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Abstract: The magnitude of the impact of the pandemic on key variables, such as electricity demand,
mobility of people and number of COVID-19 hospitalization cases, has been unprecedented. Existing
economic models have not estimated the impact of sucokh events. This paper fills this gap, investi-
gating the nexus among electricity demand elasticity, shifting behaviors of mobility and COVID-19
contagion with econometric estimation techniques. Firstly, using the single bids to purchase recorded
in the Italian day-ahead wholesale electricity market in 2020, we estimate hourly electricity demand
and price elasticity directly from short-run consumer behavior. Then, we analyze the effects of the
main aspects of the pandemic, the health situation and the mobility contraction at the national level,
on the estimated price elasticities. The period of heavy lockdown between 10 March and 3 June
recorded a reduction in the price elasticity of electricity demand. However, when the pandemic broke
out again at the beginning of October, elasticity increased, highlighting how companies and economic
activities had adopted countermeasures to avoid the arrest of the economy and, consequently, the
sharp contraction in electricity demand.

Keywords: energy–mobility–COVID nexus; electricity demand; COVID pandemia; lockdown effect

1. Introduction

The COVID-19 pandemic, triggered by a novel coronavirus, broke out at the beginning
of 2020. The world observed a global lockdown due to the new virus outbreak. The World
Health Organization declared it a pandemic on 12 March 2020.

The pandemic has significantly impacted the economy, society and people’s daily
lives. Maintaining social distancing was the best approach to minimize the spread of the
virus, and governments worldwide were compelled to take various actions to contain the
threat of coronavirus, including lockdowns, factory closedowns and travel bans. These
restrictions have greatly changed people’s working patterns and lifestyles and thus, have
resulted in a significant change in electricity demand loads, profiles and composition [1–3].
Due to restriction policies, industry and business operations slowed down and, in turn,
industrial and commercial electricity loads decreased. As people were forced to stay home,
residential electricity demand rose dramatically.

Ref. [1] compared the changes in electricity consumption among different European
countries according to the different degrees of stringency of the lockdown policies. Ref. [2]
focused on the Jordan electricity sector and confirmed the increase in the share of residential
consumption and the decrease in the share of the commercial sector. Ref. [3] pointed out
instead a minimal decrease in the electricity profile of the United Arab Emirates, where
only composition changed, with an increase in residential share and a decrease in the shares
of the commercial, industrial, and agricultural sectors.

In this study we focus on the Italian case and we scrutinize the impact of the COVID-19
pandemic shock on the price responsiveness of Italian electricity demand, to help re-
searchers, managers and policymakers better understand the implications of the pandemic
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on the electricity industry. Firstly, we construct a theoretical behavioral model of electricity
demand in the Italian market; secondly, we estimate the hourly electricity demand using
the bid data collected in the Italian day-ahead wholesale electricity market. Lastly, we
measure price elasticity, directly from short-run consumer behavior, and analyze the effects
of the main determinants of the pandemic on the price responsiveness. In Figure 1 we show
the flow chart summarizing the main steps undertaken in the analysis.
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The pandemic has affected the electricity industry through various sources (from the
global energy markets to the residential sector) and induced policymakers to enact new
measures [4].

Halted industrial operation and restricted business due to the travel ban and lack of
workforce resulted in the crash of the global stock market, which shrank by more than 25%
in March 2020. The international oil price dropped in March 2020 to the lowest level since
2003 due to the combined effects of COVID-19-related demand drops and business issues
among Saudi Arabia, the USA and Russia [5].

Some authors have analyzed the impact of the COVID-19 containment policies on one
of the most affected sectors, i.e., the transport sector, especially the aviation industry [6–9]
pointed out that the shrinkage of electricity demand was related to public transport; in
China, the UK and the USA, public transport declined by 70% to 90%, depending on city
and route. Since in many countries a significant part of public transport is electrical such
as trams, trains and public vehicles, the decreased traffic impacted the electricity demand
from the transport sector.

Ref. [7] focused on global mobility trends in response to the COVID-19 pandemic and
analyzed the crisis-induced changes in mobility behavior and the global implications from
a greenhouse gas emissions perspective in Canada. Results showed substantial energy
savings and GHG reductions associated with the pandemic. Other authors [8,9] have
focused on the positive effect on the environment in terms of emission reduction. Ref. [8]
observed that, during the lockdown period, the CO2 concentration reduced by 35.7% in
China. Ref. [9] showed that in April 2020 CO2 and NOx from the electricity sector declined
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by 18% and 22%, respectively. In this paper we focus on the crisis-induced changes in
consumer behaviors in purchasing electricity by estimating the price responsiveness of
electricity demand.

The following scenarios have occurred in the power system due to the COVID-19 out-
break and the restriction policies. Firstly, the downturn in the economy resulted inevitably
in a significant drop in the daily average load demand. In China (where the outbreak of
the pandemic started earlier) total electricity demand in January and February 2020 was
8% less than the 2019 demand during the same period. In Australia, the overall electricity
demand was down by 6.7% in March, as shown by [10]. In France, the power sector faced
an approximately 70% revenue loss in March 2020 compared to March 2019 [11]. In Spain
the power demand decreased by 3% in March 2020 and 24% in April 2020 compared to
the same period in 2019, while in the UK electricity demand in the third week of March
2020 decreased by 6% compared to the first week of March 2020 [12]. In this study we show
the downturn in electricity demand recorded in Italy in the months of the first wave of
contagion and how demand evolved during the summer and the last months of 2020, when
the health emergency resumed.

