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Abstract: Access to energy resources and broadly understood energy security are some of the critical
factors influencing the economic development of countries. This article deals with the problem
of assessing the energy security of countries, considering this problem in various periods of time,
examining the past, present and forecasted future conditions at the same time. For this purpose, the
Dynamic Multi-Criteria Decision Making (DMCDM) methodology was developed and applied, based
on the classic and fuzzy Multi-Criteria Decision Making (MCDM) methods and the International
Energy Security Risk Index (IESRI). In particular, the Simple Additive Weighting (SAW)/Fuzzy SAW
and New Easy Approach to Fuzzy PROMETHEE II (NEAT F-PROMETHEE) methods were used.
These methods are significantly different from each other in the calculation procedures used. The
study showed that methodological differences between these methods cause large differences in the
results of the assessment of energy security of countries. However, both methodological approaches
indicated the high energy security of New Zealand, Norway, Denmark and the United States, and
the very low security of Ukraine, Thailand and South Korea. The results of the assessment of energy
security of countries over the 2015–2025 period are the main practical contribution of this article. The
scientific contribution of the article consists in developing a framework for dynamic energy security
assessment that allows for the aggregation of many periods of time and that defines the aggregation
strategies, capturing data from the past, present and future state forecasts while taking into account
changes in the weights of criteria and changes in the sets of alternatives and criteria.

Keywords: energy security assessment; Dynamic Multi-Criteria Decision Making (DMCDM); energy
forecasting; international energy security risk index

1. Introduction

Energy is one of the factors necessary for the economic and social development of
states. Therefore, along with the economic development of individual countries, their
energy needs also increase. According to the forecasts of the U.S. Energy Information
Administration (EIA), global energy consumption, and thus energy demand, is expected
to increase by 50% by 2050 compared with 2018 [1]. Therefore, the critical issue is energy
security, in its basic meaning understood as uninterrupted availability of energy sources at
an affordable price [2]. However, at present, the concept of energy security is understood
more broadly and includes the security of supply and use, economic security, as well
as environmental security [3]. An important element of energy security is the security
and cyber security of critical energy infrastructure [4], which has a fundamental impact
on energy distribution. In the context of the security of energy production, the growing
importance of the circular economy is visible [5], which can at least partially solve the
problems of scarcity of energy resources and pollution related to energy production. Sim-
ilarly, renewable energy sources [6,7] and alternative, less conventional sources, such as
shale gas [8], are also important for the security of energy resources and the environment.
Therefore, it is clear that the problem of research energy security is, in fact, a problem in the
field of sustainability because there are environmental, economic and social factors.
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Energy security is largely determined by political, economic, social and environmental
issues. The political issue having a negative impact on energy security is, first of all, the
dependence of many European countries on energy sources imported from Russia. Russia
is one of the leading exporters of oil, gas and coal, which entails high political risk [9]. This
risk is confirmed by the huge negative impact that the armed conflict between Russia and
Ukraine has had on supply chains and the availability of fossil fuels [10]. The social issue
is certainly the COVID-19 pandemic and the negative economic consequences associated
with it, caused by, for example, lockdowns, occurring mainly in the initial period of the
pandemic. The pandemic has caused drastic fluctuations in energy demand, oil price
shocks, disruptions in energy supply chains and has hampered energy investment [11].
As for the environmental issues, the global concern about the environmental and climatic
consequences of energy production and consumption has a big impact on energy secu-
rity [12]. As a result of these concerns, the energy transformation of some economically
developed countries is underway, consisting in increasing investments in renewable en-
ergy sources (RES) and phasing out energy production from coal. Increased investments
in RES and record levels of CO2 emission allowance prices has resulted in a very high
increase in electricity prices for end users, which indirectly adversely affects the security of
energy supply [13].

In such a dynamically changing political and economic environment, states should ac-
curately read the changes taking place and effectively prevent threats to energy security [14].
Therefore, measuring energy security with the use of appropriate methods and without
ignoring various aspects and multidimensional interdependence is of critical importance,
enabling an objective assessment using reliable numerical indicators [15]. Since energy
security is difficult to measure with a simple index [16], measurements are usually made
with complex indices that can capture multidimensionality and give a broader picture of
the problem [17]. Unfortunately, the assessment of energy security is usually based on
historical data, while only a few studies contain forecasts for the future as such forecasts
are associated with a high degree of uncertainty [18]. Another problem is the fact that
usually energy security indices do not allow for evaluation over time [12]. Only a few
studies address the problem of assessing energy systems in the time dimension. Franki
and Višković [19] proposed an optimization model that predicts the energy security of
south-eastern European countries in 2021. In turn, Wang and Zhan [20] examined the
sustainability of renewable energy in 18 European countries and trends in each of these
countries for a period of 10 years (2007–2016). The basic limitation of this research is that
they only capture the time dimension in the past or the present. However, these studies do
not take into account the forecast of a slightly more distant future. Moreover, such studies
lack a comprehensive assessment of energy security over a longer period of time. In other
words, such approaches make it possible to assess, for example, 2014, 2015 and 2016, but
they do not allow to collectively assess the 2014–2016 period. In addition, it should be
noted that the study [20] does not address the topic of energy security at all. However, in
the study [19], only a forecast for 2021 was included, not taking into account earlier or later
years. Meanwhile, such an assessment of a longer period of time makes it possible to track
changes in the state of energy security, which enables the development of more effective
scenarios for further actions to improve the energy situation of a given country or area [3].
Therefore, there is a research gap related to the shortage of approaches that take into
account the assessment of the energy security of countries in a broader time perspective.

In connection with the identified research gap, the aim of the research is to develop
a framework for assessing the energy security of countries, allowing for the evaluation
of the current, past and forecasted future state. An important element of the research is
the possibility of aggregating assessments from different periods of time into one global
assessment. Due to the complexity of the issue of energy security, the framework is
based on the Dynamic Multi-Criteria Decision Making (DMCDM) approach, allowing the
capture of the dynamics of assessments over time. At the same time, the use of the Multi-
Criteria Decision Making (MCDM) paradigm allows the assessment to include uncertainty
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and sensitivity analyses [21]. These analyses increase the reliability of the results of the
safety assessment [17]. The development of such a complex framework, based on the
methodological foundations of DMCDM and verifying it with real data, is a contribution of
the article. The second section presents approaches to DMCDM used in the literature. The
third section contains the basic research assumptions and a ready framework for energy
security assessment along with a discussion of data sources. In the fourth and fifth sections,
the obtained results are presented along with a critical discussion. The article ends with the
research conclusions presented in the sixth section.

