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Abstract: An experimental study of the ignition and combustion processes of coal-water slurry (CWS)
droplets based on coal enrichment waste in a high-temperature oxidizer at 650–850 ◦C with a syngas
addition was carried out. The fuel slurry was a mixture of finely dispersed solid combustible particles
(coal sludge, 10–100 µm in size) and water. The syngas was a product of biomass pyrolysis and two
waste-derived fuels in a laboratory gasifier. Composition of the syngas was controlled by a precision
analytical gas analyzer. The feasibility of co-firing CWS with syngas was experimentally established.
Under such conditions, the CWS droplets ignition process was intensified by 15–40%, compared to
fuel combustion without the addition of syngas to the combustion chamber. The greatest positive
effect was achieved by adding the gas obtained during the biomass pyrolysis. The ignition delay times
of CWS droplets are 5.2–12.5 s versus 6.1–20.4 s (lower by 15–39%) when ignited in a high-temperature
medium without adding syngas to the combustion chamber. Based on the results obtained, a concept
for the practical implementation of the CWS combustion technology in a syngas-modified oxidizer
medium is proposed.
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1. Introduction

Currently, in the world energy sector, the share of energy generated using coal exceeds
27%, which is an intermediate value between the shares of energy generation using oil
(32%) and natural gas (22%) [1]. There is an increase in coal production annually [1]. In
2021, coal production amounted to more than 7.5 billion tons. As a rule, power plants
are significant coal consumers, and account for about 5.2 billion tons per year (68.9%) of
mined coal, while 1.43 billion tons of coal per year (18.9%) is used as fuel in small power
generation facilities, 0.9 billion tons of coal (11.9%) is used in coking, and only 70 million
tons (0.3%) is subjected to other types of thermochemical processing, which mainly includes
pyrolysis and gasification [1]. All this is explained by the fact that the existing outdated
technologies are resource-intensive, which, as a result, leads to significantly high levels of
energy consumption and environmental pollution [2]. There is a need for more efficient use
of fossil fuels through improvements in energy generation technologies due to the negative
forecast for the depletion of energy resources [2].

One of the ways to jointly solve energy and environmental problems is coal conversion,
including low-grade coal and coal processing waste. The main methods of thermal con-
version in energy production are usually burning, gasification and pyrolysis [3,4]. Direct
combustion is now considered an obsolete energy conversion technology in contrast to
pyrolysis and gasification [1,5]. At the same time, there are alternative options for coal
combustion, one of which is the replacement of fossil solid fuels with coal-water slurry
fuels. Such fuels are a slurry containing finely dispersed solid particles (tens and hundreds
of microns in size), and liquid components, the concentration of which can vary between
30–60%. Solid fuel components are coals of various grades, coal sludge and coal preparation
waste [6,7]. Composite fuels can include various types of biomass (straw, wood, sewage

Energies 2023, 16, 3304. https://doi.org/10.3390/en16083304 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16083304
https://doi.org/10.3390/en16083304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-6975-6733
https://doi.org/10.3390/en16083304
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16083304?type=check_update&version=1


Energies 2023, 16, 3304 2 of 17

sludge) [8,9]; municipal solid waste (cardboard, paper) [10]; and various liquid additives,
including used technical and household oils [11,12]. The results of a study [13] on the
co-incineration of various types of biomass and municipal solid waste made it possible to
establish that direct waste incineration is a less efficient way of energy processing [13,14]
in contrast to pyrolysis, gasification, anaerobic digestion, biofuel production and other
promising technological solutions.

Different groups of researchers [7,15,16], found that the practical use of composite
fuels instead of coal can significantly reduce the level of anthropogenic emissions generated
in the energy sector. The combustion of water-containing fuels based on coal and coal
preparation waste is characterized by a significantly lower level of anthropogenic emissions
to the atmosphere, compared to dry pulverized coal [17,18], due to the combustion process
in a semi-reducing medium. Such slurry fuels have comparable, and sometimes even better
energy characteristics, compared to fuels widely used in practice [19].

Unlike direct combustion, gasification aims to convert fuel to syngas at high tempera-
tures in an aerobic environment using gasifying agents such as O2, H2O and CO2 [20,21].
Results of a study [22] confirmed that coal gasification contributes to clean energy produc-
tion by reducing emissions of greenhouse gases, sulfur oxides and nitrogen [22].

Various gasification technologies make it possible to convert mixtures of natural
hydrocarbons into combustible syngas, the composition of which depends on the initial
fuel type [23], as well as on the mode of heat supply, and the composition of the gaseous
medium in which the process takes place. To solve this problem, research is being carried
out around the world aimed at determining the factors that affect the composition and
quality of syngas. Biomass is currently the most widely used fuel for gasification [24–26]. It
has also been proven [27] that the use of a vapor-air mixture as a gasification agent makes
it possible to obtain syngas with a higher calorific value.

