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Abstract: Despite market-oriented reforms, China’s energy sector is subject to energy price distor-
tions, which are believed to be a crucial determinants of energy efficiency in China. This paper
investigates the impact of energy price distortions on energy efficiency in China from the perspective
of spatial correlation. Using the nonradial directional distance function approach, we first estimate
the provincial-level energy efficiency in China. Paying attention to spatial correlation among the
provinces of China, in stage two, we identify the determinants of energy efficiency. Our empirical
results suggest that price distortions have a significant impact on energy efficiency in China. This
impact holds when the cross-region effect is considered, i.e., besides its own energy price distortion,
a region’s energy efficiency is also correlated to the adjacent provinces’ energy price distortions.
Furthermore, we found that the levels of energy efficiencies in adjacent provinces are highly corre-
lated. This spatial relationship can be decomposed into the ‘spillover effect’ and ‘warning effect’.
These two effects work together, determining the spatial relationship among the province-level
energy efficiencies.

Keywords: energy efficiency; energy price distortion; spatial panel models

1. Introduction

Energy has played an important role in China’s economic development. As the
world’s largest energy consumer, China has been giving a high priority to energy efficiency,
especially with sustainable development getting increasing attention from policy makers.
The Chinese government has taken a number of steps to improve energy efficiency. As
a result, China’s energy intensity (i.e., units per energy per unit of GDP) declined by
approximately seventy per cent over the 1980 to 2010 period [1]. While improvement
has been made in reducing energy consumption per unit output in overall terms, energy
efficiency remains a serious concern in China. According to Xi Jinping’s report to the 19th
CPC National Congress, which is recognized as China’s development blueprint, market-
based systems for green technology innovation, developing green finance, and spurring
the development of energy-saving and environmental-protection industries have been
set as the targets for ‘promoting green development’ in China. The task of improving
energy efficiency is becoming urgent since President Xi Jinping declared that China would
aim to have CO2 emissions peak before 2030 and achieve carbon neutrality before 2060.
Though the central government is pushing for the promotion of energy efficiency, economic
growth and energy conservation are viewed as somewhat contradictory targets by the local
governments who are responsible for implementing the energy policies designed by the
central government.

In this research, we attempt to estimate the energy efficiency and its determinants in
regions of China from the perspective of provinces. Using data from 29 provinces in China
over the period of 2002–2014 and employing the nonradial directional distance function
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(NDDF) estimation approach, we first estimate the province-level energy efficiency. Based
on the estimated province-level energy efficiency, we then focus on the determinants of
energy efficiency in China. We pay special attention to energy price distortions because
a decrease in the level of price distortion can lead to the better allocation of resources. In
order to acquire a better understanding about energy efficiency, we estimate the dynamic
spatial relationship between energy efficiency and price distortion. That is, in addition to
the time-lag effect, we also consider the spatial-lag effect among the provinces of China. We
will estimate (i) the impact of last year’s energy efficiency on this year’s energy efficiency,
(ii) the impact of a neighboring province’s energy efficiency, and (iii) how the neighboring
province’s energy efficiency from last year has impacted a province’s energy efficiency
this year.

While a number of studies have considered the issues of energy efficiency in China,
few have considered the question of how price distortions affect energy efficiency [2,3].
This question is important because it offers a theoretical justification for market-oriented
reforms in China’s energy sector. By focusing on the link between price distortion and
energy price in China, this paper makes some important contributions to the existing
literature. First, we use a nonparametric NDDF approach to measure the province-level
energy efficiency in China, which appropriately locates our work within the framework
of the production with byproduct. That is, we take a holistic view, which takes into
consideration and incorporates good outputs, such as GDP, as well as bad outputs, such
as pollution, in estimating efficiency. The introduction of both good- and bad- outputs
provides a more comprehensive measure of energy efficiency. In addition, unlike the total-
factor productivity (TFP) approach that estimates the general level of productivity manifest
in the production, the NDDF approach has the advantage of estimating the productivity
of each input. It therefore allows us to focus on the energy efficiency while the impacts of
other inputs (labor and capital) are controlled for. Second, this paper attempts to identify
the determinants of energy efficiency from both time and spatial dimensions. Conventional
time-series analysis focuses on the autocorrelation effect, i.e., how the energy efficiency
of a region is determined by its own energy performance from the previous time periods.
The spatial effects, i.e., how the energy efficiency of a region is affected by its neighboring
regions, has long been ignored. In this paper, we use a spatial econometric model to
estimate the determinants of energy efficiency, where time–space effects are also considered.
Third, we attempt to examine the impact of energy price distortions on energy efficiency
from the perspective of provinces. Most existing studies focus on energy price distortions at
the national level, ignoring the large differences in economic development levels across the
Chinese provinces. This paper provides a comprehensive analysis of the effects of energy
price distortions using province-level data.