Secondly, electricity load composition also changed, especially in those countries
where lockdown policies were particularly strict [13]. Industrial and commercial loads
shrank because big electricity consumers, such as factories and commercial buildings, were
forced to close down or move to minimum operation levels. On the contrary, residential
load took a greater share due to lockdown policies. In some European countries, residential
load increased by nearly 40% [14]. In China, demand in construction and manufacturing
industry dropped by 12%. For the U.S., the electricity required by industrial and commercial
sectors fell by 20% in 2020 [15]. Our study analyzes if changes in load composition affected
the price responsiveness of demand in the wholesale electricity market.

Thirdly, effects were also recorded in the energy mix employed in power generation,
with an increased penetration of renewable sources [16]. Ref. [17] noticed that in Germany,
during the lockdown period, the share of renewable energy increased, reaching 41%. In
Spain, photovoltaic generation increased by 72% [18]. Ref. [19] focused on the Italian case
and showed that, during the lockdown period, there was a collapse in power generation
from gas and coal plants while renewable energies covered up to 69% of the total. In
particular, hydroelectric energy recorded an increase of 17.5% compared to the previous
year. Following these contributions, the present study wants to explain the dynamic of
the price elasticity of electricity demand, taking into account the changes in the marginal
technologies used in power generation.

Lastly, the decrease in electricity demand resulted in the decline of energy prices.
Ref. [12] compared the average energy prices recorded in the third week of March 2020
(16 March–22 March) with those recorded in the second week of March (9 March–15 March),
showing the severe price drop experienced by the European electricity markets. The elec-
tricity spot prices of Belgium, France and the Netherlands recorded the largest contractions,
decreasing by 23%, 20.1% and 18.2%, respectively. Similarly, the spot markets in Spain and
Portugal decreased by 17.7% and 17.4%, respectively. Only in Germany and the UK did
price variations remain positive (1.8% and 2.8%, respectively), because in those two coun-
tries the lockdown started later, on the 20 and the 24 March, respectively. Ref. [20] showed
similar results in the U.S. electricity markets, where prices underwent a notable decline.
Within two months (February and March), the average daily locational marginal prices
fell in the range of 7–25% across several major U.S. independent system operators. In this
study we analyze the dramatic decline in electricity prices recorded in the Italian day-ahead
market (DAM), taking into account the price responsiveness of electricity demand.

To tackle this ongoing pandemic threat, the power system had to confront a new
paradigm in financial and technical activities. Indeed, owing to the unpredictable evolution
of the pandemic and the fast-shifting anti-epidemic policies, the power system faced a
higher degree of uncertainty in load patterns and operational revenues. Lockdown policies
and the interruption of the supply chain further hindered infrastructure maintenance and
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asset management operations. Utilities are also investing now in improved system flexibili-
ties to tackle the technical issues due to load reduction and changes in the load profiles.

In this context, this paper investigates the impact on the power system of the lockdown
measures taken to reduce the pandemic by analyzing the dynamic of price elasticity
over the whole of 2020 in the Italian market. This year witnessed different degrees of
contagion and stringency of lockdown measures; therefore, with this research we shed a
light on the effects of the health emergency and its political shocks on consumers’ price-
responsiveness. Moreover, we aim at helping the power system’s stakeholders to define
in the decision processes new strategies to overcome the new normal scenarios and to
improve the performance of the power sector under such conditions in the future.

The novelty of the paper is three-fold. Firstly, we derive the hourly day-ahead electric-
ity demand using data at micro level, i.e., the individual bids of economic agents expressing
their willingness to pay. Secondly, from the derived hourly demands we compute the price
elasticities at the equilibrium point; thirdly, we explain the changes in the demand elasticity
using variables expressing the slowdown of economic activity, the contagion diffusion and
changes in mobility.

In the analysis of electricity demand, linear regression models have been used in the
extensive literature. Ref. [21] used multiple linear regressions and correlated electricity
consumption to meteorological variables. However, these models are based on monthly
averages of electricity demand. Refs. [22–24] used the traditional linear time series models
that include AR, ARMA and ARIMA to forecast electricity prices. Other authors applied
instead nonlinear time series models, such as GARCH, the long-memory FIGARCH model,
and the asymmetric EGARCH [25–27]. Non-parametric functional models were presented
instead by [28,29]. Nevertheless, these strands of the literature use the time series of the
aggregate market equilibrium prices (the unique national price called PUN “prezzo unico
nazionale”) and quantities. Conversely, in this paper, we present a novel approach for the
estimation of demand elasticity that uses a large data set of the bids collected in the DAM.

The DAM is an organized market for wholesale trading, where hourly blocks of
electricity are negotiated until the day before the delivery is effectively executed. During
the session, market participants submit supply offers/demand bids where they specify
the volume and the minimum/maximum price at which they are willing to sell/purchase
electricity. Therefore, offers/bids express a complete and well-defined optimal bidding
strategy of the market participants. The DAM is organized according to an implicit double
auction where supply offers and demand bids are accepted under the economic merit-order
criterion and subjected to zonal transmission constraints; the algorithm constructs the
aggregate supply curve by ranking the supply offers according to an increasing price order,
while the aggregate demand curve is constructed by ranking the demand bids according to
a decreasing price order. The intersection of the two curves gives the overall traded volume
and the clearing price; only the supply offers/demand bids with price below/above the
clearing price are admitted to inject/withdraw electricity. Therefore, the injection and
withdrawal schedules are obtained as the sum of the accepted bids/offers. Then, the
market operator clears the market with the system marginal price (SMP) paid to suppliers
by zones, if there is a need for market splitting due to congestion, and PUN is paid by all
buyers. Figure 2 shows an example of the market-clearing outcome occurring in the DAM.

Given the large availability of detailed historical data, market participants rely on
forecasting methods based on econometric estimation and simulation models in order to
optimize their bidding strategies. In this paper we exploit these micro-level data to construct
the hourly empirical aggregate demands for 2020 and estimate the price elasticities using
traditional regression models, where the aggregate demand is a linear function of bid prices
and other structural variables. Thus, this paper presents a novel analysis in the literature,
giving a more accurate picture of the electricity price responsiveness at exceptional times.