2. Dynamic Multi-Criteria Decision Making

The DMCDM paradigm is an extension of the classic MCDM approach. MCDM
methods are used to make and support decisions on the basis of many criteria determining
the acceptability of individual alternatives, taking into account the complexity of the
decision-making process, conflicting criteria, scenarios, preferences of decision makers,
sources of uncertainty and time frames [22]. The MCDM paradigm assumes that the
above parameters of the decision problem, and in particular the alternatives, criteria and
preferences of decision makers, are constant and stable [23]. However, most of the real
decision problems are dynamic. In such problems, the final decision is made at the end of a
certain research process in which alternatives and criteria may change [24]. In the practice
of dynamic decision-making environments, the alternatives, criteria and preferences of
decision-makers evolve over time; therefore, various continuous responses are needed
over time [25]. In many dynamic decision problems, the set of alternatives is not fixed,
and new alternatives can and should be constantly created and suggested. Likewise,
the set of criteria used to measure performance may be a function of time and may also
depend on individual decision makers. The preferences and the perception of the possible
consequences of decisions may also change, and above all, the input information may
change, affecting the perception of all the above-mentioned decision-making elements [23].
The classic MCDM paradigm is not able to capture these dynamics because it assumes
that the decision-maker must identify fixed sets of criteria and alternatives before starting
the ranking [24].

DMCDM is used in a wide variety of decision problems and fields as an extension of the
MCDM paradigm. Zulueta et al. [25] applied DMCDM to the problem of project life cycle
risk assessment. They extended the MCDM to include the dynamics of the decision problem
by calculating the dynamic risk exposure and dynamic discriminative index for subsequent
periods. Chen et al. [26], Ziemba et al. [27], Chen and Li [28], Li et al. [29], Yang et al. [30],
and Polomčić et al. [31] proposed a dynamic approach to MCDM in their research by
enabling the aggregation of assessments of alternatives over many consecutive periods of
time. Moreover, all of these researchers except Polomčić et al. [31] postulated the use of
different aggregation strategies, depending on which period would be the most important.
Chen et al. [26] developed an approach to DMCDM in the problem of disaster management.
Ziemba et al. [27] extended MCDM to include dynamics in the problem of online marketing
campaign management. Chen and Li [28] and Li et al. [29] took up the problem of choosing
the target of financial investments. Yang et al. [30] applied DMCDM in energy metering
device selection. Polomčić et al. [31] considered the problem of groundwater management
scenarios evaluation. Yan et al. [32], trying to solve the problem of vendor selection, proposed
to study the trend of changes in alternatives over time and take this trend into account
when aggregating subsequent periods of time. Keshavarz-Ghorabaee et al. [33], considering
the subcontractor evaluation problem in a construction project, proposed extending the
MCDM paradigm to capture changes in collections of alternatives and decision makers, and
to aggregate ratings from different time periods. Su et al. [34], investigating the problem of
choosing a third-party reverse logistic provider, extended the MCDM to allow for the use of
different weights of criteria in particular time periods and aggregation of different periods.
Campanella and Ribeiro [16], analysing the issue of selecting a helipad, postulated taking
into account the variability in the set of alternatives in DMCDM and pointed to the need to
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take into account historical and present data in decision-making problems. Liu et al. [35]
and Tao et al. [36], in the problem of supplier selection, extended this postulate pointing to
the need to capture changes in the set of alternatives and criteria. In both publications, the
authors confirmed the necessity of taking into account data from the past and the present
when solving dynamic decision problems. Similarly, Jassbi et al. [37], when analysing
the problem of choosing a supplier for a car manufacturer company, postulated taking
into account the variability of sets of alternatives and criteria. The authors raised a very
important postulate, pointing to the need to take into account data from the past, present
and future (forecasts) in solving dynamic decision problems. In turn, Wei [38] proposed to
capture changes in the weight of criteria and use fuzzy numbers to describe alternatives
in the newest periods of time. Table 1 presents an overview of the literature related to
the various areas of DMCDM application along with the dynamic extensions of the classic
MCDM paradigm proposed by the researchers.

Table 1. Publications and decision problems in which DMCDM approach was developed.

Application Field MCDM
Methods DMCDM Extensions Reference

Emergency management DEA Aggregation of different periods of time, different
aggregation strategies [26]

Project risk management MAUT Calculation of dynamic risk exposure and dynamic
discriminative index for different periods [25]

Air traffic SAW Changeability of the set of alternatives over time, taking into
account historical and present data [24]

Automotive manufacturing SAW
Changeability of the set of alternatives and the set of criteria

over time, taking into account historical, present and
projected future data

[37]

Construction industry Fuzzy EDAS
Changeability of the set of alternatives and the set of
decision makers over time, aggregation of different

periods of time
[33]

Marketing management PROMETHEE GDSS Aggregation of different periods of time, different
aggregation strategies [27]

Enterprise Resources
Planning system
implementation

GRA/Fuzzy GRA

Changeability of criteria weights over time, aggregation of
different periods of time, the use of real numbers for the

oldest periods, interval numbers for intermediate periods
and triangular fuzzy numbers for the most recent periods

[38]

Investment management TIFN-WAA Aggregation of different periods of time, different
aggregation strategies [28]

Investment management Fuzzy TOPSIS Variability of criterion weights over time, aggregation of
different periods of time [29]

Vendor selection TPIGN
Study of the trend of changes in alternatives on the criteria
in subsequent periods, aggregation of different periods of

time, taking into account the trend of changes
[32]

Reverse logistics management DIF-MAGDM
Variability of criteria weights over time, aggregation of

different time periods, aggregation of assessments
of many experts

[34]

Electric energy metering
device selection DINFWAA/DINFWGA Aggregation of different periods of time, different

aggregation strategies [30]

Supplier selection BLTS DMCDM Variability of the set of alternatives and the set of criteria
over time, taking into account historical and present data [35]

Groundwater management Fuzzy TOPSIS Aggregation of different periods of time [31]

Supplier selection IFS DGMCDM Variability of the set of alternatives and the set of criteria
over time, taking into account historical and present data [36]