The remainder of this paper is organized as follows. Section 2 reviews the related
studies on China’s energy efficiency and price distortions. Section 3 discusses the dataset
and the spatial econometric panel model that is used to identify the determinants of energy
efficiency in China. The empirical results are reported and discussed in Section 4. Section 5
contains some concluding remarks and policy implications.

2. Literature Review

Energy efficiency has received a fair share of attention since the energy crisis of the
1970s [4,5]. Improving energy efficiency is regarded as being a promising way to maintain
or lift living standards under energy conservation policies and rising energy prices. The
so-called ‘energy-efficiency gap’ is defined as the difference between the amount of energy
that is actually consumed and the amount that should be consumed [6]. Allcott and
Greenstone [7] provided a comprehensive review on the theory of the energy-efficiency gap.

Some existing studies have attempted to explore energy efficiency in China. For
example, Wu et al. [8] estimated the impact of environmental regulation on green total-factor
energy efficiency of China by introducing environmental decentralization as a moderating
variable. They found that there is a U-shape relationship between environmental regulation
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and green total-factor energy efficiency. Based on the data of the Chinese renewable-energy
industry, Qiao et al. [9] found that the marketization of factor price is a decisive factor
for innovation efficiency. Similar studies include [10,11]. In order to study the impact
of market-oriented reforms on energy efficiency, Sheng et al. [12] used a nonparametric
input distance function. Within the context of an energy shadow price framework, they
estimated the energy efficiency of Chinese provinces. Lin and Du [13] used an NDDF
approach to estimate the regional energy consumption and carbon emission performance of
China from 1997 to 2009, finding evidence of regional imbalance. Lai et al. [14] developed a
macro-energy-efficiency index for China, which indicated a decrease in energy efficiency
in recent years. Considering the impact of heterogeneity, Zhang et al. [15] assessed the
energy efficiency of Chinese cities by conducting a stochastic frontier analysis. Li et al. [16]
adopted a hybrid methodology to evaluate and forecast the regional energy efficiency of
China. In general, alternative empirical approaches have been adopted to estimate China’s
energy efficiency; however, different conclusions have been drawn, depending on the
methodologies and data used.

Among all the explanations of energy efficiency in China, price distortion has received
special attention for two reasons: (i) the market-oriented reforms of energy policies play a
crucial role in China’s economy and (ii) the imbalance of development in different regions
across China produces different patterns of price distortion. Energy price is believed to
be crucial in the context of lagging energy marketization levels in the process of China’s
transition from a planned economy to a market economy [17]. The studies about energy
price distortions in China can be divided into two main categories. The first category
focus on energy price distortions produced by price regulations, such as subsidies from
the government, and define energy price distortion as the gap between the energy price
in China and the international energy price. Within this set of studies, Shi and Sun [2]
developed a two-sector general equilibrium (GE) model showing that regulatory price
distortions have a negative effect on the economy. Hou [3] examined the relationship
between energy price and energy efficiency by using linear and nonlinear effect analyses.
They found that the impact of energy price on energy efficiency in China is positive
in general.

The second category of studies identified in the literature dealing with energy price
distortions focus on production and efficiency. Within this group, an efficient energy price
is estimated by the value of the marginal output of energy. This approach corresponds to
the ‘efficient price’ defined by Lin and Jiang [18], i.e., the efficient price of a good is the price
at which the good is traded in a competitive international market or long-run marginal
production cost (LRMC).

It is notable that some studies on energy have suggested the potential spillover effects
among sectors. For example, Sadik-Zada et al. [19] addressed the production-linkage
effect of the petroleum sector and found that the energy sector could backward- and
forward-link to the rest of economy. Ziolo et al. [20] investigated the link between energy
efficiency and sustainable economy in OECD countries. To address the possible link
effects, we hypothesize that, besides the time-lag effect, there are also spatial-lag effects
of energy efficiency. Since our study aims to understand the role of price distortion on
energy efficiency, we will adopt the second approach—that is, we will gauge energy
price distortions from the perspective of efficiency from a production-function-based
approach. The estimation of energy efficiency and price distortion is discussed in the
following sections.

3. Data and Methodology

In this section, we discuss the data and methodology adopted to investigate the
determinants of energy efficiency in China. We first estimate the energy efficiency of China,
then discuss the energy price distortion along with other factors that may have an impact
on energy efficiency. Finally, a spatial econometric approach will be introduced.
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3.1. Energy Efficiency

In most of the literature, energy efficiency has been calculated by the production
function approach. The existing studies only considered the desirable output, i.e., the good
output. However, the consumption of energy in production is almost always accompanied
by pollutant emissions, i.e., the bad output. An environmental directional distance function
(DDF) approach was developed to take into account both the desirable and undesirable
outputs [21,22]. The main criticism of the DDF approach is the perceived likelihood that
efficiency will be overestimated. Liu et al. [23] found that when undesirable outputs are
included, energy efficiency is generally lower. Zhou et al. [24] developed a nonradial
directional distance function (NDDF) approach, which relaxed the assumption about the
radial efficiency measure in instances where slack exists. Another merit of the NDDF
approach is that it allows one to estimate the productivity of each input, instead of a general
productivity of all the inputs. Following Zhou et al. [24], we consider the production
function as follows:

