications and accuracy require further study. In this work, as a direct approach, λ|k was tuned
empirically with numerical simulations to ensure a good result.

For actuator FDI, the hypothesis test for whether the fault occurs is employed. The
test statistics, indicating a decision measure to determine the fault occurrence, are as
follows [19,20]:

d i
β, k =

k

∑
j=k−L+1

(β̂ i
j )

2
/P i

β o f xβ, j|j

H1
≥
≤

H0

l i
β (27)
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where β̂ i
j is the i-th component of the fault estimate β̂κ , L is the window length, H0 is the

null hypothesis and means no significant fault, H1 is the alternative hypothesis and means
a significant level of loss of control effectiveness, and l i

β and P i
β of xβ,j|j are the decision

threshold and the process covariance of the control effectiveness in the i-th input channel
in Pxβ, k | k, respectively.

Remark 2. The threshold determination is dependent on the significance level (0 <α< 1), which
is defined by (P

{
χdβ

2(= d i
β,k) > χlβ

2(= l i
β)
}

= α) of the decision reliability used with the χ2

test. The choice of decision threshold is dependent on the window length [19,20,23]. It is a trade-off
between detection delay time and estimation accuracy. As the window length increases (decreases),
the estimation accuracy and the probability of a missed detection increase (decrease), but the detection
speed and the probability of a false alarm decrease (increase).

3.1.2. Actuator-Fault-Tolerant SMC with Integral Action [6,11–13]

We introduced a state er ∈ R q, (q ≤ p) for an integral action with output feedback in
the SMC loop [13,16–18]:

er =
∫ t

t0

(yr − yd) dτ (28)

where yr ∈ Rq is the reference input vector and yd = Cdx,, where Cd ∈ R q × n represents
the output distribution matrix that indicates the feedback signal components projected to
the control input. Then, augmenting the additional state with

.
er = yr − Cdx to Equation

(20) reduces it to the discrete state space form, as follows:

x̃k+1 = Ã x̃k + B̃ ũk (29)

where x̃k =
[
er,k xk

]
T , ũk =

[
yr,k uk

]
T , Ã =

[
0q × q −Cd
0n × n Φ

]
and accommodating the loss

of control effectiveness with the estimated value β̂ k, such that B̂ =

[
Iq × q 0q × m

0n × q Γ f̂k

]
, where

f̂k = I m × m − β̂k.
Design of the sliding surface: We applied the new coordinates defined by zk = Tr x̃k =

[x̃1, k x̃2, k]
T , where Tr ∈ R (n+q) ×(n+q) is the orthogonal matrix that is computed from

QR decomposition of B̃ ∈ R (n+q) ×(n+m) . Then, Equation (29) was partitioned into the
controllable canonical form with x̃1, k ∈ R n and x̃2, k ∈ R q, such that:

x̃1, k+1 = Ã11 x̃1, k + Ã12 x̃2, k + Br yr, k (30)

x̃2, k+1 = Ã21 x̃1, k + Ã22 x̃2, k + B̂2 uk (31)

where Br =
[
Iq × q 0(n−q) × q

] T , B̂2 ∈ R q × m is the accommodated component of the
matrix Tr B̂, and Ã11 ∈ Rn × n, Ã12 ∈ R n × q, Ã 21 ∈ R q × n and Ã22 ∈ R q × q are the
components of the system matrix Tr Ã Tr

T .
Based on this coordinate system, we considered the sliding surface sk ={

x̃k ∈ R n+q : Sx̃k = S Tr
Tzk ≡ Sr yr, k

}
, where S Tr

T ,
[
S 1 S 2

]
, S1 ∈ Rn × n , S 2 ∈

R q × q , and Sr ∈ R q × q are design parameters to be determined. Here, without loss of
generality, S 2 = Iq × q . Then, we imposed a condition for a controller to induce an ideal
sliding motion, i.e., sk = S1 x̃1, k + x̃2, k = 0 yielded the reduced motion of the system, which
took place on the sliding surface as follows:

x̃1, k+1 = (Ã 11 − Ã 12 S1) x̃1, k (32)
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where for the available hyperplane, the matrix pair (Ã11, Ã12) should be completely con-
trollable, for which the necessary condition is rank

[
z I− Ã11 Ã12

]
= n− q for all z.