DEA—Data Envelopment Analysis, MAUT—Multi-Attribute Utility Theory, SAW—Simple Additive Weight-
ing, EDAS—Evaluation based on Distance from Average Solution, PROMETHEE GDSS—Preference Ranking
Organization Method for Enrichment Evaluation—Group Decision Support System, GRA—Grey Relational Anal-
ysis, TIFN-WAA—Triangular Intuitionistic Fuzzy Numbers-Weighted Averaging Operator, TOPSIS—Technique
for Order of Preference by Similarity to Ideal Solution, TPIGN—Three-Parameter Interval Grey Number, DIF-
MAGDM—Dynamic Intuitionistic Fuzzy Multi-Attribute Group Decision Making, DINFWAA—Dynamic In-
tuitionistic Normal Fuzzy Weighted Arithmetic Average, DINFWGA—Dynamic Intuitionistic Normal Fuzzy
Weighted Geometric Average, BLTS—Bipolar Linguistic Term Set, IFS DGMCDM—Intuitionistic Fuzzy Set based
Dynamic Group Multi-Criteria Decision Making.
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3. Framework for Dynamic Multi-Criteria Evaluation of the Energy Security of States
3.1. Basic Assumptions

When analysing the dynamic extensions of MCDM presented in Section 2, it should
be noted that the basis of DMCDM is the possibility of aggregating the performance of
alternatives from successive periods of time. The possibility of selecting an appropriate
aggregation strategy for individual periods is also very often postulated so that the most
important periods have higher weights than the less important periods. These requirements
are also very important in the framework under development. A natural solution for
assessing the energy security of countries in the longer term is to give more importance to
the most recent periods of time and a lower weight to periods from the more distant past.

An interesting proposition is to take into account the variability of sets of alternatives
and criteria along with their weights. The possibility of modifying the set of criteria and
their weights in particular periods seems to be justified because in different periods, the
assessment of energy security may be influenced by other criteria. For example, now, when
the transit of gas from Russia to many European countries has been stopped, the importance
of countries having diversified sources of gas supplies has increased significantly. On the
other hand, the possibility of modifying the set of decision alternatives (studied countries)
may seem redundant. However, one can imagine a situation where a decision-maker would
like to eliminate from the study of a given country the period in which that country was,
for example, under sanctions, involved in war or other events.

A very important postulate is the need to take into account not only past and present
data, but also forecasts relating to the future, as proposed by Jassbi et al. [37]. Thanks to
this, when assessing the energy security of a given country, the forecasted future level of
security can also be taken into account. Complementary to this proposal seems to be the
suggestion of Wei [38] to use fuzzy numbers to describe alternatives in the latest periods of
time, which can capture the uncertainty and imprecision of data. It is the forecast-based
assessment of the future that is uncertain and imprecise. Therefore, in the framework
under development, it is proposed to use fuzzy numbers to assess the future state of energy
security of countries.

The last assumption is related to the suggestion in the work of Yan et al. [32] to study
the trend of changes in alternatives over time in DMCDM problems and to take this trend
into account when making assessments. When it comes to assessing the energy security of
countries, the analysis of the trend is also important because the energy policy of countries
is usually stable and does not undergo major changes over at least a few years. Of course,
changes in the direction of energy policy may occur, but they are caused by unexpected
global events rather than by the political decisions of the new authorities. Therefore, the
trend analysis is important and it is proposed to use the trend study in the developed
framework to forecast the future energy security of countries.

3.2. Conceptual Framework

The approach to DMCDM proposed in this article is a direct extension of the classic
MCDM paradigm, in which the multi-criteria decision problem is presented as a three (1):

(A, C, E) (1)

where A is the m-element set of alternatives A = {a1, a2, . . . , am}, C is the n-element set of
criteria C = {c1, c2, . . . , cn}, and E represents performance table E = C(A) [39].

The optimal solution of the multi-criteria decision problem is the one that maximizes
all criteria [40], according to the Formula (2):

a∗ = max(c1(ai), c2(ai), . . . , cn(ai)) ∀i = 1, . . . , m (2)
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In discrete decision problems where the number of alternatives is finite, there are
usually no optimal solutions. Therefore, MCDM methods are to indicate optimal solutions
in the sense of Pareto and, therefore, not worse than others [41]. In order to indicate
Pareto solutions, the method must differentiate individual alternatives by determining
their performance. Each of the MCDM methods uses different functions and computational
procedures for this purpose, which however, can be generalized [42]. Assuming that F is a
transformation representing the mathematical procedure used in any MCDM method to
determine the performance of G of the i-th alternative, the performance of each alternative
in the table E can be written as (3):

G(ai) = F(C(ai)) = F(c1(ai), c2(ai), . . . , cn(ai)) ∀i = 1, . . . , m (3)

Extending the MCDM paradigm and taking into account the dynamics (DMCDM) in
the form of time periods 1 . . . t causes the expression (3) to take the form (4):

Gk(ai) = F
(

Ck(ai)
)
= F

(
c1

k(ai), c2
k(ai), . . . , cn

k(ai)
)
∀i = 1, . . . , m; ∀k = 1, . . . , t (4)

Additionally, there is a function H which allows the aggregation of all performances
of G of the alternative ai from all k-th time periods. Therefore, the overall performance of
the alternative in the proposed DMCDM framework is described by the Formula (5):

G(ai) = H
(

Gk(ai)
)
∀i = 1, . . . , m; ∀k = 1, . . . , t (5)

As noted earlier, F represents the MCDM method procedure for determining the
performance of G [42]. If, for example, the PROMETHEE II [43] procedure is used as the F
transformation, then the expression (4) can be converted to the form (6):

Gk(ai) = φk
net(ai) ∀i = 1, . . . , m; ∀k = 1, . . . , t (6)

On the other hand, if the SAW method [40] is used as the transformation of F, then the
Formula (4) is transformed to (7):

Gk(ai) =
∑n

j=1 wk
j rk

ij

∑n
j=1 wk

j
∀i = 1, . . . , m; ∀k = 1, . . . , t (7)

A weighted average (8) can be used as a function of H:

G(ai) =
∑t

k=1 Gk(ai)×ωk

∑t
k=1 ωk

∀i = 1, . . . , m (8)

where ωk is the significance of the k-th period of time.
Data from the past and present are certain; therefore, for calculations in time periods

relating to the past and present, methods based on crisp data can be used, for example, the
classic PROMETHEE II [44] or SAW [40]. Forecasts are inherently uncertain; therefore, for
time periods relating to the future, it is recommended to use methods that perform calcula-
tions of trapezoidal fuzzy numbers (TFNs), which allows us to capture the uncertainty and
imprecision of the data. Such methods may be, for example, NEAT F-PROMETHEE II [45]
or Fuzzy SAW [46]. Moreover, it is proposed to use a two-parameter Holt prognostic model
to determine future forecasts [47]. This model is used when there is a time series with a
component in the form of a linear trend with random fluctuations. The Holt model allows
us to capture the trend and smooth out random fluctuations using a moving average of the
time series [48].
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The proposed DMCDM framework allows for the determination of any significance
of data from individual time periods thanks to the ωk coefficient. Moreover, as shown
by Formula (4), different sets of criteria may be used in successive k-th periods of time.
Due to the fact that in Formula (5) the performance of G is determined separately for each
alternative, they can occur in a different number of time periods. Therefore, the framework
meets the basic assumptions set out at the beginning. The framework:

• Enables the aggregation of the performance of alternatives from successive periods
of time;

• Allows the definition of any strategies of aggregation of individual periods through
the coefficient ωk;

• Takes into account the variability of sets of alternatives and criteria along with weights;
• Is adapted to capture certain data from the past and present and uncertain data which

are predictions of the future;
• Takes into account the trend of changes of alternatives over time when forecasting

future data values, and thus takes the trend into account in the evaluation.

3.3. Data Sources

The report of the Global Energy Institute on the International Energy Security Risk
Index (IESRI) [49] was used as the source of data on energy security. This report was issued
in 2020 and covers the 1980–2018 period. The report contains data for 25 countries that
are large energy users. These are European countries (Denmark, France, Germany, Italy,
Netherlands, Norway, Poland, Russia, Spain, Turkey, Ukraine, United Kingdom), African
countries (South Africa), countries located in North America (Canada, Mexico, United
States) and South America (Brazil), Oceania (Australia, New Zealand) and Asia (China,
India, Indonesia, Japan, South Korea, Thailand). The data included in the report come
from BP (formerly British Petroleum), the Energy Information Administration, Freedom
House, the International Energy Agency, and the World Bank. The data covers eight groups
measuring different aspects of energy security, as presented in Table 2.

Table 2. The importance of individual groups of data included in the IESRI report.

Data Group Description

Global Fuels Reliability and diversity of the world’s oil, natural gas and coal reserves and supplies.

Fuel Imports Exposure to unreliable supplies of crude oil, natural gas and coal.

Energy Expenditures Energy costs and the risk of consumer exposure to price shocks.

Price & Market Volatility Susceptibility of economies to large fluctuations in energy prices.

Energy Use Intensity Energy consumption in relation to population and economic performance.

Electric Power Sector Reliability of electricity generation capacity.

Transportation Sector Efficiency of energy use in the transport sector per unit of GDP and population.

Environmental The degree of exposure to orders to reduce greenhouse gas emissions.

All groups of data included in Table 2 include a total of 29 individual indicators with
weights given in Table 3.

The methodology of aggregating the indicator values into one risk/energy security
index value used in IESRI is based on the SAW method. The direction of preferences is
the minimum, so the lower the final value, the better the result of a given country. Due
to the fact that the IESRI is based on the MCDM methodology as a standard and contains
values from various periods of time, it is perfect for the needs of verifying the framework
for assessing the energy security of countries. It should be emphasized that IESRI served as
a case study. However, it is not the only possible source of data. It is important that the
potential sources give the possibility of obtaining data from subsequent periods, necessary
for the assessment of the past and present and for forecasting the future.
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Table 3. Detailed indicators included in the IESRI report.

Data Group Indicator Weight

Global Fuels

C1—Security of World Oil Reserves 2
C2—Security of World Oil Production 3

C3—Security of World Natural Gas Reserves 2
C4—Security of World Natural Gas Production 3

C5—Security of World Coal Reserves 2
C6—Security of World Coal Production 2

Fuel Imports

C7—Petroleum Import Exposure 3
C8—Natural Gas Import Exposure 3

C9—Coal Import Exposure 2
C10—Total Energy Import Exposure 4

C11—Fossil Fuel Import Expenditures per GDP 5

Energy Expenditures

C12—Energy Expenditure Intensity 4
C13—Energy Expenditures per Capita 3

C14—Retail Electricity Prices 6
C15—Crude Oil Prices 7

Price and Market
Volatility

C16—Crude Oil Price Volatility 5
C17—Energy Expenditure Volatility 4
C18—World Oil Refinery Utilization 2

C19—GDP per Capita 4

Energy Use Intensity
C20—Energy Consumption per Capita 4

C21—Energy Intensity 7
C22—Petroleum Intensity 3

Electric Power Sector
C23—Electricity Diversity 5

C24—Non-CO2 Emitting Share of Electricity Generation 2

Transportation Sector C25—Transportation Energy per Capita 3
C26—Transportation Energy Intensity 4

Environmental
C27—CO2 Emissions Trend 2

C28—Energy-Related Carbon Dioxide Emissions per Capita 2
C29—Energy-Related Carbon Dioxide Emissions Intensity 2

4. Results

The data underlying the study was taken from the IESRI 2020 report, which includes
data up to and including 2018. The data relating to the past were the values of indicators
(criteria) from 2015–2017. The values for 2018 were used as present data, i.e., the latest data
published in the report. On the other hand, the forecasted index values were determined
using the Holt model borrowed from the work of Ziemba et al. [50]. These forecasts were
prepared for 2025 using the 1980–2015 time series (for Russia and Ukraine it was the
1995–2015 time series due to the lack of previous data) with a step of 5 years. Such a time
series allowed the capture of long-term trends in the forecast, without the noise in the form
of short-term local trend changes. The value of h = 2 was assumed as the forecast horizon
so that the forecast refers to the year 2025. TFNs were constructed in order to take into
account the forecast uncertainty. The forecast values for 2025 were the centre of TFN. The
supports of the number were the value of the indicator from 2015 and the value determined
for the forecast horizon h = 4 (in a sense, a forecast for 2035). The core of the number was
contained in the halves of the distance between the centre of the number and its support.
The data on which the study was based is included in Supplementary Materials.