The authors of [27] determined the dependence of the composition and heat of synthe-
sized gas combustion on the type of biomass used. The syngas combustion heat obtained by
biomass pyrolysis with a high content of cellulose and hemicellulose turned out to be lower
than during the pyrolysis of biomass rich in lignin. This is due to the fact that the main
decomposition product of cellulose and hemicellulose is CO2, while lignin decomposes
into H2 and CH4 when heated.

In addition to biomass, low-grade coal and coal preparation waste are used as gasified
fuels. One study [28] presented the results of the gasification of pre-carbonized coking
coals (Vdaf—19.27%, Cdaf—77.27%), gas rich coals (Vdaf—19.76%, Cdaf—80.04%), as well as
sludge coking coal (Vdaf—30.61%, Cdaf—83.80%) using the oxygen-free steam gasification
technology of carbon-containing materials at a temperature of 1500 ◦C. The advantage of
this gasification technology was that a large portion of carbon-containing materials were
converted into syngas [28]. It was established [28] that the conversion rate increases with
temperature, which confirmed the thermal activation of chemical processes, and led to
a decrease in the concentration of CO2 and hydrocarbons over time. This confirms the
predominance of the process of carbon conversion into the resulting syngas. At the same
time, the proportion of the main reaction products (CO and H2) increases.

Along with research on the syngas production from various raw materials under
different process conditions, research is being carried out to determine the operation
parameters of engines and power plants using pyrolysis and gasification products as fuel.
The authors of [29] implemented several programs on which the intracycle gasification
technology was applied, which helped to save fuel by 18%, as well as reduce emissions of
harmful substances into the atmosphere and introduced new raw material types into the
fuel and energy sector. The combined efficiency of such technologies exceeds by 1.5 times
the efficiency of technologies currently widely used in practice [30].

The joint use of pulverized coal and syngas is justified [30] by the possibility of lower-
ing the temperature in the boiler furnace, as well as significantly reducing the concentration
of sulfur and nitrogen oxides emitted into the atmosphere with the flue gases. To obtain
the optimal boiler operation, it is necessary to adjust all the operating parameters of the
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system to prevent the loss of closed-loop efficiency. When using optimal boiler settings, its
efficiency can exceed 85% [31].

The authors of [32] showed that solid fuel combustion in an oxygen medium with
flue gas recirculation is an effective way to capture CO2. The use of circulating fluidized
bed technology makes it possible to reduce the cost of capturing CO2 during oxy-fuel
combustion and reduced emissions of nitrogen oxides with flue gases, as compared to
flaring. The study [32] was a comparative analysis of the effect of flue gas recirculation
and other regime factors during combustion in air, oxygen and CO2 on the formation of
NO and N2O. It was shown [32] that, due to recirculation, the fractions of NOx and N2O
formed from fuel nitrogen were significantly lower during combustion in oxygen than
during fuel combustion in air.

Based on the analysis performed, it can be concluded that the use of composite fuels
is a promising solution to energy and environmental problems, as well as the problem
of non-renewable energy resource depletion [33]. At the same time, one of the main
problems of the practical application of slurry fuels is the relatively long ignition delay
times, which leads to mechanical and chemical fuel under-burning in furnaces with typical
overall dimensions for coal-fired boilers. A potential solution to this problem is to organize
the combustion process in a high-temperature oxidizing medium while adding biomass
or waste-derived fuel gasification products. Therefore, it is reasonable to compare the
characteristics of CWS combustion processes in a high-temperature oxidizer environment,
both without the addition of gasification products, and with syngas generated during
biomass and waste-derived fuel pyrolysis.

This work is focused on an experimental study of the possibility of using composite
liquid fuels based on waste coal preparation, together with syngas obtained in the process
of pyrolysis and gasification. Coal enrichment wastes have a fairly high carbon content
with an average dry weight ash content of 20–40%. However, at present, they are of in low
demand due to insufficient technology being developed for their disposal. The results of
two studies [17,20] showed the use of slurry fuels was successful when they were co-burned
with additional components. The purpose of our work is to experimentally study the CWS
droplets ignition and combustion characteristics in a high-temperature oxidizer medium,
with syngas pre-generated in a laboratory gasifier. The scientific novelty of the work lies
in a comprehensive analysis of the main characteristics of the CWS droplet ignition and
the combustion processes when an oxidizer is fed into the combustion chamber with the
addition of syngases of various compositions, obtained during biomass and waste-derived
fuels pyrolysis and gasification. The results of this study will be a contribution to solving
the problem of coal-sludge utilization, and the optimization of slurry fuel combustion
processes. The established characteristics will also be of practical importance, as they are
the basis for the design of fuel preparation and supply systems, as well as boiler furnace
designs.