P = {( x, y, b ) | x ≥ Xλ, y ≤ Yλ, b ≥ Bλ, λ ≥ 0} (1)

where X= (x1, · · · xn) ∈ Rm×n are inputs, Y= (y1, · · · yn) ∈ Rs×n are desirable outputs,
and B= (b1, · · · yn) ∈ Rk×n are undesirable outputs. λn∗1 is a vector of constants. Using
the production function, as shown in Equation (1), the NDDF is defined as:

→
D(x, y, b; g) = sup{w T β: (x, y, b)+g·diag(β) ∈ P

}
(2)

where diag is the diagonal matrices; g denotes the directional vector;
wT = (wk, wl , wE, wgdp, wSO2 , wNOX , wsolid)

T is the normalized weight vector of capital
(k), labor (l), energy (E), output (GDP), industrial sulfur dioxide emission (so2), industrial
nitrogen oxide emission (NOX), and industrial solid-waste emission (solid), in which capi-
tal, labor, and energy are the basic inputs in the production. GDP indicates the good output,
while the three emissions represent the bad output (Unlike country-level studies that focus
on greenhouse gas, in this study, we adopted industrial sulfur dioxide emissions, industrial
nitrogen oxides emissions, and industrial solid waste emissions to measure the bad outputs
of local energy consumption). βT = (βk, βl , βE, βgdp, βSO2 , βNOX , βsolid)

T ≥ 0 indicates the
inefficiency measures of the inputs.

Since capital and labor inputs do not lead directly to emissions, we therefore set wk = 0
and wl = 0. In addition, the sum of the weight vectors equals a unit; therefore, we have
g = (0, 0,−gE, ggdp,−gSO2 ,−gNOX ,−gsolid) and wT = (0, 0, 1/5, 1/5, 1/5, 1/5, 1/5)T . The
NDDF values for the provinces are calculated by solving the DEA problem as follows:

→
D(x, y, b; g) = max wEβE + wgdpβgdp + wSO2 βSO2 + wNOX βNOX + wsolidβsolid (3)
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s.t.
N
∑

n=1
λnKn ≤ Kn′

N
∑

n=1
λnlaborn ≤ laborn′

N
∑

n=1
λnEn ≤ En′ − βEgE

N
∑

n=1
λngdpn ≥ gdpn′ + βgdpggdp

N
∑

n=1
λnSO2n ≤ SO2n′ − βSO2 gSO2

N
∑

n=1
λnNOXn ≤ NOXn′ − βNOX gNOX

N
∑

n=1
λnsolidn ≤ solidn′ − βsolidgsolid

λn ≥ 0, n = 1, 2, · · · , N; βE, βgdp, βSO2 , βNOX , βsolid ≥ 0

Following Cheng and Zervopoulos [25], we assume ∑ wi = 1, in which wi ⊂ wT .

The most efficient production takes place when
→
D(x, y, b; g) = 0. We denote the op-

timal solution for the most efficient production by β∗E and β∗gdp. Therefore, β∗ it,E and
β∗ it,gdp are used to denote the optimal solution for the most efficient production of province
i in year t. Similar to Zhou et al. [24] and Cheng and Zervopoulos [25], the energy efficiency
of the provinces is calculated as follows:

E f f iit =
(Ei t − β∗ it,EEit)/(GDPit + β∗gdpGDPit)

Eit/GDPit
=

1− β∗ it,E

1 + β∗ it,gdp
(4)

In Equation (4), energy efficiency is mainly calculated by the estimated β∗ it,E and
β∗ it,gdp in Equation (3), in which β∗ it,E is the optimal solution for the most efficient produc-
tion of energy. Specifically, β∗ it,E and β∗ it,gdp are calculated by solving the maximization
problem, as described by Equation (3), and a DEA window model is adopted in the calcula-
tion. Xu et al. [26] had a comprehensive review on the literature regarding energy efficiency
evaluation based on DEA approach. In our paper, adopt DEA window model which
concerns the panel data comparison [24,27]). In other words, energy efficiency is estimated
by the shadow cost of energy, while the good and bad outputs are both considered. This
measure is similar to the estimation of the energy intensity improvement achievement ratio.
Due to missing data and their small economic scale, some provinces such as Hainan, Tibet
are dropped from our sample. We collected data for twenty-nine provinces of China from
2002 to 2014, one by one, and calculated the energy efficiency using the NDDF approach.
The data on capital and labor inputs, as well as GDP, were collected from the China Statisti-
cal Yearbook. The data on energy consumption and pollution were collected from the China
Energy Statistical Yearbook and the China Environmental Statistical Yearbook, respectively.