For data from individual periods (2015, 2016, 2017, 2018, and 2025), the SAW method
was used, as was also used in the original IESRI. It should be explained here that for the
forecast for 2025, Fuzzy SAW was used to capture the uncertainty of the forecast. For
all periods, the weight values used in the original IESRI (given in Table 3) were used. In
this way, the Risk Score values were determined, which for the periods 2015–2018, were
equal to the values given in the IESRI 2020 report. This confirms the correctness of the
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calculations and compliance of the SAW calculation method with IESRI. The results from
subsequent periods of time have been aggregated into one overall assessment describing
the energy security of countries in the period 2015–2025. By aggregating the periods of
time, a strategy was adopted, according to which the most important are the current results,
as they are the most up-to-date, and at the same time reliable and certain. The projected
assessments of the future are slightly less important due to the fact that they are subject
to uncertainty. The values of the past are the least important, although the past periods
are the most numerous. Based on the adopted aggregation strategy, the following weights
were assigned to individual time periods: 2015—10%, 2016—10%, 2017—10%, 2018—40%,
2025—30%.

Table 4 shows the energy security rankings obtained for individual time periods
and the ranking aggregating all partial rankings. Security rankings are also presented
graphically in Figure 1.

Table 4. The results of the energy security assessment in subsequent periods of time and the aggregate
assessment of all periods based on the SAW methodology.

Country
(Alternative)

k = 1 (2015) k = 2 (2016) k = 3 (2017) k = 4 (2018) k = 5 (2025) 2015–2025
Risk
Score Rank Risk

Score Rank Risk
Score Rank Risk

Score Rank Risk
Score Rank Risk

Score Rank

A1-Australia 824.63 4 845.97 5 842.38 4 805.37 4 866.4346 5 833.3764 5
A2-Brazil 1077.87 13 1065.05 13 1058.23 13 1059.04 13 1106.213 13 1075.595 13

A3-Canada 832.59 5 834.24 4 830.15 3 802.05 3 832.6732 4 820.32 4
A4-China 917.83 9 956.64 10 955.6 9 912.09 8 927.4488 8 926.0776 8

A5-Denmark 861.02 6 864.51 6 875.99 6 864.36 5 889.9508 6 872.8812 6
A6-France 1133.04 15 1137.06 15 1160.19 15 1128.04 15 1220.567 14 1160.415 15

A7-Germany 1087.07 14 1100.46 14 1118.98 14 1084.78 14 1246.538 15 1138.524 14
A8-India 1216.16 19 1205.31 17 1169.71 17 1144.63 16 1348.524 19 1221.527 19

A9-Indonesia 930.37 10 920.06 7 929.66 8 931.96 9 912.3883 7 924.5095 7
A10-Italy 1225.02 20 1239.57 21 1269.55 21 1240.15 20 1340.313 18 1271.568 20

A11-Japan 1292.8 22 1277.66 22 1307.14 22 1280.56 22 1496.696 22 1348.993 22
A12-Mexico 899.61 7 947.77 8 975.32 10 966.19 11 1015.753 11 973.472 10

A13-Netherlands 1172.44 16 1163.36 16 1162.95 16 1146.65 17 1362.414 20 1217.259 16
A14-New Zealand 779.31 3 771.32 2 774.19 2 757.39 2 780.674 3 769.6402 2

A15-Norway 683.42 1 686.87 1 865.86 5 869.39 6 668.605 1 771.9525 3
A16-Poland 985.25 12 1010.42 12 1010.2 12 967.43 12 1011.327 10 990.9571 12

A17-South Africa 1185.7 17 1226.52 20 1185.47 18 1155.67 18 1328.364 17 1220.546 18
A18-South Korea 1487.92 24 1489.86 24 1492.33 24 1453.2 24 1621.731 23 1514.81 24

A19-Spain 1209.45 18 1211.11 18 1225.49 19 1189.13 19 1262.946 16 1219.141 17
A20-Thailand 1456.31 23 1442.6 23 1440.73 23 1396.36 23 1662.608 24 1491.29 23
A21-Turkey 1228.48 21 1225.65 19 1261.93 20 1266.61 21 1392.034 21 1295.86 21
A22-United
Kingdom 907.29 8 956.26 9 978.7 11 943.85 10 1050.369 12 976.8756 11

A23-United States 772.25 2 775.42 3 769.17 1 727.44 1 708.9944 2 735.3583 1
A24-Russian
Federation 943.54 11 975.81 11 914.25 7 875.04 7 984.1553 9 928.6226 9

A25-Ukraine 1765.67 25 1734.17 25 1594.36 25 1462.82 25 1782.405 25 1629.269 25

The analysis of Table 4 and Figure 1 shows that the United States and Norway can be
considered the safest countries in terms of energy, which alternately took the first place in
the IESRI rankings in the various analysed periods. The countries occupying the next high
positions in the rankings, i.e., New Zealand (2, 3 place), Canada (3–5), Australia (4, 5) and
Dania (5, 6) are slightly less energy-protected.

In the context of threats to energy security related to the dependence of many European
countries on Russian energy sources, the Ukrainian–Russian conflict and the energy policy
of the European Union, the assessments and forecasts of the energy security of European
countries are interesting. Apart from Norway and Denmark, which are in the top rankings,
Russia (7–11 places), the United Kingdom (8–12) and Poland (10–12) are the best in this
respect. While the highest positions of Poland and the United Kingdom among European
countries can be considered a good result, the position of Russia is relatively low, taking into
account the energy resources at its disposal. The analysis of source data in the IESRI report
(see Supplementary Materials) showed that the low position of Russia is mainly related
to the following criteria: C12—Energy Expenditure Intensity, C17—Energy Expenditure
Volatility, C20—Energy Consumption per Capita, C21—Energy Intensity, C22—Petroleum
Intensity, C26—Transportation Energy Intensity, C28—Energy-Related Carbon Dioxide
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Emissions per Capita, C29—Energy-Related Carbon Dioxide Emissions Intensity. In terms
of the C12, C20, C26, and C28 criteria, Russia is usually ahead of 4–6 out of 25 countries
surveyed. On the other hand, in terms of the C17, C21, and C29 criteria, Russia is usually
ahead of only Ukraine, and for the C22 criterion, it is only better than Thailand. All these
criteria relate to the internal aspects of energy security, in particular: the cost and volatility of
energy prices, energy consumption and environmental impact. This observation explains
the relatively low position of Russia, despite its extensive resources of fossil fuels for
energy production.
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The politically and economically dominant countries in the European Union, i.e., France
and Germany, occupy positions 14, 15 in all rankings, while in 2015–2018 Germany was
ranked 14, and France 15, and in the forecast for 2025, these countries changed places.
These countries score low on the criteria C7—Petroleum Import Exposure, C8—Natural
Gas Import Exposure, C10—Total Energy Import Exposure, and C25—Transportation En-
ergy per Capita. Additionally, France has a low value of C9—Coal Import Exposure, and
Germany has a very low rating in terms of C14—Retail Electricity Prices. In particular,
the C7–C10 criteria show that these countries are highly dependent on fossil fuel imports.
This problem is also clearly visible in the case of other European Union countries, i.e., the
Netherlands (16–20 place), Spain (16–19), Italy (18–21), and Poland, which are similar in
terms of the C7–C10 criteria, with isolated exceptions. For example, Poland and Germany,
due to relatively large coal resources, perform well in terms of the C9 criterion. In addi-
tion, Italy scores the worst of all countries on the C14 criterion, and the Netherlands does
poorly on the following criteria: C13—Energy Expenditures per Capita, C14, C20—Energy
Consumption per Capita, C23—Electricity Diversity, C24—Non-CO2 Emitting Share of
Electricity Generation, and C28—Energy-Related Carbon Dioxide Emissions per Capita. In
the case of Spain, the C14 criterion is assessed as very poor.