The paper is organized as follows: the data and the theoretical model which drive
the empirical estimations are presented in Section 2; we present and discuss the results in
Section 3; Section 4 is devoted to conclusions.
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2. Material and Data
2.1. Model

The econometric approach used to estimate demand elasticity lies inside the neoclas-
sical framework and is grounded in rational optimizing behavior theory. In the Italian
wholesale electricity market, only eligible buyers can operate, and they are large buyers
(energy-intensive industries, railways, telecom companies), industrial buyers and traders
who can intermediate both small industrial and residential consumers. We assume that
industrial consumers choose the amount of electricity input that minimizes their cost func-
tion given the technological constraints; similarly, residential customers choose the amount
of electricity that minimizes their expenditure given a certain level of utility to be reached.

Since data refer to hourly bids, the duality approach gives the theoretical justification
to legitimately switch from an agent’s preferences (optimization theory) to the Marshallian
demand, where quantities are functions of prices and total expenditure. We assume that
for both residential and industrial consumers it is possible to postulate the existence of a
cost function for using electricity as a good “e” and a composite numerary good “x”:

In each hour of the day, all agents taking part in the DAM rationally behave minimizing
a cost function C(p,Q), where p is the vector of prices of electricity and composite goods
[pe, px] and Q is the objective variable (production for industrial buyers and utility for
residential ones). We assume that the cost function is continuous, increasing in Q, non-
decreasing, linearly homogeneous and concave in prices. The cost minimization yields the
system of equations called Hicksian demand functions, where the quantities demanded for
each good i are expressed in terms of prices and the objective variable:

∂C(p, q)
∂pi

= hi(p, Q) (1)

Exploiting the homogeneity and separability properties of cost function and applying
the Roy identity, the duality approach allows recovery of the Marshallian demand functions
ye from the inverse function of the objective variable Q = V(m, p), where m is the monetary
expenditure. Replace V m with the expenditure function C(Q,p):

Q = V(m, p) = V(C(Q, p), p) (2)



Energies 2022, 15, 7501 6 of 26

and differentiate V with respect to price and cost:

∂V
∂p
∂V
∂C

= he(p, Q) = ye(m, p) (3)

We obtain, via the Roy identity, the Marshallian demand ye(m, p) that expresses the
demand for electricity as a function of its own price pe, the total expenditure m, and the
price of the numerary good px. Equation (3) represents the hourly electricity demand of
each participant in the DAM. It holds for each state of nature and for each hour and models
short run behavior.

In order to recover the empirical demand functions, there is a need to specify the
parametric functional form. We assume the Generalized Almost Ideal Demand System [30],
that generalized the Almost Ideal demand system of [31] with the introduction of commit-
ted quantities:

ye,t = αt + βt ln
pe,t

p
+ ∑k γkdi,k + υe,t (4)

The dependent variable ye,t is the hourly electricity demand of hour t, the explanatory
variables are the committed quantity αt, the corresponding logarithm of price, pe,t, adjusted
by the monthly consumer index price p, that meaningfully approximates px, and regressors
di,k that refer to a group of socioeconomic determinants and proxy the real total expenditure
and the scale effect (i.e., the daily and zonal intercept dummies). υe,t is the error term
distributed according to a normal N

(
0, σ2).

Given this linear form, price elasticity is computed as:

εt =
∂ ye

∂ pe

pe

ye
=

βt

ye
(5)

It is noteworthy that Equation (5) is directly derived from the consumer optimizing
behavior and, thus, it includes both price and income effects. In this way, electricity price
elasticity can be consistently estimated, considering both these effects.

2.2. Material

We used GME’s daily data gathered in monthly datasets starting from January to
December 2020. Each monthly dataset accounts for about 2.1 million raw observations.

The preliminary investigation of the datasets was to provide an exhaustive analysis of
the DAM highlighting its main features. Table 1 shows, for each month of 2020, the total
quantity of all offers to buy and sell electricity. The demand side shows levels of activity
lower than the supply side. The total number of bids (Abs Frequency) is in fact lower, as
well as the quantities of demanded electricity.

This result is more evident if we look at Table 2 where we split the offers to purchase
and sale of electricity between accepted and rejected offers.

The monthly sums of all accepted bids and offers, respectively, the first and fifth
columns, are essentially the same and amount to an average of 23 GWh; small differences
will be adjusted in the four intra-day markets. If we look at the rejected offers, we notice
that, on the demand side, the rejected offers to purchase account for a minimum part of the
overall monthly demand; they represent only 2.441 GWh, on average, and their absolute
frequency is about 22% of the total number of accepted bids. Looking instead at the supply
side, we see that the rejected offers to sell are far larger than those accepted; they represent
on average 66.734 GWh, roughly three times the accepted quantity, and their absolute
frequency is about 52% of the total number of accepted offers. This highlights a degree
of competition on the supply side higher than that on the demand side. We retained only
the observations referring to the demand side (BID); these observations account for about
35–40% of the whole monthly datasets.
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Table 1. Offer to Purchase (BID) and Sales (OFF): Monthly Total Quantity and Frequency.

BID OFF

Quantity Abs. Frequency Quantity Abs. Frequency

January 26.605 673,948 87.163 1,196,471
February 24.491 640,818 82.510 1,133,685

March 22.689 704,425 86.128 1,216,843
April 18.660 672,583 84.080 1,253,628
May 21.418 711,982 86.761 1,336,192
June 22.747 702,401 82.337 1,308,968
July 26.927 737,417 99.317 1,332,526

August 24.296 736,915 83.193 1,248,495
September 24.755 719,708 81.462 1,242,130

October 31.409 959,042 101.842 1,980,730
November 31.072 941,273 96.984 1,924,386
December 31.955 997,612 104.705 1,992,752

Mean 25.585 766,510 89.707 1,430,567
Note: Quantity is expressed in GWh.