3.2. Energy Price Distortions and Other Determinants

This study attempts to investigate how energy price distortions impact energy effi-
ciency. Therefore, the estimation of energy price distortions is a critical task. Energy price
distortions are estimated by establishing the discrepancy between the real and nominal
return on energy input. The basic idea is that the real return on energy input should equal
the value of its marginal productivity. However, the nominal return on energy, i.e., the
price of energy, is determined by other factors as well, for example, by subsidies, taxes, and
so on. Therefore, the price distortion (dist) is measured by the ratio of the real return to
the nominal return. When dist is equal to one, the market return is equal to the real return,
which simply means that there is no distortion in the energy price. When dist is less than
or greater than one, it means that the real return is either lower or higher, respectively, than
the market price of energy. In other words, a price distortion exists.
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Unlike the estimation of energy efficiency, where pollution is considered as a joint
output in the estimation of value return on the input, we use a Cobb–Douglas (C-D)
production function approach [28] to estimate the price distortion of energy. Capital (k),
labor (l), and energy (E) are employed in the production:

Yit = Aitk
αit
it lβit

it Eγit
it (5)

where i and t represent province and time, respectively. A is production technique, and α,
β, and γ are the output elasticity of each input. Taking the logarithm form, we get

ln Yit = c + αit ln kit + βit ln lit + γit ln Eit + µit (6)

The estimated results of Equation (6) are used to calculate the value of the marginal
product of energy:

MPit = cγitk
αit
it lβit

it Eγit−1

it = γitYit/Eit (7)

where the superscript represents the estimated coefficient. In addition to the data on
capital, labor, and output, as discussed, we also use data on energy consumption, which is
measured by 10 tCEs (ton of coal equivalent).

The energy price distortion is calculated as

distit = MPit/eit (8)

where eit is the market price of energy of province i in year t.
In order to estimate the price distortion, we collect the prices of main energy sources,

including coal, coke, fuel oil, gasoline, diesel fuel, natural gas, and electricity, as well as
the fuel and power purchasing price from 36 major Chinese cities. Because the prices of
the main energy sources are only available for 2003, and the data on the fuel and power
purchasing prices are available for other years, we adopted the following steps to manage
this: first, the year’s average prices for the main energy products of 2003 were standardized;
we then obtain the baseline year’s (2003) weighted-average price of energy by taking the
share of each energy product as weights; the final step was to calculate the energy price
of other years by taking the base year’s energy price index, as well as the fuel and power
purchasing price, and the other years’ fuel and power purchasing prices.

Besides energy price distortion, energy efficiency also depends on a number of other
factors. For example, with economic development, more advanced technologies will be
introduced, which may change the energy efficiency. Meanwhile, the changing economic
structure will alter the energy consumption of different sectors, which leads to the change
in energy efficiency on an aggregated level. In addition, market-oriented reforms in China
are believed be to a key factor in improving efficiency via the reallocation of resources.
Therefore, we also consider the impact of (i) the level of economic development, (ii) the
structure of economy, and (iii) the market-oriented determinations of energy efficiency.

As economic development across the provinces of China is not uniform, the level of
development may influence the technologies and consumption of energy. Economic devel-
opment is measured by GDP per capita (GDP_pp). In addition, technological development
(tech) is believed to have a direct impact on energy efficiency. We used the number of
patents authorized by the government in each province as a proxy for the technological de-
velopment of that province. Then, we considered the structure of the economy by including
the industrial structure (stru), market openness (open), and level of urbanization (urban) in
our estimations. Industrial structure (stru) is measured by the share of the output of tertiary
industry in the total output. Since tertiary industry mainly provides service, it is sensible to
conjecture that tertiary industry leads to high energy efficiency. Market openness (open) is
measured by the share of international trade in the GDP because empirical studies suggest
that, as the economy becomes more open, technique spillover effects and international com-
petition will lead firms to operate more efficiently [29]. The level of urbanization (urban),
which is measured by the share of urban population in each province, is also included
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as a control variable. Some recent studies have indeed found that there is a correlation
between energy efficiency and market-oriented reforms in China [18]. Following in this
vein, we also included the share of labor employed by state-owned enterprises (SOE_l)
in the total population and the fiscal expenditure in local output ( f iscal) to depict the
strength of the local governments’ interventions in the markets. Data are collected from the
China Statistical Yearbooks and the statistical yearbooks of the provinces during the sample
period. Data are deflated to real values. The descriptive statistics are presented in Table 1.

Table 1. Descriptive Statistics.

n Mean SD Min p25 p50 p75 Max

Effi 377 0.771 0.205 0.321 0.609 0.759 1.000 1.000
dist 377 0.241 0.143 0.043 0.137 0.203 0.304 0.838

SOE_l 377 0.608 0.124 0.269 0.517 0.609 0.716 0.837
open 377 0.308 0.492 0.001 0.021 0.077 0.367 2.358
stru 377 0.393 0.077 0.274 0.349 0.383 0.411 0.779

GDP_pp 377 9.324 0.817 7.169 8.666 9.306 9.910 11.278
tech 377 8.683 1.557 4.248 7.635 8.622 9.808 12.506
fiscal 377 0.215 0.162 0.079 0.135 0.174 0.228 1.287
urban 377 0.486 0.152 0.226 0.387 0.452 0.560 0.898

Data are collected and organized by authors. All variables are presented in logarithmic form, except the variables
in percent form.