Among European countries, the problem of dependence on energy imports also applies
to Turkey (19–21 place), and partially (criterion C9—Coal Import Exposure) also to Denmark
and the United Kingdom. The only European country from among the analysed countries
(apart from Russia), where the problem of dependence on energy imports appears to a very
limited extent is Ukraine. On the other hand, it is Ukraine that occupies the last place in all
sub-rankings and in the ranking aggregating all analysed periods of time. Ukraine’s last
place results primarily from the criteria: C12—Energy Expenditure Intensity, C17—Energy
Expenditure Volatility, C19—GDP per Capita, C21—Energy Intensity, C22—Petroleum
Intensity, C26—Transportation Energy Intensity, and C29—Energy-Related Carbon Dioxide
Emissions Intensity.

As far as non-European countries are concerned, the results of Brazil, China, India,
Indonesia, Japan, Mexico, South Africa, South Korea and Thailand remain to be discussed,
apart from the aforementioned United States, New Zealand, Canada and Australia. Brazil
ranks 13th in all periods. Japan’s position is similarly stable, ranking 22nd in all rankings.
In turn, Thailand ranks 23rd in almost all periods, one position ahead of South Korea.
The exception is the forecast for 2025, where South Korea ranks 23rd and is one place
ahead of Thailand. China’s energy security has been increasing in recent years because in
the 2015 ranking it came 9th, in 2016 10th, and in 2017 and 2018, it was ranked 9th and
8th, respectively. The forecast for 2025 also points to the 8th position, as does the general
ranking aggregating partial rankings. Indonesia ranks 7–10, and in most periods (2016,
2017, the forecast for 2025 and the overall ranking for 2015–2025) it is ahead of China. In
2015, Mexico was ranked 7th in the energy security ranking and was ahead of both China
and Indonesia. However, over the next three years, it systematically fell to lower and lower
positions in the ranking and in 2018 it was already in the 11th place. The same position is
indicated by the forecast for 2025, and the ranking aggregating individual periods indicates
the 10th position. As for India (16–19) and South Africa (17–20), in 2015, South Africa was
ahead of India in terms of energy security; however, in the subsequent years, 2016–2018,
India’s security increased and it moved ahead of South Africa. In turn, the forecast for
2025 provides for an increase in India’s energy risk and an increase in the security of South
Africa. Similarly, the overall rankings for 2015–2025 indicate that over these years South
Africa was characterized by a higher overall energy security than India.

The rankings in subsequent periods are relatively stable, and the positions of individ-
ual countries and their energy risk do not change substantially, as confirmed in Figure 2.
Brazil (position 13), Japan (22) and Ukraine (25) are the most stable in the rankings. These
countries occupy a stable position in all sub-rankings and in the ranking aggregating peri-
ods of time. The ranking of New Zealand, Australia, Denmark, France, Germany, South
Korea and Thailand changes by at most one place in all time periods. On the other hand,
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Norway is characterized by the greatest volatility, occupying positions 1 to 6 in individual
rankings. Russia and Mexico (7–11), the United Kingdom (8–12) and the Netherlands
(16–20) also experience volatility with their positions in the rankings changing by 5 places.
The stability chart of the rankings is shown in Figure 2.

Energies 2022, 15, 9356 13 of 21 
 

 

apart from the aforementioned United States, New Zealand, Canada and Australia. Brazil 
ranks 13th in all periods. Japan’s position is similarly stable, ranking 22nd in all rankings. 
In turn, Thailand ranks 23rd in almost all periods, one position ahead of South Korea. The 
exception is the forecast for 2025, where South Korea ranks 23rd and is one place ahead of 
Thailand. China’s energy security has been increasing in recent years because in the 2015 
ranking it came 9th, in 2016 10th, and in 2017 and 2018, it was ranked 9th and 8th, respec-
tively. The forecast for 2025 also points to the 8th position, as does the general ranking 
aggregating partial rankings. Indonesia ranks 7–10, and in most periods (2016, 2017, the 
forecast for 2025 and the overall ranking for 2015–2025) it is ahead of China. In 2015, Mex-
ico was ranked 7th in the energy security ranking and was ahead of both China and Indo-
nesia. However, over the next three years, it systematically fell to lower and lower posi-
tions in the ranking and in 2018 it was already in the 11th place. The same position is 
indicated by the forecast for 2025, and the ranking aggregating individual periods indi-
cates the 10th position. As for India (16–19) and South Africa (17–20), in 2015, South Africa 
was ahead of India in terms of energy security; however, in the subsequent years, 2016–
2018, India’s security increased and it moved ahead of South Africa. In turn, the forecast 
for 2025 provides for an increase in India’s energy risk and an increase in the security of 
South Africa. Similarly, the overall rankings for 2015–2025 indicate that over these years 
South Africa was characterized by a higher overall energy security than India. 