Table 2. Offer to Purchase (BID) and Sales (OFF): Monthly Total Quantity and Frequency of Accepted
and Rejected Offers.

BID OFF

Accepted Rejected Accepted Rejected

Quantity Abs.
Frequency Quantity Abs.

Frequency Quantity Abs.
Frequency Quantity Abs.

Frequency

January 25.834 600,244 0.771 73,704 24.249 967,298 62.915 229,173
February 23.811 569,884 0.680 70,934 21.833 897,546 60.677 236,139
Marcgh 22.037 629,286 0.653 75,139 20.087 915,668 66.041 301,175

April 18.167 598,999 0.493 73,584 17.920 881,267 66.160 372,361
May 21.029 627,903 0.389 84,079 20.339 940,539 66.423 395,653
June 22.193 613,164 0.554 89,237 22.135 967,115 60.202 341,853
July 26.281 642,460 0.645 94,957 36.989 1,009,141 62.328 323,385

August 23.725 659,006 0.571 77,909 23.072 943,095 60.120 305,400
September 23.938 629,570 0.818 90,138 23.473 937,980 57.989 304,150

October 23.411 650,620 7.998 308,422 21.490 944,048 80.352 1,036,682
November 23.361 640,803 7.859 300,470 21.429 917,008 75.554 1,007,378
December 24.096 672,216 7.859 325,396 22.662 944,091 82.043 1,048,661

Mean 23.157 627,846 2.441 138,664 22.973 938,733 66.734 491,834

Note: Quantity is expressed in GWh.

There are two relevant features in the DAM. First, there are heterogeneous consumers
whose bids do not specify the price at which to buy electricity; these bids refer to consumers
who show ex ante a perfect inelastic behavior, as they are (in principle) willing to pay
any price that would result from the market-clearing procedure. The GME assigns to
these bids a fictitious price equal to the supply price cap that is equal to 3000 euro/MWh.
(The DAM assigns a default price limit to these bids, set equal to the maximum price cap
imposed on suppliers by the Regulatory Authority. The default price assigned to these
bids has increased in time from a level of 200 euro/MWh in 2004 to 3000 euro/MWh since
2009). Table 3 shows that these bids represent most of the accepted bids (on average the
74% of the total number of accepted bids) and most of the electricity monthly purchased,
about 21.736 GWh, refers to buyers characterized by rigid demand. Other consumers
specify instead in their bids both quantity and price and, in turn, they should be considered
elastic consumers.
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Table 3. Offer to Purchase (BID): Monthly Relative Frequency and Total Quantity of Inelastic and
Elastic Bids.

Inelastic Bid Elastic Bid

Relative
Frequency Quantity Relative

Frequency Quantity

January 76.751 24.052 23.249 1.782
February 76.000 22.375 24.000 1.436

March 75.207 20.783 24.793 1.254
April 75.652 17.092 24.348 1.075
May 74.391 19.773 25.609 1.256
June 73.848 20.878 26.152 1.315
July 73.931 24.890 26.069 1.391

August 72.302 22.354 27.698 1.371
September 73.609 22.697 26.391 1.241

October 73.451 22.276 26.549 1.136
November 73.320 21.924 26.680 1.437
December 73.925 22.641 26.075 1.454

Mean 74.366 21.811 25.634 1.346
Note: Quantity is expressed in GWh.

Second, agents who submit demand bids are not necessarily the final users of electricity.
Single Buyers and traders are intermediary agents that demand electricity on behalf of final
customers and their behaviors should be processed into the model. The contractual nature
of the trader–customer relationship suggests that this can be treated within the perspective
of the principal–agent relationship, where consumer is the principal and trader is the agent.
Under these conditions, we assume that traders’ utility is aligned with that of the final
customer (see [32,33]).

Table 4 shows, for each month of 2020, the overall quantity of accepted bids, that is
essentially the electricity purchased during each month, and its absolute frequency. On
average the monthly purchases account for 23 GWh, but if we look at the months of March,
April and May, the period of the heavy lockdown, the levels of electricity purchased are
the lowest.

Table 4. Offer to Purchase (BID): Monthly Total Quantity and Absolute Frequency of Accepted Bids,
Monthly Share and Relative Frequency Single Buyer and Bilateral Contracts.

Purchases Single Buyer Bilateral Contracts

Quantity Abs.
Frequency Share Frequency

% Share Frequency
%

January 25.83 600,244 16.77 0.74 39.38 34.78
February 23.81 569,884 16.33 0.73 40.88 34.21

March 22.04 629,286 17.24 0.71 42.71 33.61
April 18.17 598,999 18.14 0.72 45.57 34.41
May 21.03 627,903 15.54 0.71 43.09 33.08
June 22.19 613,164 14.77 0.70 42.78 32.72
July 26.28 642,460 15.17 0.69 39.41 31.81

August 23.72 659,006 16.69 0.68 39.94 31.80
September 23.94 629,570 13.07 0.69 42.15 33.44

October 23.41 650,620 13.17 0.69 41.85 32.91
November 23.36 640,803 14.43 0.67 40.71 32.43
December 24.10 672,216 15.80 0.66 38.85 31.84

Mean 23.16 627,846 15.59 0.70 41.44 33.09
Note: Quantity is expressed in GWh.

The sum of accepted purchase offers is on average equal to 23.16 GWh; 15.59% comes
from the Italian Single Buyer, while 41.44% is from bilateral contracts. (The Italian Power
Exchange is a voluntary market: purchase and sale contracts may also be concluded off the
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exchange platform, i.e., bilaterally or over the counter (OTC)) For these purchase offers, the
price is not known, but the quantity must instead be explicit in order to better schedule the
withdrawal and injection programs into the transmission grid. Bids referring to bilateral
contracts are in fact always accepted and, thus, participate in constructing the rigid segment
of the aggregate demand. Bilateral bids derive from bargaining external to the DAM, and,
as a consequence, for these bids it is not possible to observe the price responsiveness.
Therefore, we consider these bids as if they were inelastic, forming the rigid part of the
aggregate demand curve.