3.3. Methodology

The existing studies suggest a possible spatial connection between the regions of
China for energy consumption [30]. Hence, we used a spatial correlation test to identify the
existence of spatial autocorrelation of energy efficiency among provinces. Global Moran’s
I is a widely used index to gauge the spatial correlation. The result of a simple OLS
estimation (Moran’s I = 0.180) suggests that there is a positive spatial correlation for energy
efficiency among the provinces of China, that is, one region’s energy efficiency has an
impact on the neighboring regions’ energy efficiency, and vice versa. We therefore adopt a
spatial econometric model in both static and dynamic forms.

Over the last decades spatial econometric models have become widely used tools
for measuring spatial spillover effects [31–33]. As pointed out by LeSage and Pace [31],
compared with the spatial-lag model (SLM) and the spatial-error model (SEM), the static
Durbin model (SDM) performs better in obtaining the unbiased estimates, even if the true
data-generating process fits SLM or SEM. Therefore, we started analyzing the determinants
of energy efficiency for 29 provinces in China by adopting a static spatial Durbin model
(SDM). Specifically, we conducted the estimation by regressing the energy efficiency of
Chinese provinces with a set of explanatory variables from the current period, including
both of the key factors of concern, i.e., the energy price distortion and the control variables.
Besides the self-effect, the spatial-lag effect was also considered. That is, we conjecture
that the energy efficiency of an individual province is not only determined by its own, but
also by the adjacent regions, due to the economic and geographic connection. The SDM
specification can be estimated in the vector form as:

E f f iit = δWijE f f iit + βdistit + θWijdistit + ψXit
+χWijXit + µi+λt+νit,

νit = γWijvjt + εit

(9)

where E f f iit is an N ∗ 1 vector that consists of energy efficiency in each province (i =
1, 2, . . . , N) in year t (t = 1, 2, . . . , T). That is, there are t elements in E f f iit and each
element is a vector that contains n elements E f f iit. It allows us to estimate the spatial
spillover effects among individuals at the same time, along with the time-lag effect among
individuals. Similarly, distit is an N ∗ 1 vector that consists of the energy price distortions
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in each province. W is an N ∗ N matrix that indicates the spatial relationship between
provinces; its factor Wij measures the geographical relationship between provinces i and
j, where Wij = 1 means that provinces i and j are adjacent, otherwise, Wij = 0. Xt is an
N ∗ K vector representing the value of the K control variable (The details of the vector
setting [34]).

The above regression equation takes the spatial-lag effect into account. However, in
real economies, in addition to the spatial-lag effect, a time-lag effect, along with a time–
space interaction effect, may also exist. In the second step, the spatial-lag specification is
then extended to a time–space-lag specification, i.e., dynamic spatial Durbin model [34],
as follows:

E f f iit = τE f f ii,t−1 + δWτE f f iit+ηWE f f ii,t−1 + βdistit
+θWdistit+ψXit+χWXit+µi+λt+νit, (10)

The main differences between Equations (10) and (9) are the terms τE f f ii,t−1 and
ηWτE f f ii,t−1. τE f f ii,t−1 captures the time-lag effect of energy efficiency, that is, last year’s
energy efficiency’s impact on this year’s. ηWE f f ii,t−1 denotes the interaction of time- and
spatial-lag effects, that is, the energy efficiencies of the neighboring provinces from last
year also have an impact on those provinces’ energy efficiencies this year. This extension
allows us to estimate the dynamics of energy efficiency, with which we are concerned. It
is notable that alternative estimation approaches, such as the nonlinear panel approach
and the ARDL-based approach, which consider pooled mean groups or dynamic fixed
effects, could be used in the estimation [35–37]. Sadik-Zada [38] used the pooled mean
group and nonparametric panel analyses to investigate the drivers of carbon emissions
in fossil-fuel-abundant settings. In our study, we used the general penal estimations. The
estimation results appear in the following section.

4. Estimation Results and Discussion
4.1. Static Spatial Model

The estimation results of the static spatial model, as specified in Equation (9), are
reported in Table 2. Four specifications have been estimated, using the pooled ordinary
least (POLS) model as a baseline model. Elhorst [39] indicated, for adjacent observations
in an unbroken area, a fixed-effects (FE) specification is more appropriate than a random-
effects (RE) specification. In this study, the samples almost cover all the provinces in China.
In addition, the results of the Hausman test confirm that an FE model fits better than an RE
model. Therefore, we adopted an FE specification by taking the spatial FE, time FE, as well
as these two together into consideration, respectively.