The rankings in subsequent periods are relatively stable, and the positions of indi-
vidual countries and their energy risk do not change substantially, as confirmed in Figure 
2. Brazil (position 13), Japan (22) and Ukraine (25) are the most stable in the rankings. 
These countries occupy a stable position in all sub-rankings and in the ranking aggregat-
ing periods of time. The ranking of New Zealand, Australia, Denmark, France, Germany, 
South Korea and Thailand changes by at most one place in all time periods. On the other 
hand, Norway is characterized by the greatest volatility, occupying positions 1 to 6 in 
individual rankings. Russia and Mexico (7–11), the United Kingdom (8–12) and the Neth-
erlands (16–20) also experience volatility with their positions in the rankings changing by 
5 places. The stability chart of the rankings is shown in Figure 2. 

 
Figure 2. Volatility of SAW rankings in subsequent periods. 

5. Discussion 
It should be noted that there are studies in the literature which challenge the meth-

odology included in the IESRI. The main disadvantage of the indicators included in this 
index is their varying degree of generality, i.e., one indicator is included in other indica-
tors, but these dependencies are very difficult to determine [51]. As a result of such collin-
earity, the independent variables lose their independence and the entire index can be con-
sidered unreliable [52]. Therefore, researchers recommend revising the index and 

Figure 2. Volatility of SAW rankings in subsequent periods.

5. Discussion

It should be noted that there are studies in the literature which challenge the method-
ology included in the IESRI. The main disadvantage of the indicators included in this index
is their varying degree of generality, i.e., one indicator is included in other indicators, but
these dependencies are very difficult to determine [51]. As a result of such collinearity, the
independent variables lose their independence and the entire index can be considered un-
reliable [52]. Therefore, researchers recommend revising the index and removing variables
that do not contribute to its precision [51]. Taking into account these criticisms, it should be
noted that from the perspective of the MCDM, these are important conclusions.

Firstly, in a situation where there are interdependencies between indicators (criteria),
the SAW method should not be used, nor any other method based on utility theory that
cannot capture the interdependence of the criteria. MCDM methods applying the utility
theory should allow for modelling dependencies between criteria; otherwise, only indepen-
dent criteria should be considered in the decision problem. In particular, the requirements
that allow the use of the additive and multiplicative model of the utility function are
additive independence and utility independence [53]. The SAW method is based on an
additive utility function, so dependencies between criteria are unacceptable. However,
in the case of methods based on outranking, criteria independence is recommended, but
not required [54].

Secondly, the criteria included in the decision problem should create the
so-called coherent criterion family [55]. This means that the set of criteria should
be consistent (

(
cj(a1) ≥ cj(a2) ∀j = 1, . . . , n

)
∧ ( a2 P a3)⇒ a1 P a3 ) and complete

( cj(a1) I cj(a2) ∀j = 1, . . . , n ⇒ a1 I a2 , where I means indifference and P means pref-
erence), and the elimination of any criterion from the set would violate the principle of
consistency or completeness [54]. Put simply, the coherent criterion family is a set of criteria
that actually differentiate alternatives. Meanwhile, the analysis of IESRI indicators shows
that the criteria C1–C6, C15, C16, and C18 do not differentiate between countries. Moreover,
the analysis showed that the Holt model predicts different values of these criteria for Russia
and Ukraine than for other countries, despite the fact that the values of the criteria for all
countries are the same. The reason for this is the incompleteness of the data for Russia and
Ukraine, because the values of the above-mentioned criteria for these countries have been
given since 1995, while other countries have assigned values since 1980.
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Taking into account the indicated problems regarding IESRI, the energy security study
in the DMCDM model was repeated with two methodological modifications. Instead of
using the SAW method, the NEAT F-PROMETHEE II fuzzy method was used. This method
is based on outranking so it does not require independence between criteria. Additionally,
when NEAT F-PROMETHEE II operates on crisp numbers, then it works exactly like the
classic PROMETHEE II [56] method so there is no need to use different methods for certain
(past and present) and uncertain (future forecast) data. Moreover, the study omitted the
criteria C1–C6, C15, C16, and C18, meeting the recommendations for a coherent criteria
family. In the NEAT F-PROMETHEE II method, a linear preference (V-shaped criterion)
was used, and the value of the preference threshold was twice the standard deviation of the
sample, determined on the basis of the value of alternatives for a given criterion in a given
period of time. The results of energy security assessment obtained using the modified
DMCDM approach are presented in Table 5 and Figure 3.

Table 5. The results of energy security assessment with the use of a coherent family of criteria and
the NEAT F-PROMETHEE II method.

Country
(Alternative)

k = 1 (2015) k = 2 (2016) k = 3 (2017) k = 4 (2018) k = 5 (2025) 2015–2025
φnet Rank φnet Rank φnet Rank φnet Rank φnet Rank φnet Rank

A1-Australia 0.0297 11 0.0162 12 0.0191 11 0.0282 10 0.0277 12 0.0261 11
A2-Brazil 0.0329 10 0.0313 11 0.0317 10 0.0161 12 0.0783 7 0.0395 10

A3-Canada 0.0649 8 0.0649 8 0.0607 9 0.0617 8 0.0498 10 0.0587 9
A4-China 0.1026 4 0.0985 5 0.0989 5 0.1099 5 0.1289 3 0.1127 4

A5-Denmark 0.1360 2 0.1343 1 0.1412 1 0.1362 2 0.1464 1 0.1396 1
A6-France 0.0571 9 0.0632 9 0.0691 7 0.0788 7 0.0553 9 0.0671 7

A7-Germany −0.0050 14 −0.0038 14 0.0021 14 0.0102 13 −0.0404 17 −0.0087 15
A8-India −0.0438 19 −0.0332 18 −0.0195 17 −0.0292 18 −0.0440 18 −0.0345 18

A9-Indonesia 0.0246 12 0.0361 10 0.0166 12 −0.0057 15 0.0628 8 0.0243 12
A10-Italy −0.0189 17 −0.0197 17 −0.0190 16 −0.0106 16 −0.0138 15 −0.0141 16

A11-Japan −0.0717 20 −0.0586 20 −0.0628 20 −0.0621 20 −0.1244 20 −0.0815 20
A12-Mexico 0.0958 6 0.0707 7 0.0638 8 0.0611 9 0.0485 11 0.0620 8

A13-Netherlands −0.0994 21 −0.0948 21 −0.0864 21 −0.0832 21 −0.1339 21 −0.1015 21
A14-New Zealand 0.1026 5 0.1068 4 0.1099 4 0.1071 6 0.1061 6 0.1066 6