2. Materials and Methods

Coal sludge from coking coal was used as the main CWS component, which is a
waste from coal preparation. Coal sludge consists of coal and mineral particles of different
fineness (up to 100 µm). At the processing plant, coal sludge is a waste product whose
moisture content can vary over a wide range. To control the proportion of the fuel mixture
components, the coal sludge was pre-dried until complete moisture evaporation in a drying
box at a temperature of 105 ◦C for 3 h. Next, dry sludge agglomerates were ground in a
Pulverisette 14 high-speed rotary mill (FRITSCH, Idar-Oberstein, Germany). To obtain a
powder with a particle size of not more than 100 µm, crushed coal sludge was sieved using
an ANALYSETTE 3 SPARTAN vibrating screen (FRITSCH, Idar-Oberstein, Germany). Tap
water was used as the liquid component of the CWS. The components (solid and liquid)
were mixed with an AIBOTE ZNCLBS-2500 magnetic stirrer (Aibote, Zhengzhou, China)
at a magnetic armature rotation speed of 1500 rpm. The mixing time of a two-component
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slurry weighing 100 g was 10 min, the mass fraction ratio of solid and liquid components
was 1:1.

Biomass and waste-derived fuels used as energy resources for syngas generation:

1. 100 wt.% sawdust;
2. 70 wt.% lignite + 30 wt.% used turbine oil;
3. 40 wt.% sawdust + 40 wt.% lignite + 20 wt.% used turbine oil.

The results of an elemental and technical analysis of the solid fuel components is
presented in Table 1.

Table 1. Results of elemental and technical analysis of fuel mixture solid components.

Component Wa, % Ad, % Vdaf, % Q, MJ/kg Cdaf, % Hdaf, % Ndaf, % St
d, % Odaf, %

Coal
sludge – 26.46 23.08 24.83 87.36 5.09 2.05 1.04 4.46

Lignite 14.11 4.12 47.63 22.91 73.25 6.53 0.79 0.44 18.99
Sawdust 6.05 1.5 72.35 18.25 49.72 5.91 0.19 0.64 43.54

Wa—humidity, %; Ad—ash content, %; Vdaf—volatile content, %; Q—higher heating value, MJ/kg; Cdaf, Hdaf,
Ndaf, St

d, Odaf—fraction of carbon, hydrogen, nitrogen, oxygen, sulfur in the sample converted to a dry ash free
state, %.

An experimental setup was designed to determine the ignition and combustion char-
acteristics of CWS droplets with synthesis gases obtained from the process of biomass and
waste-derived fuel pyrolysis to the oxidizer medium. Figure 1 shows the 3D model of the
experimental setup.
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gasifier was purged with nitrogen (3) to create an inert medium. Waste-derived fuels or 

Figure 1. 3D model of the experimental setup: 1—gasifier; 2—controller; 3—compressed nitrogen
bottle; 4—gas analyzer; 5—pipeline for supplying syngas from the gasifier to the muffle furnace;
6—syngas filtration and drying system; 7—diaphragm pump; 8—tubular muffle furnace; 9—PC;
10—CWS droplets holder; 11—device for linear movement; 12—control unit of for device for linear
movement; 13—syngas supply pipe to the muffle furnace; 14—high-speed video camera.

Waste-derived fuels and biomass were gasified in the original gasifier (1). The chamber
volume was 3.5 L, the electric heater power was 4 kW. Prior to heating, the gasifier was
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purged with nitrogen (3) to create an inert medium. Waste-derived fuels or biomass were
introduced into the gasifier (1) and preheated to 600 ◦C on a metal plate. The temperature
inside was automatically regulated (2) according to the built-in K-type thermocouple
readings (temperature range 0–1100 ◦C, accuracy ±3 ◦C, inertia no more than 3 s). The
time the fuel spent in the heated gasifier was determined by the readings of a precision
gas analyzer (4) in real time, characterizing the total yield of the volatile components from
biomass or waste-derived fuel. In the syngas supply path to the muffle furnace (5), there
was a filter (6) complete with a device for collecting condensate, designed to purify and
dry the resulting syngas. A diaphragm pump (7) with a capacity of 3 L/min was used to
supply syngas from the gasifier (1) to the muffle furnace (8).

During preliminary experiments, the generated syngas’ composition was analyzed.
Sampling was carried out at the gasifier outlet (1). To register the component composition
of the gas obtained during pyrolysis, a laboratory gas analyzer (4) Test-1 (Boner-VT, Novosi-
birsk, Russia) was used. This gas analyzer was equipped with electrochemical sensors
for O2 (range 0–25%, absolute error ± 0.2%), CO (range 0–40,000 ppm, relative error ±
5%), SO2 (range 0–1000 ppm, relative error ± 5%), NO (range 0–2000 ppm, relative error
± 5%), NO2 (range 0–500 ppm, relative error ± 7%), H2S (range 0–500 ppm, relative error
± 5%), HCl (range 0–2000 ppm, relative error ± 5%). Additionally, the gas analyzer was
equipped with optical sensors for CO2 (range 0–30%, reduced error ± 2%), CH4 (range
0–30%, reduced error ± 5%), CO (range 0–30%, reduced error ± 5%) and a polarographic
sensor for H2 (range 0–5%, absolute error ± 5%). The gas analyzer included a modular
probe, a condensate collector and a filtration system, the design of which was similar to
the design of the path for supplying the resulting syngas from the gasifier (1) to the muffle
furnace. The gas analyzer was connected to a PC (9) with software which allowed real-time
monitoring of changes in the resulting syngas components’ concentrations.