Comparing the estimation results reported in Table 2, the results of the log-likelihood
test suggest the best performance of a space–time FE model among all the four specifications.
At the same time, the results of the Wald and LR tests indicate that the spatial Durbin model
(SDM) cannot be reduced to spatial-lag or spatial-error models [34]. Based on the estimation
of the space–time FE model, energy price distortions (dist) appear to have a positive and
significant impact on energy efficiency. This result is somewhat surprising since it implies
that a high price distortion in a province leads to high energy efficiency. At the same
time, an energy price distortion (Wdist) in an adjacent province has a negative effect on
energy efficiency, but this effect is not very significant. Another noteworthy finding is that,
although most of the control variables have insignificant effects on a province’s energy
efficiency, other provinces’ control variables appear to have a significant impact on their
energy efficiency. This result suggests the presence of a positive spillover effect.
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Table 2. Estimation results of the static spatial model.

Dependent Variable: Effi (Energy Efficiency)

POLS Spatial FE Time FE Spatial and Time FE

dist 0.567 *** 0.309 ** 0.581 *** 0.316 **
SOE_l −0.040 −0.019 0.054 0.034
open 0.045 * 0.072 0.02 0.074
stru 0.327 *** −0.177 0.561 *** −0.029

GDP_pp 0.007 0.006 0.009 0.004
tech 0.034 *** 0.004 0.040 *** 0.007
fiscal −0.061 0.014 −0.071 0.016
urban −0.110 0.148 −0.168 0.083
Wdist 0.203 −0.653 *** 0.21 −0.214

WSOE_l 0.841 *** 0.148 0.991 *** 0.330
Wopen −0.056 −0.279 *** −0.167 *** −0.258 ***
Wstru 0.725 *** 0.414 ** 1.198 *** 0.894 ***

WlnGDP_pp −0.031 ** 0.057 *** −0.030 0.055 ***
Wlntech −0.066 *** −0.055 ** −0.036 ** −0.033 **
Wfiscal 0.065 0.026 0.059 0.029
Wurban −0.000 −0.031 0.014 −0.631
WEffi 0.324 *** 0.151 ** 0.153 ** 0.092

R-squared 0.545 0.853 0.578 0.863
Log-likelihood 206.570 423.246 224.727 438.106

Wald_spatial_lag 49.796 *** 32.117 *** 53.137 *** 29.916 ***
LR_spatial_lag 46.814 *** 30.499 *** 50.292 *** 32.614 ***

Wald_spatial_error 44.730 *** 32.048 *** 57.010 *** 29.800 ***
LR_spatial_error 44.978 *** 31.975 *** 53.561 *** 32.682 ***

* significant at the 10% level; ** significant at the 5% level; *** significant at 1% the level.

4.2. Dynamic Spatial Model

While the estimations from a static model yield some interesting results, such a
model may suffer from potential endogeneity arising from the omitted variables and/or
model mis-specification. In order to solve the potential endogeneity problem, we also
used a dynamic specification. This involves introducing the dependent variable lagged
in time (E f f it−1) along with the dependent variable lagged in space and time (WE f f it−1)
as explanatory variables. In addition, we employed the bias-corrected quasi-maximum-
likelihood (BCQML) approach developed by Lee and Yu [40] for dynamic spatial panels to
estimate the dynamic spatial Durbin model (DSDM). The estimation results are reported in
Table 3.

First, a higher log-likelihood ratio of dynamic specification indicates that the dynamic
specification fits better than the static specification. The sum of the estimated parameters of
the dependent variables lagged in time (τ), in space (δ), and in time with space (η) is 0.599,
indicating the stability of the model. As reported in the first column of Table 3, the positive
and significant coefficient of the dependent variable lagged in time (E f f it−1) confirms the
autocorrelation of energy efficiency in China. That is, for a province with high energy
efficiency last year, it is quite possible to maintain its high energy efficiency this year. In
contrast to the static model estimation results, with the introduction of the self-lag effect into
the estimation, the dynamic model estimation suggests that energy price distortions (dist)
have a negative impact on energy efficiency in China. This implies that provinces where
the energy price distortion is small are likely to have a higher level of energy efficiency,
which suggests that market-oriented reforms have helped to improve energy efficiency in
China. This result validates the general idea that lower energy price distortions, i.e., the
higher marketization, will lead to higher efficiency, which can be explained by the fact that
the low price distortion of energy encourages firms to use energy efficiently. This result
is important from a policy perspective. For this sense, the dynamic model has a better
explanatory power than the static specification.
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Table 3. Estimation results of the dynamic model.