A15-Norway 0.1295 3 0.1317 2 0.1194 3 0.1267 3 0.1344 2 0.1290 3
A16-Poland −0.0186 16 −0.0170 16 −0.0133 15 −0.0033 14 0.0088 13 −0.0036 14

A17-South Africa −0.1188 22 −0.1369 22 −0.1361 22 −0.1439 22 −0.1532 22 −0.1427 22
A18-South Korea −0.1616 23 −0.1592 23 −0.1517 23 −0.1603 23 −0.1631 23 −0.1603 23

A19-Spain −0.0019 13 0.0079 13 0.0098 13 0.0191 11 0.0058 14 0.0110 13
A20-Thailand −0.1756 24 −0.1638 24 −0.1876 24 −0.2040 24 −0.1638 24 −0.1834 24
A21-Turkey −0.0128 15 −0.0049 15 −0.0281 18 −0.0602 19 −0.0466 19 −0.0427 19
A22-United
Kingdom 0.1379 1 0.1288 3 0.1361 2 0.1458 1 0.1108 5 0.1319 2

A23-United States 0.0858 7 0.0907 6 0.0978 6 0.1135 4 0.1173 4 0.1080 5
A24-Russian
Federation −0.0283 18 −0.0475 19 −0.0349 19 −0.0243 17 −0.0142 16 −0.0250 17

A25-Ukraine −0.2429 25 −0.2417 25 −0.2366 25 −0.2276 25 −0.1836 25 −0.2183 25

The analysis of Table 5 and Figure 3 shows that the rankings obtained using the NEAT
F-PROMETHEE II method and the reduced set of 20 criteria differ significantly from the
rankings obtained using the 29 criteria and SAW method used in IESRI. In all periods,
lower ratings for energy security can be noted for countries such as Australia (from 4, 5 to
10–12), Canada (from 3–5 to 8–10), Indonesia (7–10 to 8–15), the Netherlands (from 16–20
to 21), New Zealand (from 2, 3 to 4–6), Poland (from 10–12 to 13–16), South Africa (from
17–20 to 22), the United States (from 1–3 to 4–7) and Russia (from 7–11 to 16–19). On the
other hand, many countries improved their rankings, and the greatest benefits from the
methodological changes were achieved by China (from 8–10 to 3–5), Denmark (from 5, 6 to
1, 2), France (from 14, 15 to 7–9) and the United Kingdom (from 8–12 to 1–5). The position
was slightly less improved for Brazil (from 13 to 7–12), Italy (from 18–21 to 15–17), Japan
(from 22 to 20), Spain (from 16–19 to 11–14) and Turkey (from 19–21 to 15–19). In the case
of the remaining countries, there were very little or no changes in their positions held.

Despite the above-mentioned differences between the SAW and NEAT F-PROMETHEE
II rankings, the top two rankings include New Zealand, Norway, Denmark and the United
States. Since the high ranks of the energy security of these countries are confirmed in
all periods and by both methodologies, it should be assumed that these countries are
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indeed characterized by the lowest energy risk. In turn, the least secure in terms of energy,
according to both methodologies, are Ukraine, Thailand and South Korea.
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Figure 4 shows the variability of the NEAT F-PROMETHEE II rankings obtained in
subsequent periods and the ranking aggregating partial rankings. When observing Figure 4,
it can be noticed that the individual rankings do not change for countries occupying positions
20–25 (Japan, the Netherlands, South Africa, South Korea, Thailand, and Ukraine). As for the
other countries, the positions of Denmark (1, 2), Norway (2, 3), China (3–5), New Zealand
(4–6), France (7–9), Canada (8–10), Australia (10–12), Italy (15–17) and India (17–19) are
stable. The position of other countries in the rankings changes to a greater extent.
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6. Conclusions

This article deals with methodological and practical aspects related to energy security
and multi-criteria assessment. The methodological contribution of the article was the
development of a framework for the dynamic assessment of energy security. In line with the
research objective, the developed framework allows for the assessment of energy security
in the past, present (based on certain data) and future (based on uncertain forecasts). The
framework is based on the MCDM methodology in terms of dynamics, allowing for:

• Aggregation of assessments from various periods of time into one global assessment;
• Defining any strategies for aggregating periods of time;
• Capture of data from the past, present and forecasts of the future;
• Consideration of changes in the sets of alternatives and criteria;
• Consideration of variable weights of criteria;
• Consideration of the trend of changes in the value of alternatives over time.

These features are the main novel contributions and advantages of the proposed
framework compared with other DMCDM-based approaches used in the literature. These
features undoubtedly testify to the innovativeness of the framework because other DMCDM
implementations do not provide all the listed possibilities in a single implementation (see
Section 2). It is worth noting that, contrary to the purpose of the research, the developed
framework is not limited to the dynamic assessment of energy security but could also find
application in many completely different fields where it is required to capture trends and
changes over time. This universality of the framework increases its practical value because
it can be used in any decision-making problems that require capturing the dynamics of a
decision-making situation.

Against the background of methodological research, a practical contribution was also
made to the assessment of the energy security of countries in the period 2015–2025, based on
the MCDM methodology and the proposed dynamic approach. The study was carried out
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using the SAW/Fuzzy SAW and NEAT F-PROMETHEE II methods, which are significantly
different from each other in the calculation procedures used. The study showed that the
differences between these methods result in large differences in the assessment of energy
security of countries. However, using both methods, it was possible to identify countries
that are characterized by a high or low level of energy security. Norway, Denmark, the
United States and New Zealand are among the safest countries in terms of energy resources.
In turn, Thailand, South Korea and Ukraine are the most exposed to energy risk.

Referring to the research limitations, it should be noted that in the case of the practical
study presented in Sections 4 and 5, there was no need to modify the weights of the criteria.
There were also no changes to the collections of alternatives and criteria. For these reasons,
this theoretical possibility of the framework has not been presented in practice. Moreover,
the practical study was based on the IESRI, which has been accused of methodological
errors in the scientific literature. Therefore, one can try to challenge the results obtained in
Section 4. However, the most significant errors of the IESRI were eliminated in the study
presented in Section 5, which makes the results presented in this section reliable. In the
course of further work, the use of other data sources for the assessment of energy security
may be considered. It is also worth practically verifying the aforementioned possibility of
dynamically modifying sets of criteria, alternatives and criteria weights.
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