Slurry fuel droplets were burned in a Nabertherm R 50/250/13 tubular muffle furnace
(8) (Nabertherm GmbH, Lilienthal, Germany) preheated to a given temperature and used
as a model combustion chamber. A droplets group was placed on a holder (10). Nichrome
wire 250 µm thick was used as a suspension device. In works [34,35], the influence of a
similar holder on the heating characteristics of fuel samples was studied. It was established
that the holder made of nichrome wire does not significantly affect the heating of the
fuel. To assess the scale of the influence of the suspension device on the CWS droplets’
combustion, it is worth citing the following fact. The difference between the ignition delay
times of drops of identical fuels was less than 10% whether the drop was located on the
holder, or when the drop moved in the heated air flow at a speed identical to the flow
velocity; i.e., the relative speed was zero. The total fuel mass was about 0.2 g, and the
diameter of each droplet was about 2 mm (Figure 1). The initial droplet masses were
controlled using a ViBRA HT 84RCE balance (accuracy class I, resolution 10−4 g, with
the smallest weight limit being 0.01 g) (Vibra, Japan). The holder with the fuel droplets
was introduced into the combustion chamber with a linear movement device (11). The
syngas was supplied to the area (Figure 1) where the CWS droplets were located using
a ceramic tube (13). The syngas flow rate supplied with the diaphragm pump (7) was
3 L/min. Thus, the conditions of the laboratory experiment corresponded to the conditions
of the CWS flaring process in the combustion chamber, with a partial replacement of the air
with syngas.

To record the ignition and combustion processes of CWS droplets in a muffle furnace,
a high-speed video camera (14) Phantom V411 (Vision Research, Wayne, NJ, USA) was
used; video recording speed was 2000 fps at a resolution of 800 × 600 pixels; color depth
was 12 bit; pixel size was 20 µm; minimum exposure time was 1 µs; and an automatic
image trigger was used. The AF 105 mm lens (Sigma, Tokyo, Japan) was used with the
video camera; the minimum focusing distance was 0.312 m, with a viewing angle of 23.30◦.
Standard video camera software (Phantom Camera Control 2.6) and original software
developed in Mathematica 12.3 were used to analyze video recordings.
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The main recorded characteristics of the CWS droplet combustion process were the
following: gas-phase (td1) and heterogeneous (td2) ignition delay times, burning duration
(tb), flame temperature (Tb) and concentrations of anthropogenic emissions. In addition,
analysis of the ash component composition obtained after the CWS droplet were burned
was carried out according to the ASTM D3682-13 method.

In this work, the gas-phase ignition delay time is the time from the beginning of the fuel
droplet heating to the gas mixture ignition in the fuel droplet vicinity. The heterogeneous
ignition delay time is the time from the start of the CWS droplet heating to the moment of
the coke residue ignited. Burn duration was the time from the moment of CWS droplet gas-
phase ignition to the completion of the carbonaceous residue heterogeneous combustion.

To determine the flame temperature during the combustion of slurry fuels, the method
of two-color pyrometry was used. The fuel combustion process was recorded using a
pre-calibrated high-speed video camera complete with a lens (14). Calibration consisted
of establishing the correlation between the intensity of the detected radiation at different
wavelengths with the characteristics of the video camera matrix RGB channels.

In the video recording area, a fragment was selected (Figure 2) corresponding to the
flame in the vicinity of the CWS droplet. Further, within the framework of a developed
Wolfram Mathematica algorithm (Wolfram Research, Champaign, IL, USA), the color
image of the video recording was averaged with a given step to suppress optical noise.
According to the ratio of the intensities of the green and red color channels in each pixel of
the considered image fragment, the temperature was calculated according to the original
algorithm using the Planck formula [36]. The set of temperature values in each pixel of the
video recording area represented the temperature field. The systematic error of non-contact
temperature measurement (characterized by the ratio of the intensities of the green and red
color channels) did not exceed 25% of the recorded value.
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Figure 2. Video frames of a fuel droplet burning (a) and a temperature field based on it (b).

All recorded characteristics had systematic errors. Their values corresponded to the
metrological characteristics of the registration means used. To estimate random errors,
a series of 5–10 experiments were carried out under identical initial conditions. The
contribution of uncontrolled factors to the resulting values of the characteristics being
determined was evaluated by calculating confidence intervals. To process the results,
including the identification and elimination of gross errors, standard approaches [37,38],
were used, including the calculation of the mathematical expectation (1), the variance of a
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random variable (2), and the standard deviation (3) for each series of experiments, followed
by the calculation of the confidence interval (4) [37].

MX =
1
n

n

∑
i=1

Xi; (1)

V =
1

n− 1

n

∑
i=1

(Xi −MX)
2; (2)

σ = V1/2; (3)

∆ = tαn·σ, (4)

where MX—mathematical expectation; Xi—measurement result; n—number of measure-
ments; V—random variable variance; σ—standard deviation; ∆—confidence interval;
tαn—Student’s t-distribution.