It is assumed that electricity demand profiles substantially differ within the day. The
hours between 9 a.m. and 9 p.m. (though as the group of peak hours) are assumed as being
characterized by the prevalence of business activities and high levels of load, with the hours
between 10 p.m. and 8 a.m. (defined as the group of off-peak hours) being characterized by
the prevalence of domestic use of electricity. Table 5 reports the monthly summary statistics
for equilibrium market prices and quantities and confirms this assumption.

Table 5. Equilibrium Prices and Quantities in the DAM. Monthly Average.

Price Quantity

Peak Off-Peak Peak Off-Peak

January 52.104 41.989 40.098 29.323
February 42.776 35.196 38.854 29.297

March 34.835 28.627 33.096 25.740
April 24.472 25.199 27.753 23.016
May 21.697 21.896 31.242 25.423
June 28.331 27.627 34.672 27.422
July 39.691 36.014 39.272 30.967

August 41.562 38.850 35.311 28.426
September 53.100 43.720 37.262 28.992

October 47.367 39.099 35.246 26.983
November 54.531 41.913 37.075 27.318
December 62.864 43.604 37.324 27.359

Mean 41.944 35.311 35,601 27,522
Note: Quantities are expressed in GWh. The resulting Equilibrium quantities account for the adjustments in the
Inframarginal Markets.

The average quantity purchased in the off-peak hours is, on average, 25% lower than
the quantity recorded in the peak hours. Differences can be noticed also in the PUN: during
the peak hours, the equilibrium prices are, on average, roughly equal to 42 euro/MWh,
7 euros higher than the average price recorded during off-peak hours.

Alongside the hourly variation, 2020 recorded strong differences among months, due
to lockdown.

In Italy, the lockdown policy was announced for the northern part of the country on
the 8 March and was extended to the whole nation on the 10 March. The restriction policy
was clearly reflected in the shrink in the electricity demand. This is particularly evident
in the first graph on the left of Figure 3 that depicts the empirical aggregate demands
referring to two different days of March 2020. The blue curve defines the electricity demand
concerning the 12 a.m. of Monday 9 March, one day before the lockdown was announced.
The red curve defines instead the aggregate electricity demand concerning the 12 a.m. of
Monday 16 March, when the lockdown had just been started. If we look at the horizontal
intercept, for the same peak-hour of a work day, the electricity demand underwent a shift
of roughly seven thousand MWh, passing from forty-two thousand, three hundred MWh
to thirty-five thousand MWh. The peak daily electricity consumption dropped by nearly
20% in the third week in March when full lockdown was applied. The same shift was
recorded in the electricity demand of the off-peak hours. The graph on the right of Figure 3
shows the two different positions of the aggregate demand referring to 0 a.m. of the 9 and
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16 March. Also in this case, the horizontal intercept of the aggregate demand moved to the
left from 31.6 to 28.2 thousand MWh.
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In Figure 4, we compare the national load profiles during the third week of March
2019 (18 March–24 March) with the load profiles recorded in the third week of March 2020
(16 March–22 March), when lockdown had just begun. Also, this figure shows that the
weekly load profiles translated down by nearly 20%.
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We are going to analyze the annual variation in equilibrium prices and quantities
between 2019 and 2020.

Figure 5 shows the weekly average of the relative annual variation of market prices.
The bold black line identifies the pattern of the variation of the PUN; the colored lines
identify instead the variations of the zonal prices. It is noteworthy to mention that when
lockdown measures came into effect, all prices started immediately falling; only Sicily
shows a lag in the plunge of the weekly average price. Prices started recovering from



Energies 2022, 15, 7501 11 of 26

June 2020, when all lockdown measures were suppressed. At the end of September, a new
upward trend was recorded and, in October, the annual price variation turned positive.
In particular, Sicily’s average price variation recorded the spikiest pattern, starting from
September, when the pandemic crisis began to rekindle.
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Looking at total purchases, at the beginning of March the weekly average of the annual
variation started falling, reaching the lowest level at the beginning of April (Figure 6).
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3. Empirical Results and Discussion

We constructed the aggregate demand curves for each hour of the day. Bids represent-
ing inelastic behavior were lumped into one aggregated observation, defining the vertical
intercept of the aggregate demand.

At the end of the procedure, the average sample size of the monthly datasets was
257,570, ranging from 205,935 observations, recorded in February, to 342,273 observations,
recorded in December.

Then, the elasticity of each hourly demand curve is estimated using a linear regression
model. Each linear regression accounts for about 354 observations. Note that bids are ex-
pressed by different operators in every hour, so the regression errors are not autocorrelated.

The summary statistics of the elasticity estimates aggregated by hour are reported in
Table 6. For each hour, the first row concerns the averages (minimum, mean and maximum)
of the elasticity estimates, the second row refers instead to the variances. On average,
the hourly elasticity demand is roughly −0.0259 (In the following, we refer to values of
elasticities in absolute terms, given that demand elasticities are typically negative. So, we
refer to "higher elasticity" when the absolute value is higher even if the algebraic number is
more negative and therefore "lower”), ranging between −0.27, recorded at 8 p.m., and 0
recorded at 0 a.m. The lowest (absolute) level of elasticity is recorded at 0 a.m., showing
that demand is inelastic when it refers to hours characterized by less flexible industrial
uses; that is, when electricity is an input of productions that cannot be stopped. Coefficient
estimates are all significant; if we look at the summary statistics of the variance, we see that
values are really low, ranging between 0 and −0.0014.