Dependent Variable: Effi (Energy Efficiency)

Coefficient
Neighbors’
Estimates

(WX)

Short Run Long Run

Direct
Effect

Indirect
Effects

Total
Effects

Direct
Effects

Indirect
Effects

Total
Effects

dist −0.299 *** 0.676 *** −0.319 *** 0.685 *** 0.367 −1.318 2.144 * 0.827
SOE_l 0.004 0.479 *** −0.012 0.585 ** 0.574 ** −0.234 1.511 *** 1.277 *
open −0.009 −0.110 * −0.028 −0.138 −0.166 ** −0.076 −0.305 −0.381 *
stru −0.141 0.618 *** −0.089 0.622 * 0.534 −0.502 1.671 * 1.169

GDP_pp 0.004 0.032 ** 0.008 0.037 0.045 0.009 0.080 0.089 *
tech −0.014 0.050 −0.016 0.038 0.022 −0.080 0.134 0.054
fiscal 0.009 −0.008 0.011 0.003 0.014 0.027 −0.011 0.016
urban 0.312 −0.481 0.25 −0.556 −0.306 1.039 −1.726 * −0.687

Effit−1 (τ) 0.648 ***
WEffit (δ) 0.165 **

WEffit−1 (η) −0.214 *
R-squared 0.911

Log-likelihood 478.923
Wald_spatial_lag 23.793 ***
Wald_spatial_error 25.740 ***

(τ + δ + η) 0.599

* Significant at the 10% level; ** significant at the 5% level; *** significant at 1% the level.

As for the spatial effect, the positive and significant effect of the spatial-lag term
(WE f f i) suggests a spillover effect, i.e., the provinces that are adjacent to highly energy-
efficient provinces tend to use energy efficiently in the same period. The spillover effect
could be caused by the technique spillover, etc. However, there exists a negative spatial
dependence of the time-lag term (WE f f it−1), that is, a province’s intent to have high energy
efficiency if its neighboring province consumed energy with low efficiency last year. We
interpret this phenomenon by a ‘warning effect’, that is, if a province observed its neighbor
having low energy efficiency last year, it is warned and learns from the experience by trying
to improve its own efficiency the following year.

Meanwhile, the positive and significant spatial dependence on price distortion (Wdist)
confirms the ‘warning effect’, as discussed. According to the estimation results, if adjacent
provinces suffered from high price distortions, a province would use energy more efficiently
in the following year. The phenomena appear irrelevant, but as our discussion about
the ‘warning effect’ suggests, a province’s price distortion last year, which leads to its
low energy efficiency last year, is a warning for its neighboring provinces this year, and
leads adjacent provinces to use energy efficiently this year. Hence, last year’s energy
efficiency of a province will have an impact on the energy efficiency of adjacent provinces
in two opposite ways: (i) by the ‘warning effect’, because low energy efficiency, which
is accompanied by its own high price distortion, will send a warning to other provinces
and encourage other provinces to use energy more efficiently in the following year; and
(ii) by the ‘spillover effect’, because a province with low energy efficiency last year may use
energy at low-efficiency levels, which will lead to low energy consumption efficiency in the
adjacent province in the following year. The real impact of an energy price distortion on
the neighboring province’s energy efficiency next year is determined by the result of these
two effects, as shown in Figure 1. As to the control variables, we found that, although most
of the control variable impacts are insignificant, their spatial-lag terms are significant. This
could be explained by the close economic links among regions in China.
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Figure 1. Time–space-lag effects, spillover effect, and warning effect.

4.3. Short- and Long-Run Effects

Our hypothesis is that spatial dependence exists among Chinese provinces and the
estimation results validate the spatial-lag effects. Accordingly, the partial impact of ex-
planatory variables should be interpreted by taking the spatial dependence into account.
Following Elhorst et al. [34], the short-run effect, by taking the spatial effect into account,
can be calculated by Equation (11), while the long-run effect, which also considers the
time-lag effect, can be calculated by Equation (12) as follows:[

∂E(Y)
∂x1k

. . .
∂E(Y)
∂xNk

]
= (I− δW)−1[βkIN + θkW] (11)

[
∂E(Y)
∂x1k

. . .
∂E(Y)
∂xNk

]
= [(1− τ)I− (δ + η)W]−1[βkIN + θkW] (12)

where the direct effects that measure own-economy effects are the diagonal elements and
the indirect effects that measure cross-economy effects are the off-diagonal elements [31,34].
Following this approach, we estimate the direct and indirect short-run and long-run effects,
respectively. The results are reported from columns (3) to (5) and (6) to (8) in Table 3.

First, for all the explanatory variables, the coefficient of the short-term effect is lower
than the ones for the long-term. This result holds for direct, indirect, and total effects. It
means in the long-run the marginal effects will accumulate. Secondly, the negative direct
impact of energy price distortion on energy efficiency indicates that the provinces with
low energy price distortions intend to use energy more efficiently. This result confirms the
principle that, in most situations, the market is the most efficient way to allocate resources.
In contrast, the positive indirect effects suggest that if a province demonstrates an energy
price distortion, its adjacent provinces are likely to have high energy efficiency. This result
holds for different frequencies (short- and long-run). This result also confirms the ‘warning
effect’, as discussed above.