When choosing tαn, the confidence level was set to 0.95. Further, for all the results
obtained in the figures, values of the confidence intervals will be presented which illustrate
the range of possible values for the measured characteristic with a probability of 95%.

3. Results and Discussion
3.1. Syngas Composition

Figure 3 shows the combustible components’ content in the composition of the result-
ing syngas with identical initial gasified fuels masses. The highest combustion heat was
characterized by syngas obtained from sawdust pyrolysis. The reason for this is the high
content of hydrogen in its composition, the combustion heat of which (140 MJ/kg) is much
higher than that of CH4 (50 MJ/kg) and CO (13 MJ/kg). In addition, syngas obtained from
sawdust is characterized by the highest content of CO. The joint formation of free radicals
of hydrogen and carbon monoxide proceeded in the presence of H2O molecules [39]:

C + H2O→ CO + H2.
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The presence of water vapor molecules in the gasifier reactor is due to the release of
hydrated and pyrogenetic moisture during the solid fuel thermal decomposition. During
the sawdust gasification, a greater amount of water vapor was released, compared to other
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pyrolyzable fuels, due to the oxygen functional group’s higher content (phenols, alcohols,
acids) in wood [40].

In the case of fuels with used turbine oil, the main component of the syngas is methane
(Figure 3). Its formation mainly occurs during the decomposition of fatty acids into alkanes,
the main component of which is CH4. The methane synthesis occurs in the following
reactions in the presence of free hydrogen radicals [41,42]:

CH2 + H2 → CH4;

CH3 + 1/2H2 → CH4.

The intensive formation of hydrocarbons during the thermal decomposition of used
oils is a consequence of the high content of aliphatic compounds in their composition [43,44].
In the case of sawdust, the decomposition of methoxy groups (–OCH3) and the breakdown
of side chains of glycosidic compounds (methyl (–CH3) or methylene groups (–CH3–)),
which originate from hemicellulose and biomass lignin, are also accompanied by the CH4
formation [45].

Table 2 shows the combustible components content in the syngas composition obtained
under various process conditions in the gasifier. When determining the weight of pyrolyzed fuel
samples, the normalization was carried out relative to the initial weight of the sawdust sample.
In experiments with identical initial masses of pyrolyzable fuels, the sample weights were 5 g.
In experiments with identical pyrolyzable fuels (in the initial states) combustion heats, the initial
samples weights were as follows: 100% sawdust—5 g; 70% lignite + 30% WTO—3.06 g; 40%
sawdust + 40% lignite + 20% WTO—3.56 g. In experiments with an identical volatiles
content in a sample of pyrolyzable fuels, their masses were as follows: 100% sawdust—5 g;
70% lignite + 30% WTO—6.61 g; 40% sawdust + 40% lignite + 20% WTO—5.78 g.

Table 2. Combustible components content in the syngas composition under various conditions for its
production.

Syngas Fuel Initial
Mass, g CO, % CH4, % H2, % Non-Combustible

Components, %

The initial weight of the pyrolyzed fuels samples is identical

No. 1.1 100% sawdust 5 2.24 0.83 0.39 96.54
No. 1.2 70% lignite, 30% WTO 5 1.68 0.19 97.51
No. 1.3 40% sawdust, 40% lignite, 20% WTO 5 0.83 0.87 0.13 98.17

The combustion heat of the pyrolyzed fuels samples is identical

No. 2.1 100% sawdust 5 2.24 0.83 0.39 96.54
No. 2.2 70% lignite, 30% WTO 3.06 0.37 0.46 <0.01 99.16
No. 2.3 40% sawdust, 40% lignite, 20% WTO 3.56 1.04 1.23 0 97.73

The content of volatiles in the pyrolyzed fuels samples is identical

No. 3.1 100% sawdust 5 2.24 0.83 0.39 96.54
No. 3.2 70% lignite, 30% WTO 6.61 0.58 2.86 0 96.56
No. 3.3 40% sawdust, 40% lignite, 20% WTO 5.78 1.25 1.80 0 96.95

The obtained results (Table 2) indicated a relatively low content of combustible com-
ponents in the syngas composition. First of all, this is due to the low mass of gasified fuel,
as well as the overall dimensions and working pressure of the gasifier. In citation [46],
the syngas production with a combustible gas concentration of no more than 20% took
place in a fixed-bed gasifier. The maximum concentrations of CO and H2 did not exceed
15%, and the concentration of CH4 did not exceed 5%, while the overall dimensions of the
installation exceeded the laboratory gasifier we used by more than 20 times, and the mass
of fuel loaded into the gasifier was 40–55 kg.
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Based on the analysis of data on the composition of the synthesized gases (Table 2),
it can be concluded that the most promising gas, in terms of CWS ignition intensification,
is syngas obtained using sawdust because it had the largest proportion of hydrogen in its
composition, which ignites at a lower temperature compared to other syngas components.
In addition, when using sawdust, the overall yield of syngas is also higher than other
fuels, which was associated with a high proportion of bio-oil and char formation during
the pyrolysis of fuels based on lignite. Thus, the share of combustible components in the
sawdust syngas from sawdust pyrolysis is 3.46%, while in the pyrolysis of fuels based on
lignite, this indicator is 0.83–3.44%.