Remark 3. The values S1in Equation (32) and Srin the set point motion on the hyperplane can be
obtained from the methods of a minimization of a cost functional with quadratic integrand or a pole
assignment, among which the former is selected in this work, which is described in Appendix A.

Design of the control law: We defined a change in coordinates with states and sliding

surface by [x̃1 s] T , Ts[x̃1 x̃2]
T in Equations (30) and (31), where Ts =

[
I 0

S 1 S 2

]
=[

I 0
S 1 I

]
with the designed value of S 1. Then, the coordinates of the switching hyperplane

associated with the states could be represented by the following:

x̃1, k+1 = A11 x̃1, k + A12 sk + Br yr, k (33)

sk+1 = A21 x̃1, k + A22 sk + L̂k uk + S1 Br yr, k (34)

where A11 = Ã11 − Ã12S1 ∈ R n × n , A12 = Ã12 ∈ R n × q , A21 =S1 Ã11 + Ã21 −
Ã22 S1 ∈ R q × n, A22 =S1 Ã12 + Ã22 ∈ R q × q and Λ̂κ =S B̂2 ∈ R q × m .

Based on this coordinate system, the control law was developed, consisting of two
parts:

ûk = uL,k + uN,k (35)

where the linear part uL,k induces the nominal system that is stabilized by restricting it
to the sliding manifold, and the nonlinear term uL,k develops a discontinuous switching
action during the reaching phase.

The liner part is designed by substituting the condition on the sliding surface
.
s =

φ (s− Sryr), where φ is chosen as satisfying the Lyapunov equation P1 φ + φ T P1 = − I
for any P1 > 0, and accommodating the loss of control effectiveness with Λ̂κ , which is a
nonsingular diagonal matrix, as follows:

uL,k = Λ̂k
−1
[
−A21 x̃1,k − A22 sk − S1Br yr,k + φ (sk − Sryr, k)

]
= − Λ̂κ

−1
[
(S Ã− φ S) x̃k + (φ Sr + S1 Br ) yr, k

] (36)

The nonlinear part uN,k of the sliding mode controller was designed as follows:

uN,k =

 −ρk Λκ
−1 P1 (sk−Sryr,k)∥∥∥P1 (sk−Sryr,k)

∥∥∥ i f sk − Sryr,k 6= 0

0 otherwise
(37)

where ρk is a scalar function to be chosen for adjusting a compensation of unknown
uncertainties.

Remark 4. For control activity of the linear part shown in Equation (36), the first term governs the
primarily control action, which is the feedback control gain, and the second term is the feedforward
control gain for the reference input. The linear part overcomes most of the uncertainties in the
well-designed integral controller. Furthermore, if the actuator fault is well-estimated or in fault-free
condition, the nonlinear part can be ignored [6].

Theorem 1. The stability of the motion restricted to the sliding surface is guaranteed quadratically
with the condition satisfying P2 A11 + A11

T P2 = − I for any P2 > 0, and provided that ‖yr‖ <
‖x̃1‖/(2λmax(P2)) holds.
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Theorem 2. The stability of the motion in the reaching phase is guaranteed under the premise that
the scalar function ρt holds the following condition:

ρt ≥
‖s ‖

2‖P2 s ‖‖Sr yr‖+ γ (38)

where arbitrary constant γ ≥ 0 and the reference input ‖Sr yr‖ on each hyperplane are bounded.

The proofs of Theorems 1 and 2 are described in Appendix B.

3.2. Sensor FD and Sensor-Fault-Tolerant SMC

Considering the control system represented by a state space equation with additive
sensor faults in Equation (16), as follows:

xk+1 = Φ xk + Γ uk + wk (39)

yk = C xk + D uk + µ i(t) ei σ(k− t) + vk (40)

where µi(t) ∈ R p represents the additive sensor fault occurring at time t in the i-th sensor,
which is unknown but bounded ‖µi(t)‖ ≤ δ, where δ is a known function, ei is the unit
vector to the i-th fault type and location, and σ(k− t) is the unit step function, defined as
1 if k ≥ t and 0 if k < t. Note that in the engine control system, RPM, which is directly
related to a fuel input, is used as the feedback sensor in the control loop.