Table 6. Summary Statistics of the Hourly Elasticity Estimates.

Hour Max Mean Min

1
ε −0.2342 −0.0281 −0.0037

Var(ε) 0.0000 0.0001 0.0009

2
ε −0.2339 −0.0276 −0.0036

Var(ε) 0.0000 0.0001 0.0009

3
ε −0.2319 −0.0269 −0.0036

Var(ε) 0.0000 0.0001 0.0009

4
ε −0.2387 −0.0271 −0.0036

Var(ε) 0.0000 0.0001 0.0009

5
ε −0.2193 −0.0267 −0.0034

Var(ε) 0.0000 0.0001 0.0008

6
ε −0.2220 −0.0262 −0.0035

Var(ε) 0.0000 0.0000 0.0008

7
ε −0.2172 −0.0272 −0.0041

Var(ε) 0.0000 0.0001 0.0007

8
ε −0.2218 −0.0250 −0.0047

Var(ε) 0.0000 0.0000 0.0008

9
ε −0.2215 −0.0247 −0.0039

Var(ε) 0.0000 0.0001 0.0008

10
ε −0.1944 −0.0242 −0.0039

Var(ε) 0.0000 0.0000 0.0008

11
ε −0.1856 −0.0249 −0.0039

Var(ε) 0.0000 0.0001 0.0006

12
ε −0.1320 −0.0249 −0.0040

Var(ε) 0.0000 0.0001 0.0005

13
ε −0.2107 −0.0250 −0.0037

Var(ε) 0.0000 0.0000 0.0007
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Table 6. Cont.

Hour Max Mean Min

14
ε −0.2129 −0.0246 −0.0036

Var(ε) 0.0000 0.0000 0.0007

15
ε −0.2025 −0.0244 −0.0039

Var(ε) 0.0000 0.0000 0.0007

16
ε −0.2099 −0.0253 −0.0039

Var(ε) 0.0000 0.0001 0.0007

17
ε −0.1999 −0.0247 −0.0041

Var(ε) 0.0000 0.0001 0.0007

18
ε −0.2127 −0.0261 −0.0041

Var(ε) 0.0000 0.0001 0.0007

19
ε −0.2426 −0.0267 −0.0043

Var(ε) 0.0000 0.0001 0.0010

20
ε −0.2736 −0.0259 −0.0042

Var(ε) 0.0000 0.0001 0.0014

21
ε −0.2298 −0.0252 −0.0044

Var(ε) 0.0000 0.0001 0.0010

22
ε −0.2426 −0.0261 −0.0042

Var(ε) 0.0000 0.0001 0.0010

23
ε −0.2252 −0.0273 −0.0034

Var(ε) 0.0000 0.0001 0.0008

24
ε −0.2251 −0.0278 0.0000

Var(ε) 0.0000 0.0001 0.0008

Mean
ε −0.2736 −0.0259 0.0000

Var(ε) 0.0000 0.0001 0.0014
Note: ε stands for the elasticities estimate, Var(ε) denotes the variance of variance.

Looking at the column Mean, containing the averages of the elasticity estimates, peak
hours record lower levels of elasticity. This finding is shown in Table 7; the average elasticity
among hours between 9 a.m. and 9 p.m. is −0.0251 against an average of −0.0269 recorded
for the hours between 10 p.m. and 8 a.m.

Table 7. Summary Statistics of the Hourly Elasticity Estimates, Aggregated by Peak and Off-
peak Hours.

Hour Max Mean Min

Peak
ε −0.2736 −0.0251 −0.0036

Var(ε) 0.0000 0.0001 0.0014

Off-peak ε −0.2426 −0.0269 0.0000
Var(ε) 0.0000 0.0001 0.0010

Note: ε stands for the elasticities estimate, Var(ε) denotes the variance of variance.

If we aggregate elasticities according to four different periods characterizing the different
degrees of stringency of the lockdown measures we see that values show strong differences.

The four periods are listed as follows: (i) the pre-lockdown period (1 January–9 March)
where all economic activity ran as usual; (ii) the complete lockdown period (10 March–3 June)
with the total shutdown of human movement, except for a few essential activities, such as
visits to food shops and pharmacies; (iii) the post-lockdown period (3 June–30 September),
where all economic activity gradually resumed with the re-opening of restaurants, salons,
shopping centers, while maintaining social distance and wearing face masks; (iv) the last
period (1 October–31 December), when contagion began to spread again and the health
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emergency resumed, with new lockdown measures imposed by the central government. In
the Appendix A we show different levels of aggregation (by month) of the elasticity estimates.

Table 8 shows the summary statistics (the mean, minimum and the maximum) of the
hourly elasticity estimates aggregated by the four different periods.

Table 8. Summary Statistics of the Hourly Elasticity Estimates, Peak and Off-peak Hours, aggregated
by different periods of the year.

Peak Off-Peak

Max Mean Min Max Mean Min

1 January–9 March −0.0188 −0.0097 −0.0036 −0.0181 −0.0106 −0.0043
10 March–2 June −0.0141 −0.0072 −0.0039 −0.0142 −0.0070 0.0000

3 June–30 September −0.0387 −0.0096 −0.0039 −0.0344 −0.0092 −0.0036
1 October–31 December −0.2736 −0.0728 −0.0081 −0.2426 −0.0798 −0.0117

Mean −0.2736 −0.0251 −0.0036 −0.2426 −0.0269 0.0000

During the lockdown period demand elasticity reduced, underlining how energy
demand was mainly expressed by essential economic activities characterized by low price
responsiveness. In the mentioned period, the average elasticity moved from −0.0097 to
−0.0072 in the peak hours, and, similarly, from −0.0106 to −0.0070 in the off-peak hours.
When economic activities gradually resumed (the summer period between 3 June and
30 September), elasticity recorded a light recovery, reaching an average value slightly below
the threshold of 1% (−0.0096 and −0.0092 for the peak and off-peak hours, respectively).
The most important change was recorded in the last period, when the average price re-
sponsiveness of energy demand increased by roughly eight times, reaching values equal to
−0.0728 and −0.0798 in the peak and off-peak hours, respectively. Even the range between
the minimum and the maximum enlarged, highlighting an increase in the volatility of price
responsiveness. The maximum values were −0.081 and −0.0117 while the minimum were
−0.2736 and −0.2426, in the peak and off-peak hours, respectively. These figures seem
to suggest that as lockdown measures were restored due to the new spread of contagion,
economic activities were able to structure their demand, making themselves flexible to
price changes in a way that, in the first period of the health emergency, they had not been
able to do.