The synthesis gases obtained in the laboratory gasifier were later used as additives to
the oxidizing medium in ignition and combustion experiments on the CWS droplets.

3.2. CWS Droplet Ignition and Combustion Characteristics in an Oxidizing Medium with
the Syngas

During experiments on the experimental setup (Figure 1), the following characteristics
were recorded: delay times for gas-phase and heterogeneous ignition of CWS droplets,
combustion process duration, flame temperature.

Figure 4 shows the dependence on ignition delay times and CWS droplet burning
times on the temperature of the combustion chamber when synthesis gases are supplied
to the combustion area (Table 2), obtained under different conditions. An increase in the
temperature in the combustion chamber contributed to the intensification of the heating of
the CWS droplets, the moisture evaporation, and the coke residue ignition. The minimum
ignition delay times in all experiments were recorded for the syngas supply obtained
during the sawdust pyrolysis (synthesis gases No. 1.1, 2.1 and 3.1). The high content of
hydrogen in its composition, being the most reactive component, contributed to the ignition
intensification.

The addition of syngas to the oxidizer medium during the CWS droplet combustion
primarily contributed to the intensification of the gas-phase ignition in their vicinity. At an
initial temperature in the combustion chamber of 650 ◦C and the addition of syngas, the
delay times for gas-phase ignition are 12.5–17.5 s, which is 1.2–1.5 times (about 22 s) shorter
than the CWS droplet combustion without syngas in the combustion chamber. Additional
heat supplied to a fuel droplet from the combustion area led to an increase in its heating
rate, moisture evaporation and volatile gas release. Collectively, these processes intensified
heterogeneous ignition and carbon-residue burnout. The heterogeneous ignition delay
times decreased by a factor of 1.3–2, and the burn-up duration of a fuel droplet decreased
by a factor of 1.3–1.8 (depending on the syngas composition) under otherwise identical
conditions. The most pronounced effect of adding syngas is seen in Figure 4c, where the
main condition of the experiment is the constancy of the volatiles content in the pyrolyzed
fuel samples. When CWS is burned without syngas, the delay times for heterogeneous
ignition and combustion duration vary between 16.8–21.1 s and 117.3–146.8 s, respectively.
In turn, the addition of syngas to the oxidizer medium made it possible to reduce the
variation ranges of heterogeneous ignition delays and burnup durations to 6.3–13.4 s and
72.1–102.6 s, respectively.

The shortest CWS droplet burning times were recorded when using syngas obtained
through sawdust pyrolysis, when the volatiles content in samples of the pyrolyzed fuel
was identical—about 85 s at a combustion chamber temperature of 650 ◦C, and about
72.1 s at a temperature of 850 ◦C. The reason for this is the hydrogen oxidation, which
dominated the composition of the corresponding syngas, contributed to the greatest local
temperature rise in the combustion zone, and, as a result, the most intense fuel burnout.
During CWS combustion with the addition of syngas No. 2.2, a longer (by 2–8%) duration
of fuel combustion was recorded, compared with mono-combustion of CWS. The reason
for this was the very low content of combustible components in syngas No. 2.2, as well as
the displacement of the oxidizer from the fuel combustion zone and its replacement with
non-combustible components.
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Figure 4. Dependences of the CWS droplet ignition delay times on the temperature of the combustion
chamber with synthesis gases obtained under different conditions: (a) initial weights of the pyrolyzed
fuels are identical; (b) calorific values of the pyrolyzed fuels are identical; (c) volatiles content in the
samples of pyrolyzed fuels is identical.

During the combustion of CWS without the addition of syngas, the duration of
fuel combustion remained constant at an oxidizer temperature of 750–850 ◦C. In this
temperature range, the burning rate of CWS increased, as well as the completeness of fuel
burnout increased. Thus, the duration of burning out remains approximately the same.
This effect was repeatedly recorded by us in previous studies under similar conditions. So,
for example, in [47], a similar effect was recorded, and the burning time of a fuel slurry of
55% coal, and 45% water remained practically unchanged in an oxidizer temperature range
of 750–850 ◦C. A further increase in the oxidizer temperature to 900 ◦C led to a decreased
burn duration of, since complete burnup of the fuel sample was achieved.

In addition to the temporal characteristics of the fuel ignition and the combustion
processes, the concepts of flame temperatures during the CWS droplet combustion were also
important. The temperature regime in the boiler furnace, in addition to energy generation
indicators, affected the slagging processes (ash residue sticking on the heat exchanger
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surface) and the concentration of anthropogenic emissions in flue gases. In this regard, it is
expedient to analyze the effect of adding syngas to the combustion chamber on the flame
temperature during the CWS droplets combustion.