3.2.1. GLR Approach with Robust KF

While the KF gives good estimations of the measurement parameters under normal
conditions, the parameter estimations become poor in faulty conditions, which is similar
to the actuator fault. In this work, a robust KF algorithm [23], which can give an accurate
parameter estimation against a sensor fault, was introduced, such that the scale factor Sk
was adaptively given in innovation covariance, as follows:

Px,k | k−1 = Φ Px,k−1 | k−1Φ
T
+ Qk (41)

x̂ k | k−1 = Φ x̂ k−1 | k−1 + Γ uk−1 (42)

ek = yk − C x̂ k | k−1 − Duk−1 (43)

Sk =
(

εk
Tεk − tr (C Px.k | k−1 C

T
)
)

/tr (Rk) (44)

Py, k = C Px. k | k−1 C
T
+ Sk Rk (45)

x̂k | k = x̂k | k−1 + Px, k | k−1 C
T

Py, k
−1 εk (46)

Pk | k = (I− Px, k | k−1 C
T

Py, k
−1 C ) Pk | k−1 (47)

where tr(·) denotes the trace of the matrix, E(wk) = 0 and E(vk) = 0, Qk = E(wk w T
k )

and Rk = E(vk v T
k ) are uncorrelated zero-mean Gaussian process and measurement noise

sequences, and process noise covariance and measurement noise covariance matrices, re-
spectively.
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Remark 5. When there is no sensor fault, Sk = 1 is the conventional filter. In sensor faults, the KF
gain is adapted by adjusting Sk for estimation robustness. A higher Sk causes a smaller KF gain in
order to reduce the covariance of the faulty innovation sequence [23].

For sensor FDI, the test statistics to confirm the occurrence of a sensor fault at time t in
the i-th sensor were employed in the time interval [t, t + L], which followed a central χ2

distribution with L + 1 degrees of freedom, as defined by the following:

ei, t =
t+ L

∑
k = t

εk
T Py, k

−1 εk

H1
≥
≤

H0

lT, i (48)

where εk and Py,k are the innovation and the innovation covariance shown in Equations
(43) and (45), respectively, and lT,i is the decision threshold in the i-th sensor.

Sensor FD with GLR algorithm: The FD scheme to find the fault magnitude and the
time of occurrence in the GLR algorithm was well-described in [25,28]. For online FD with
the GLR algorithm, the scheme associated with intermediate parameters was developed
with the KF, which was subsequently generated in the moving window.

Considering the fault occurrence µi(t) with an independent function of the linear
regression parameter of the state estimates and the innovations, x̂k|k(t) = µi(t)Jk(t) + x̂(t),
εk(t) = µi(t) Gk(t) + ε(t), where t is the time of the fault occurrence, x̂k|k(t) and εk(t), x̂(t)
and ε(t) are the estimated values of the states and innovations of the fault occurrence and
with no fault, respectively, and Gk(t) and Jk(t) represent the fault signature matrix and
linear regressor, respectively. Then, the test statistics to detect fault occurrence could be
obtained from the recursive least square scheme, as follows:

li[t, µi(t)] =
L
∑

t=k+1

[
ε(t)T Py,k

−1ε(t)− (ε(t)− µi(t) Gk(t))
T Py,k

−1(ε(t)− µi(t) Gk(t))
]

= bi(t) T ai(t)
−1 bi(t)

(49)

which used, for k ≥ t

ai(t) = ei
T

t+L

∑
k=t

Gk(t) Py,k
−1 Gk(t) Tei,bi(t) = ei

T
t+L

∑
k=t

Gk(t) Py,k
−1 εk(t) (50)

where εk(t) is the innovations on a fault occurrence and Gk(t) is obtained from the recursive
process, such that we can compare the expected values of δk(t) = x̂k|k(t)− x̂(t) and γk(t) =
εk(t)− ε(t), which are defined by E [δk(t)] = µi(t) Jk(t) ei, and E [γk(t)] = µi(t) Gk(t) ei ,
respectively, with those from the KF scheme, for k ≥ t, as follows:

E [δk(t)] = [I− Kk C ]Φ E [δk−1(t)] + Kk µi(t) ei σ(k− t) (51)

E [γk(t)] = −C Φ E [δk−1(t)] + µi(t) ei σ(k− t) (52)

where Kk = Px, k | k−1 C T Py, k
−1 is the Kalman gain. Then, Gk(t) and Jk(t) for a hypothe-

sized fault could be computed recursively during the interval k ∈ [t, t + L]