If we disaggregate elasticities according to the day of the week we do not see large
differences among days.

Table 9 shows the averages by days of the week aggregated by peak and off-peak
hours. Differences among different periods still emerge. The last period is the only one
recording elasticity higher than average for all the days of the week; the other periods show
instead elasticities lower than average. If we consider the sample represented by the daily
elasticities (grouped by peak and off-peak hour) we can say that its distribution is right-
skewed, with few high values. The right tail of the sample distribution is then represented
by the values recorded in the last period. In the first three periods, the highest average
elasticities were recorded during work days. In the peak hour group, Friday, Thursday and
Monday recorded the highest elasticities for the first, second and third periods, respectively.
In the off-peak group, the highest average elasticities were instead recorded on Friday,
Wednesday and Tuesday. However, within these periods, differences between the different
days of the week are small. The situation changes when we look at the last period, where
the highest average values of the estimates were recorded during Sunday within both the
groups of peak and off-peak hours (−0.0950 and −0.0991, respectively), confirming the
traditional pattern that during public holidays electricity demand is less stiff. However,
similar figures were recorded for a working day such as Monday.
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Table 9. Mean of the Hourly Elasticity Estimates, Peak and Off-peak Hours, aggregated by different
periods of the year and Days of the Week.

Monday Tuesday Wednesday Thursday Friday Satarday Sunday

1 January–9 March Peak −0.0094 −0.0097 −0.0091 −0.0097 −0.0102 −0.0099 −0.0096
Off-Peak −0.0096 −0.0111 −0.0100 −0.0108 −0.0115 −0.0110 −0.0102

10 March–2 June Peak −0.0067 −0.0076 −0.0075 −0.0077 −0.0071 −0.0073 −0.0067
Off-Peak −0.0063 −0.0073 −0.0078 −0.0073 −0.0068 −0.0069 −0.0064

3 June–30 September Peak −0.0099 −0.0106 −0.0092 −0.0092 −0.0089 −0.0097 −0.0095
Off-Peak −0.0096 −0.0103 −0.0092 −0.0090 −0.0087 −0.0091 −0.0087

1 October–31 December
Peak −0.0926 −0.0666 −0.0697 −0.0599 −0.0590 −0.0680 −0.0950

Off-Peak −0.0984 −0.0745 −0.0797 −0.0681 −0.0672 −0.0728 −0.0991

Average Peak −0.0296 −0.0236 −0.0239 −0.0216 −0.0213 −0.0238 −0.0302
Off-Peak −0.0310 −0.0258 −0.0267 −0.0238 −0.0236 −0.0250 −0.0311

These kinds of aggregation do not allow for in-depth analysis of the daily changes in
price responsiveness. The dynamics of hourly elasticities over 2020 are shown in Figures 7
and 8. In each graph, we select the elasticity estimates referring to a specific hour and
we plot their evolutions over time. From the graphs, a structural break emerges at the
end of September, more precisely on 30 September. On this day, all elasticities show a
dramatic change in their dynamic. Until September, their patterns were stable with low
variability, then their dynamics recoded numerous downward spikes, and the range of
variation significantly enlarged.
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This result may be linked to the shocks and changes in electricity supply concerning
energy source prices and power generation technologies. If we look at the marginal
technologies fixing the price over the zonal markets (Table 10), their frequencies completely
change over the four periods.

The coal plants, which in the pre-COVID period (1 January–9 March) were the closing
technology 11% of the time, during the lockdown period set the zonal price only 4% of
the time. In the last period, and in all zonal markets, coal plants returned to being the
closing technology 7.72 % of the time, even if they did not reach the levels recorded at the
beginning of the year.

Renewable energy sources (RES) recorded instead an increase during the lockdown
period: given the lower demand, they increased their opportunity to meet overall require-
ments and set marginal prices. Indeed, during the pre-lockdown period, they were the
closing technology 16% of the time (on average), while during the heavy lockdown period
this percentage increased to 21%. After this period, the percentage stabilized at the pre-
lockdown values (We have to mention that RES technology, along with traditional solar,
wind, and geothermal technologies, includes also hydro technology: pumped storage hydro
power plants, run of the river hydro power plants, and reservoir hydro power plants. Both
groups of technologies increased their frequencies of being a closing technology during
the heavy lockdown period. Moreover, at the end of this period, all kinds of technology
returned to traditional frequencies of being closing technology).
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Table 10. Average Frequency of Marginal Technology According to the Different Periods of 2020.