3.3. Flame Temperatures during CWS Combustion in an Oxidizing Medium with the Addition
of Syngas

Figure 5 shows the typical flame temperature trends obtained during the CWS droplets
combustion. The temperature in the combustion chamber was 800 ◦C when these charac-
teristics were recorded. It was experimentally established that the addition of syngas to the
combustion chamber led to an increase in the flame temperature during gas-phase CWS
combustion, and the average value was 950 ◦C. The average flame temperatures during
the CWS droplet combustion when syngas was added were as follows: sawdust pyrolysis,
1025 ◦C; 70% lignite + 30% WTO pyrolysis, 1010 ◦C; and 40% sawdust + 40% lignite +
20% WTO pyrolysis, 975 ◦C. The obtained result corresponds to the component composition
of the synthesis gases (Table 2). The higher the content of combustible components in the
resulting syngas, the higher the flame temperature under otherwise identical conditions.
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synthesis gases of different compositions to the combustion chamber.

In addition, different times were recorded for reaching the maximum combustion
temperature when using different synthesis gases. When using syngas No. 1.1, the shortest
time to reach the temperature maximum was recorded. The reason for this is the different
component composition of synthesis gases. Syngas No. 1.1, having the highest reactivity
due to the high proportion of hydrogen in its composition, contributes to a significant inten-
sification of the CWS droplet combustion, while methane, which is the main component of
syngas No. 1.2 and syngas No. 1.3, is less reactive. In turn, when using syngas No. 1.3, the
longest time to reach the maximum flame temperature was recorded, since the proportions
of methane and carbon monoxide, which are characterized by the lowest reactivity, are
similar in its composition.

Figure 6 shows typical temperature fields for the CWS droplet combustion with and
without synthesis gases obtained from sawdust pyrolysis. It can be seen (Figure 6) that
the flame size in the early stages of gas-phase combustion with syngas was much larger,
and the temperatures were higher. This effect was caused by the formation of a gas-vapor
shell around the fuel droplets, which, in turn, is additionally saturated with combustible
components of the syngas (mainly methane), which led to an increase in the combustion
temperature, as well as an increase in the combustion area.
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Based on the obtained results, it can be assumed that the addition of syngas to the
combustion chamber affects not only the characteristics of the CWS droplets ignition and
combustion, but also affects the composition of CWS ash residue. One of the negative
effects of ash composition is slagging. It is a process of intense ash sticking in a molten or
softened state on the surface of the heat-exchanger tubes. The resulting ash deposits cause
the deterioration of the heat transfer characteristics from the combustion zone to the coolant.
In addition, rather large ash-deposit fragments periodically exfoliate from the pipes and
fall into the lower part of the furnace. This can lead to the pipe system’s deformation or
destruction and damage to the furnace lining, as well as creating a need for slag-removal
devices. In this regard, it is advisable to study the ash composition formed during CWS
combustion with and without the addition of syngas to the combustion chamber, which
will allow us to assess the potential effect of this factor on the boiler furnace slagging
characteristics.

3.4. Component Composition of CWS Ash Residue

Table 3 presents the results of the CWS ash-residue composition analysis. Silicon and
aluminum oxides are the main ash-residue components. The reason for this is the use of
coal sludge containing impurities as a CWS solid component [17]. When comparing the
results obtained for two types of CWS combustion, it was found that the syngas supply
to the combustion chamber affects the ash residue composition. The difference is in the
SO3/(CaO + MgO) ratio, which is found to be linear with SO2 emissions in the flue gas. So,
for the fuel combustion process without the syngas supply, this ratio is 0.29, and with the
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syngas supply—0.32. The higher this ratio, the lower the content of sulfur oxides in the
flue gases composition [17]. This effect is caused by a synergistic effect between calcium
oxides, magnesium, and sulfur, which contributes to the precipitation of the latter in the
ash residue [48,49]:

CaO + SO2 + 1/2O2 → CaSO4;

MgO + SO2 + 1/2O2 →MgSO4.

Table 3. Ash residue component composition.

Burning
Conditions SiO2, % R2O3, %

(AL2O3 + Fe2O3 + TiO2) Fe2O3, % SO3, % CaO, % MgO, % Total, %

With syngas 59.4 24.4 8.2 2.9 6.9 2.3 95.9
Without syngas 59.5 24.6 8.4 2.8 7.2 2.4 96.5

An increase in the temperature in the combustion zone during the syngas supply con-
tributed to an increase in the intensity of these reactions, which led to a greater proportion
of the sulfur oxides being bound in sulfate form [50].

Based on the results obtained, proposals were formulated for their practical application
in the framework of CWS combustion technology in an oxidizer medium with the syngas
addition.

4. Practical Application

One of the most promising areas of practical application of the obtained results is the
modernization of coal-fired boilers. A combined supply of air and syngas to the boiler
furnace could improve the efficiency of CWS ignition. In turn, this would make it possible
to utilize the accumulated volumes of various waste types, as well as increase the fuel
combustion efficiency. We proposed the use of the scheme shown in Figure 7 as part of the
development of measures to prepare to transfer the boiler to a system with a syngas supply
to the furnace.
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Figure 7. Technological process scheme of CWS flaring while adding syngas to the boiler furnace. Figure 7. Technological process scheme of CWS flaring while adding syngas to the boiler furnace.