4.4. Robustness Checks

To enhance the robustness of our empirical results, we used standardized energy
consumption per GDP to measure the energy efficiency. The new measure of energy
efficiency is denoted by E f f i1 and the results for the robustness test are reported in
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Appendix A (Table A1). The results of our robustness test revealed that energy efficiency,
which is measured by energy consumption per unit output, has strong autocorrelation
and spatial dependence. For the provinces in China, energy price distortion is negatively
correlated with their own energy efficiency, which confirms our conjecture that market-
oriented price reforms encourage economies to use energy more efficiently. To sum up,
the results of our robustness test confirm the previous findings, in which a region’s energy
efficiency is determined by its own energy efficiency from last year, along with the adjacent
provinces’ energy efficiencies and energy price distortions.

5. Conclusions and Policy Implications

This paper attempts to examine the determinants of energy efficiency of regions in
China by paying special attention to the impact of energy price distortions. Unlike the
existing studies that focus on the inter-region determinants, we consider the intra-region
effects, i.e., the spatial impact among the provinces in China. Specifically, using data
from 29 provinces over the 2002–2014 period and employing the nonradial directional
distance function (NDDF) approach, we first estimated the province-level energy efficiency
in China. This was followed by the estimation of static as well as dynamic spatial-regression
models that aimed to evaluate the impact of energy price distortions on energy efficiency
in China. We focused on the impact of energy price distortions, while the level of economic
development, technological development, and government intervention in local economies
are among the control variables included in the spatial regressions.

Empirical estimation yielded some very interesting results. First, we found that energy
efficiency in a province is significantly impacted by the performance of the neighboring
provinces. In other words, we found evidence of energy-efficiency spillover effects, where
increased energy efficiency in a province was seen to increase energy efficiency in the
neighboring provinces in the same year. We also found evidence of a ‘warning effect’,
where a decrease in energy efficiency in one province serves as a warning to its neighbors.
As a result of this warning, the neighboring provinces attempt to improve their energy
efficiency in the following year. Second, energy price distortions (as measured by the
difference between the real and shadow price) were found to have a significant effect on
energy efficiency. The dynamic model estimation results demonstrate that provinces with
high energy price distortions use energy inefficiently. This result provides support for
market-oriented reforms in China’s energy sector. Third, we found that energy efficiency
is strongly autocorrelated. This implies that energy efficiency in a province in the current
period has a significant impact on energy efficiency in the next period. Finally, estimation of
the spatial econometric model suggests that energy efficiency in a province is also affected
by factors that affect energy efficiency in adjacent provinces (such as the level of economic
development of the adjacent provinces). The main results were found to be robust and
offer an alternative measure of energy efficiency.

The results presented in this paper have some important policy implications. First, it
is highly desirable that policy makers acknowledge the fact that energy price distortion
does have a significant impact on energy efficiency in China. For economies in transition,
such as China’s, the market-oriented reforms in the energy sector that aim to reduce energy
price distortions should be given serious consideration when setting their energy policies.
This policy implication is especially important for the central government because it is the
major policy maker setting the blueprints for national energy policies.

Second, based on the results of spatial regression, provincial government policy
makers, as well as the energy sector practitioners, need to pay more attention to the
broader social and economic factors—i.e., there is an urgent need to think beyond one’s
own region (province). The empirical results show that the adjunct provinces’ energy
efficiency and energy price distortions have an impact on a province’s energy efficiency
through the ‘spillover effect’ and the ‘warning effect’. The interaction among regions’
energy performances is mainly driven by the market. Therefore, the local governments
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who are implementing the energy policies, should further implement market-oriented
reforms while having a broader outlook.

Lastly, as energy efficiency has time-lag effects and the long-run effect is larger than the
short-run effect, it is sensible to evaluate the results of policies in the long run. Meanwhile,
it is suggested that the government should set more stable energy policies in the long run.

We are aware of the limitations created by being dependent on the data until 2014.
Since 2015, China has formally begun implementing an updated Environmental Protection
Law (“the China EPL”), which has had a significant impact on China’s energy market.
Future research has the opportunity to consider the role of changes in policies and compare
the impact of market-oriented factors, such as price distortions, and changes in policies on
energy efficiency.
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Appendix A

Table A1. Robustness test.

Dependent Variable: Effi1 (Energy Efficiency)

Explanatory Variables Coefficient Explanatory Variables Coefficient

dist −0.689 *** Wdist 0.671 ***
SOE_l −0.064 WSOE_l 0.149
open −0.006 Wopen 0.083 *
stru −0.089 ** Wstru −0.238 **

GDP_pp −0.005 WGDP_pp 0.002
tech −0.010 Wtech 0.017
fiscal 0.014 W f iscal −0.014
urban −0.146 Wurban −0.344

Effi1t−1 (τ) 0.691 ***
WEffi1t (δ) 0.398 ***

WEffi1t−1 (η) −0.122
R-squared 0.993

Log-likelihood 695.932
Wald_spatial_lag 31.342 ***

Wald_spatial_error 44.929 ***
(τ + δ + η) 0.967

* Significant at the 10% level; ** significant at the 5% level; *** significant at 1% the level.
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