Gk(t) = I− C Φ Jk−1(t) (53)

Jk(t) = Φ Jk−1(t) + Kk Gk(t) (54)
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The estimations of the i-th sensor fault occurrence µ and the corresponding time k
were determined from the optimal test statistics as follows:

µ̂i(k̂) = argmax
µi

li[k, µ̂i(k)] = ai(k̂)
−1

bi(k̂) (55)

k̂i = argmax
k

li[k, µ̂i(t)] (56)

Sensor-fault-tolerant SMC: The FDI scheme in sensor FD replaces the faulty sensor
by switching over to another available sensor [15–27]. If the RPM sensor is faulty, a
compensation scheme is employed in the SMC loop. The SMC with integral action leads the
measurement output to the reference input, resulting in an offset from the reference input.
Thus, the modification to eliminate this offset in the i-th faulty sensor is straightforward,
such that the faulty measured output yk is reconstructed in the following form:

yc,k = yk − µ̂i(k̂) ei (57)

where yc,k represents the compensated or corrected measurement vector.

Remark 6. If the estimation is accurate, the feedback sensor enters an unbiased state in the controller,
whereby the reconstruction of the measurement output provides a redundant activity. In that case,
this sensor FD could be used as a virtual sensor without the need for FDI activity [2,4,5,12,13,16].

3.2.2. PAM Approach with Modified KF

Provided that the sensor is a low pass filter, we can introduce a new state x f that is an
alternative variable of y, satisfied as follows [5,12–14,16]:

x f , k+1 = −A f x f , k + A f yk

= −A f x f , k + A f C xk + A f D uk + A f τk σ(k− t)
(58)

where A f ∈ Rp × p is a design parameter, typically denoted as an inverse of the time
constant, which is a positive and stable matrix. Combining Equations (39) and (58) with
the sensor fault term denoted by τk, an augmented state-space system of order n + p can be
built as follows:

z f , k+1 = A f z f , k + B f uk + F τk + w f , k (59)

where z f =
[

x x f

]
T , A f =

[
Φ 0

A f C −A f

]
, B f =

[
Γ A f D

]
T , F =

[
0 A f

]
T , w f , k =[

wx, k wx f , k

]
T .

Sensor FD with PAM: We managed the sensor fault τk as a random walk model with
an additive noise, such that

τk+1 = τk + wτ,k (60)

where wτ,k ∈ Rp represents zero mean Gaussian white noise sequences with known
covariance vectors. Then, combining the additional state that is regarded as the sensor fault
into Equation (59), the augmented state model was constructed in the following form:

xzµ, k+1 = Ã f xzµ, k + B̃ f uk + wzµ, k (61)

y f , k = Cp xzµ, k + A f Duk (62)
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where xzτ =
[
z f τ

]
T , Ã f =

[
A f F
0 I

]
, B̃ f =

[
B f 0

]
T , Cp =

[
Ip 0

]
, Ip =

[
0 I

]
, wzτ,k =[

w f ,k wτ,k

]
T .

The sensor FD was obtained from the modified KF scheme as in the actuator faults
given in Equations (22)–(26). For sensor FDI, the test statistics d i

τ,k were used to indicate
the decision of the fault occurrence, as follows:

d i
τ, k =

k

∑
j=k−L+1

(τ̂ i
j )

2
/P i

τ o f f , j|j

H1
≥
≤

H0

lτ, i (63)

where τ̂ i
j and P i

τ of f , j|j are the i-th components of the fault estimate τ̂k and the i-th compo-

nents of the covariance matrix P i
τ of f with the j-th diagonal component, respectively, and

lτ, i is the decision threshold in the i-th sensor.
Sensor-Fault-Tolerant SMC: The faulty measured output yk was reconstructed as the

compensated measurement vector yc, k, such that:

yc, k = yk − τ̂k (64)

Remark 7. The matrix A f in PAM, which is conveniently in diagonal form, is a design parameter to
adjust the stability and the transient performance, whereas the window length in the GLR approach
determines the transient performance irrespective of the stability. For a detection delay, the GLR
approach is slightly more advantageous because the time lag in PAM is inherently defective, which
will be seen from the simulation results.