For example, the CWS combustion based on low-grade coals or combustible waste
can be implemented using a hot water boiler with a capacity of 0.4 Gcal/h. Preparation
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of the fuel composition is carried out in several stages. In the first stage, coal is crushed
using a ball-and-drum mill to a particle size of no more than 100–120 µm. Then the coal
enters the mixing tank, into which the required amount of water and other components (if
necessary) are also added, based on the mass fractions their fuel composition. After that,
the finished fuel is sprayed into the boiler furnace using a pneumatic nozzle.

The main task of the gasification unit is to convert waste-derived fuels or biomass into
syngas through a thermochemical reaction and supply the resulting gas mixture, together
with air, to the boiler furnace. Fuel preparation for gasification consists of two stages. At
the first stage, the solid part of the gasified fuel is crushed in a mill to a size of about 140 µm.
At the second stage, the solid and liquid parts of the fuel intended for gasification are
mixed in the mixing chamber. The resulting fuel mixture is pumped to the gasifier, where
the fuel is converted into a gaseous state. Before the syngas enters the boiler furnace, it
undergoes a multi-stage purification. The heat of the high-temperature syngas is removed
by means of a waste heat boiler (WHB). The cooled syngas is then cleaned in a cyclone and
spray scrubber (gas conditioning) and the tar is separated. Before the syngas is supplied
to the boiler furnace, sulfur components must be removed from it. The separated sulfur
compounds (mainly H2S and COS) are sent to the sulfur collection setup. After that, the
prepared syngas is fed into the boiler furnace together with the CWS to intensify the slurry
fuel ignition. In addition, syngas, instead of natural gas or fuel oil, can be used to illuminate
the flame when kindling or reducing the boiler load.

The practical application of the proposed approach will make it possible to achieve a
high level of waste utilization by using the waste as the main and auxiliary fuel for slurry
fuel and syngas co-combustion. Also, this scheme will allow us to achieve a reduction in
the concentration of anthropogenic gaseous emissions during the boiler’s operation, in
addition to improving the energy performance. Due to the gasification unit versatility, in
addition to fuel based on biomass, low-grade coals and waste from the oil industry, almost
any combustible waste can be used, depending on the regional and industrial factors.

In the course of our work, limitations of the study were identified. These included the
small volume of the combustion chamber (muffle furnace) and gasifier. Therefore, one of
the directions for further work will be the design of a combustion chamber that allows the
use of CWS injection devices, as well as the creation of a gasifier with a larger volume and
productivity. Another direction for further study will be an expansion of the raw material
base for the creation of slurry fuel, as well as the expansion of the range of gasified waste.

5. Conclusions

1. Syngas addition to the furnace intensifies the ignition and combustion processes of
slurry fuel droplets. Biomass in the form of sawdust is the most promising resource
for syngas generation. During the sawdust pyrolysis, syngas with the highest volume
fraction of combustible components, especially hydrogen, is obtained.

2. When CWS droplets were burned, the addition of syngas to the combustion chamber
reduced (compared to fuel combustion conditions without syngas addition) the gas-
phase ignition delay times by 1.2–1.5 times, the heterogeneous ignition delay times by
1.3–2.0 times, and the duration of the combustion process by 1.3–1.8 times.

3. The addition of syngas to the combustion chamber led to an increase in the flame
temperature during the CWS droplets combustion by 3–8% (975–1025 ◦C vs. 950 ◦C
under otherwise identical conditions).

4. CWS droplet combustion in an oxidant medium enriched with syngas affects the
elemental composition of the ash residue. The difference lies in the SO3/(CaO+MgO)
ratio, for which a linear dependence on the SO2 content of the composition of flue
gases was established. When CWS droplets are burned without syngas, this ratio
is 0.29, and when syngas is added, it is 0.32, which indicates a decrease in the SO2
concentration in the flue gas composition in the latter case.

5. The totality of the obtained results is the basis for the development of CWS flaring
technology in an oxidizer medium with syngas. The practical implementation of this
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technology will increase the efficiency of CWS combustion and expand the range of
resources available for power generation.
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Nomenclature

CWS coal-water slurry
WHB waste heat boiler
WTO waste turbine oil
Ad ash content, %

Cdaf, Hdaf, Ndaf, Odaf, Sdaf fraction of carbon, hydrogen, nitrogen, oxygen, sulfur in the sample
converted to a dry ash free state, %

MX mathematical expectation
n number of measurements
Qa

s,V higher heating value, MJ/kg
tan Student’s t-distribution
Tb burnout temperature, ◦C
tb duration of burning out, s
td1 gas-phase ignition delay time, s
td2 heterogeneous ignition delay time, s
Tg gaseous medium temperature, ◦C
V random variable variance
Vdaf volatile content, %
Wa humidity, %
Xi measurement result
∆ confidence interval
σ standard deviation
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