4. Simulation Result and Discussion

Simulations to determine the effectiveness of the proposed FD and its applied FTC
of the engine were performed at sea level static and under operation conditions of RPM:
27,000 rpm, P2: 3365 Pa, T2: 167 K, P3: 2976 Pa, T3: 871 K, P4: 1643 Pa, and T4: 743 K. Under
these operation conditions, the matrices in the state space model and output distribution
matrix (one feedback parameter with RPM, i.e., q = 1) are given as follows:

A =



4.9 −1025.8 492.3 096.0 −55.1 −39.6 −13.3
171.9 2545.0 −6305.5 −15, 076.0 1, 681.8 960.8 214.6
13.7 −134.7 −881.6 118.2 13.0 10.3 7.8
−240.9 50, 836.0 −38, 773.0 −53, 241.0 4494.3 −121.4 7218.7
−10.6 4132.8 −2791.6 −4518.2 −241.5 37.1 78.3
1099.9 −289, 410.0 227, 480.0 308, 400.0 −29, 097.0 −10, 735.0 2011.6
146.1 −39, 549.0 32, 277.0 41, 596.0 3174.6 −456.4 −7663.5


,C =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0



B =
[
−158.1 724.8 −9.48 9164.2 5106.6 −5, 1825 −732.2

] T , D =


−0.3
−0.05
−0.003
−0.02
0.003

, Cd = [1 0 1 × 6]. (65)

In the simulations, the time step was 0.01 s, the window length was 5, and the RPM
command of two step inputs was scheduled as 27,000→ 28,000→ 27,500 at 2 s and 15 s,
respectively. For the noise characteristics, Gaussian noise with zero mean and standard
deviations of 0.0004 (percent nominal value) were imposed equally on the process and the
measurements. The design parameters were chosen with simulations of λ k = 0.9, which
was trially adjusted, Q k = diag[ 1 0.4 I 1 ×7 ], A f = 0.45I 5× 5, ρ t = 1 and φ = −6000,
which were adjusted within the design limits. The threshold levels in FD are commonly
chosen as 1000.
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4.1. FD and FTC for an Actuator Fault

In this simulation, actuator faults were arbitrarily imposed as two steps with 50%
and 20% losses of control effectiveness at 7 s and 23 s, respectively. The Gaussian noise
in the control effectiveness factor was empirically chosen with a zero mean and standard
deviation of 0.02 (% fault value).

Figure 3a,b presents the effectiveness of the proposed FD method by showing good
tracking performances with a small detection delay of FDI, as shown in the magnified
views. Estimation deviations associated with very small detection time delays (about 0.01
s) between the estimated value and the real fault can be seen in the figures, which show
the transient overshoots such as outliers. These outliers are unavoidable because complete
synchronous detection without time delay is impossible in practice, which reflects the
control reconfiguration of FTC. Figure 3b represents the FDI performance, showing that
the test statistics value far exceeded the threshold value, and that its detection delay at the
first fault (see the magnified view) was negligible. In this case, the significance level was so
small that the possibility of a false alarm H1 was nearly zero.
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(d) RPM in the SMC loop; (e) response in the sensor (P4 ); (f) response in the sensor (T4 ).

In Figure 3c–f, the proposed FTC using SMC was compared with a well-designed
conventional proportional-integral controller (PIC) that is activated following the RPM
signal to RPM demand without a reconfigurable scheme for the actuator fault, where the
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proportional and integral gains of the RPM feedback in the control loop are empirically
chosen as a simple approach by numerical simulations, as 8.0 × 10−6 and 2.0 × 10−5,
respectively. In the no fault condition, SMC showed more or less better performances with
more rapid responses than PIC. For actuator fault occurrences, FTC with SMC showed
an obviously excellent performance over PIC by accommodating the fault instantly and
accurately, along with some noise suppression. In Figure 3d–f, at the instants of the actuator
faults, PIC resulted in quantitatively large and long fluctuations due to the impromptu
controller output response, as shown in Figure 3c, whereas the proposed FTC showed
robust performances without fluctuations against the faults, which can be identified from
the prompt controller response, as shown in Figure 3c. Here, small switching actions are
thought of as dithering motions in the reaching mode for system robustness, and due to the
outliers induced by the FD process in the transient status, as shown in Figure 3c, and small
overshoots appear as single outliers, as shown in Figure 3e,f. However, the RPM in the
SMC loop shown in Figure 3d indicates no overshoot. The outliers here were trivial, with
no dangerous effect to the system. On the other hand, the heavy fluctuations in Figure 3d–f
due to PIC in the actuator fault may cause dangerous situations, such as a thermal shock or
even a compressor stall, due to an abruptly low surge margin. Output parameters P2 and
T2 were omitted because their trends were similar to P4 in Figure 3f and T4 in Figure 3g,
respectively.

4.2. FD and FTC for Sensor Faults

For the simulations of sensor faults, two bias faults with 2% and 1% from each sensor
were imposed consecutively at 7 s and 23 s, respectively. The FTC against the fault of
the RPM sensor in the SMC loop is separately addressed in Figure 4, and the FD of the
other sensor faults are addressed in Figure 5. Figure 4 shows fairly good FD and FTC
performance for the RPM sensor fault. In Figure 4a, both approaches demonstrate good
results, confirmed by the magnified view. In Figure 4b, both approaches show excellent FDI
capabilities. From the magnified view, the GLR approach achieved a slightly more rapid
detection speed compared with PAM, which can be also found in Figure 4a, associated
with the estimation accuracy. Here, at the instances of the fault occurrences, the estimation
deviations were larger than those of the actuator fault in the FD performances; however, as
indicated in Figure 4c–f, the fluctuations in FTC were small due to attenuation by the signal
reconstruction in the case of an actuator fault with some peaks. Those fluctuations, whose
effects are trivial, are inevitable in FDI during supervisory switching action and if the faulty
sensor is not virtually replaced with the estimated value [5,12]. Figure 4e,f indicates the
FTC results of the measurements. Here, for a comparative study of each method for FD,
the performance measure Jest to estimate accuracy in a quantitative manner proved the
validation of the sensor FTC, defined by:

Jest =

√
1
n

n

∑
i=1

(Real f aulti − Esimated valuei) 2 (66)

where i denotes the corresponding parameter and n is the number of samples. Table 1
presents the computed results from 50 Monte Carlo simulations based on Equation (65). As
shown in the table, the GLR approach resulted in better accuracies over PAM, with minor
differences.
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Table 1. Estimation performance measure Jest.

Method RPM P2 T2 P4 T4 CFI 1

GLR
2.757 0.593 0.036 0.290 0.413 7.1× 10−5

(0.299) (0.061) (0.004) (0.023) (0.017) (3.6× 10−6)

PAM
3.963 0.846 0.051 0.403 0.545 9.6× 10−5

(0.265) (0.054) (0.003) (0.022) (0.024) (4.3× 10−6)

( ): Standard deviation, 1 Controlled Fuel Input.
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The FD results of other sensor faults, except the RPM sensor, are presented in Fig-
ure 5. To save space, all cases of a single fault in each sensor were given in one figure by
omitting figures of the unfaulted sensors. Figure 5a–h shows good estimates of FD and
FDI performances, respectively, as confirmed by the magnified views. In the figures, the
values of the test statistics far exceeded the threshold levels with fast detection speeds,
with no possibility of false alarms. In Figure 5a–d, both approaches demonstrate excellent
estimation results for each sensor fault, which validated the effectiveness of the proposed
FD methods. The GLR approach had a slightly more rapid detection speed and better
accuracy than PAM.

5. Conclusions

In this paper, the methods of the model-based FD and its applications in FTC for
sensor and actuator of the turbojet engine were investigated.

For the mathematical model that precisely reflects the existing turbojet engine, using
the steady state and transient thermodynamic cycle analyses based on the component
characteristic data maps developed by the GPA with the CLM, the state space model in
discrete form for the real implementation was derived. For actuator FD of a multiplicative
fault, based on a stochastic observer as a fault estimation, a modified Kalman filter scheme
associated with an unbiased estimator from a combined random walk model was developed
as a direct approach to identify a fault. For the sensor FD, a comparative study was
performed with two approaches: GLR method with a robust KF scheme that is effectively
used with the measurement parameter itself, and the method using PAM with a modified
KF scheme such that the sensor fault is treated as the actuator fault by replacing a state
parameter using a low pass filter scheme. In the case of FDI, the detection measure decided
by the threshold level with test statistics based on the hypothesis of fault occurrence was
commonly employed in both cases of FDs. For AFTC, the control law was adopted by
integral-type SMC with the FD of the actuator fault and the fault of the RPM sensor in the
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SMC loop. The actuator FD was used for controller reconfiguration by accommodating the
actuator fault, and the sensor FD was used for the reconstruction of the sensor signal by
compensating for the RPM sensor fault. The effectiveness of the employed methods was
proven by numerical simulations that demonstrated fairly good FD and FTC performances
against the actuator and RPM sensor faults, with some noise attenuations. In the FD of
sensor faults, both approaches showed excellent performances, though the GLR approach
obtained slightly more accurate results than PAM.

Future research is expected to extend to the FTC with FD using nonlinear KF or SMO
in nonlinear engine model including uncertainties and disturbances.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

AFTC Active Fault Tolerant Control
CLM Component Level Model
FD Fault Diagnosis
FDI Fault Detection and Diagnosis
FTC Fault Tolerant Control
GPA Gas Path Analysis
GLR Generalized Likelihood Ratio
KF Kalman Filter
LHV Lower Heating Value
PAM Pseudo Actuator Model
RPM Revolution Per Minute
SM Surge Margin
SMC Sliding Model Control
SMO Sliding Model Observer
P pressure
T temperature
N RPM
R universal gas constant
H enthalpy
V component volume
ϕ fuel air ratio
Re Reynolds number
IR rotor polar mement of inertia
Cv specific heat at a constant volume
ρ density
η efficiency
.

m true mass flow rate
.

m∗ normalized mass flow rate
A, B, C, D system matrices
Φ discrete form of A
Γ discrete form of B
Q process noise covariance
R measurement noise covariance
x state vector
y measurement vector
u control input vector
v measurement noise
w process noise
L window length
β control effectiveness factor
H0 null hypothesis
H1 alternative hypothesis
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Appendix A

The values S1 in Equation (23) and Sr were obtained from a minimization technique
with linear quadratic regular. Based on the detailed derivations given in [11], S1 and Sr
were designed, respectively, as follows:

S1 = Q −1
22, k ( Ã T

12 P1, k + Q21, k) (A1)

Sr = − K −1
r B T

r Ã −1
11 B r (A2)

where Q21, k and Q22, k are the components of Tr Q k Tr
T =

[
Q 11, k Q 12, k
Q 21, k Q 22, k

]
, Kr =

B
T
r Ã11

−1 Ã12, Q k is the symmetric positive definite matrix to be chosen, and P1, k is the
unique and positive definite solution that can be obtained from the recursive discrete-time
Riccati equation, such that [24]:

P1, k = (Â k − Ã 12 L k)
T P1, k +1 (Â k − Ã 12 L k) + Q̂k + L T

k Q22,k L k (A3)

L k = (Q22, k + Ã T
12 P1, k+1 Ã12)

−1
Ã T

12 P1, k+1 Â k (A4)

where Q̂k = Q11, k −Q12, k Q−1
22, k Q21, k and Â k = Ã 11 − Ã 12 Q −1

22, k Q21, k.

Appendix B

Proof of Theorem 1. Introducing the Lyapunov function given in a continuous form as
Vx̃ 1

= x̃ T
1 P2 x̃1 in Equation (33), and substituting the condition of the sliding surface sk = 0

satisfies the stability condition, such that:

.
Vx̃1

= −x̃1
T x̃1 + 2x̃1

T P2 yr
≤ −x̃1

T x̃1 + 2‖P2 x̃1‖ ‖ yr‖
≤ −‖x̃1‖2 + 2 λ max(P2)‖x̃1‖ ‖ yr‖

= −‖x̃1‖λ max(P2)
(
‖x̃1‖

λ max(P2)
− 2 ‖ yr‖

)
< 0

(A5)

�

Proof of Theorem 2. Introducing the Lyapunov function given by a continuous form as
Vs = s T P2 s in Equation (34) satisfies the stability condition as follows:

.
Vs =

.
s T P2 s + s T P2

.
s

= − s Ts + s TSryr − 2ρt
sT P2

‖P2 (s−Sryr)‖
[P2(s− Sr yr)]

≤ −‖s ‖ 2 − 2ρt‖P2 s‖+ ‖s‖ ‖Sryr‖

= −‖s ‖ 2 − 2 ‖P2 s‖
(

ρt − ‖s‖
2‖P2 s‖‖Sryr‖

)
< 0

(A6)

�
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