NORD 1 January–9 March 10 March–2 June 3 June–30 September 1 October–31 December

Coal 7.67 0.74 1.82 4.16
RES 17.87 22.61 16.67 15.90
Gas 55.07 52.72 36.10 42.36
Oil 0.48 0.39 0.56 1.21

Other 18.90 23.54 44.85 36.36

CNOR 1 January–9 March 10 March–2 June 3 June–30 September 1 October–31 December

Coal 8.82 1.96 7.21 5.06
RES 17.03 21.09 14.67 15.23
Gas 55.74 56.79 40.62 43.13
Oil 0.42 0.34 1.33 2.19

Other 18.00 19.81 36.17 34.39

CSUD 1 January–9 March 10 March–2 June 3 June–30 September 1 October–31 December

Coal 14.86 6.47 8.82 11.06
RES 15.94 20.40 13.83 14.78
Gas 52.90 54.68 41.70 46.22
Oil 0.72 0.25 1.40 2.73

Other 15.58 18.20 34.24 25.21

SUD 1 January–9 March 10 March–2 June 3 June–30 September 1 October–31 December

Coal 14.25 6.42 8.16 10.39
RES 16.73 21.33 13.66 14.87
Gas 53.62 55.22 44.71 49.04
Oil 0.72 0.25 1.54 3.18

Other 14.67 16.77 31.93 22.53

SICI 1 January–9 March 10 March–2 June 3 June–30 September 1 October–31 December

Coal 8.76 5.35 2.66 4.03
RES 14.19 20.70 7.49 6.76
Gas 63.65 57.04 74.16 74.38
Oil 0.06 0.54 1.68 1.34

Other 13.35 16.38 14.01 13.48

SARD 1 January–9 March 10 March–2 June 3 June–30 September 1 October–31 December

Coal 14.86 5.84 9.07 11.60
RES 15.94 23.20 15.90 14.73
Gas 52.90 53.21 40.20 45.95
Oil 0.72 0.25 1.37 2.69

Other 15.58 17.51 33.47 25.03

ITALY 1 January–9 March 10 March–2 June 3 June–30 September 1 October–31 December

Coal 11.53 4.46 6.29 7.72
FER 16.28 21.55 13.70 13.71
Gas 55.65 54.95 46.25 50.18
Oil 0.52 0.34 1.31 2.22

Other 16.01 18.70 32.45 26.17

Source: Our elaboration of GME Dataset.

Gas technologies, which include combined cycle gas turbines, natural gas conventional
thermal plants and gas turbines, in the pre-COVID period were the closing technologies
about 55% of the time (on average) given their traditional function to cater to demand
peaks. This percentage did not change during the lockdown period, and this is an unex-
pected result, since the consistent shrink in electricity demand suggests a decrease in the
employment of peak-load plants. Moreover, if we look at the hours where gas technologies
were the marginal technologies, we see that they essentially refer to the night. In the last
two periods, the frequency of gas-closing technologies decreased, probably replaced by the
RES technologies.
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Oil-based plants recorded the most important increase; the average frequency with
which they turned out to be the marginal technology went, on average, from 0.5% in
the pre-lockdown period to 2% in the last period. The category “Other” recorded the
greatest increase. Within this group, we included other technologies different from those
mentioned before: uncertain technologies, market coupling technologies, and foreign
virtual zones technologies.

An analysis of energy source price dynamics needs also to be undertaken in order
to explain the sudden change in the price elasticity of electricity demand. The pattern of
the average prices (weighted for the related volumes) of the contracts traded in the Italian
gas market is shown in Figure 9. A downward trend was recorded from February and at
the end of May prices reached the minimum values. The trend switched in June, prices
started increasing and, by the end of 2020, they had far exceeded the values recorded in the
pre-lockdown period.
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On the other hand, oil prices recorded a different dynamic, as shown in Figure 10,
which depicts the time pattern of the daily BRENT crude oil prices recorded during 2020.
From the beginning of the year a declining trend was recorded, reaching the minimum
value of about 10 dollars per barrel in the middle of April. The recovery began in the
second half of April and, at the beginning of June, prices leveled off on values between 40
and 55 dollars per barrel. However, at the end of the year, oil prices were far below their
usual values.
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We wanted to analyze if the COVID pandemic affected the price responsiveness of
electricity demand.

Again, we applied a linear regression model where the elasticities were the dependent
variables regressed on variables expressing the main phenomena related to the COVID
pandemic (Health Var.), such as hospitalizations and the reduction in mobility due to
lockdown measures (Mobility Var.).

Variables defining the health situation at national level were the daily number of people
hospitalized with COVID symptoms (Hosp.), the daily number of people in intensive care
(Int. Care) and the daily variation in the total number of positive cases (Tot. Positive). All
these health variables were derived from the database provided by The National Institute
of Health. Regressors representative of the stringency of the lockdown measures were
instead the percentage variations in station (Stat. Mob.) and workplace mobility (Work Mob.)
from the baseline period (15 January 2020–6 February 2020). These variables were sourced
from the Google Mobility database. We employed as control variables several structural
dummies for days of the week, months and seasons that captured the differences in price
responsiveness due to cyclical and weather phenomena.

εt = β1 Health Var.t + β2 Mobility Var.t + ∑k γkdk + ut (6)

The structural break highlighted in the graphs is tested using Chow Test. We identify
the break in the dynamic of elasticity on 1 October and we split the sample into two groups
according to this date. The first group corresponds to a dummy variable q1 equal to one
until the 30 September. The second group corresponds to a dummy variable q2 equal to
one for all elasticities computed after 30 September. We then run the following regression:

εt = β1,1(q1 ∗ Healt Var.t) + β1,2 ∗ (q2 ∗ Healt Var.t) + β2,1(q1 ∗ Mobility Var.t)+
β2(q2 Mobility Var.t) + ∑k γk,1(q1 ∗ dk) + γk,2(q2 ∗ dk) + ut

(7)

https://fred.stlouisfed.org
https://fred.stlouisfed.org
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where all variables are interacted with the two dummies and we test the equalities of
coefficients.

Table 11 reports the F test statistics for the Chow test. The F test leads to rejection of
the null hypothesis that the two groups share the same coefficient estimates, and, therefore,
the two samples are from two different probability distributions with different mean.

Table 11. Chow Test Results.

H0 : β1,1 = β1,2; β2,1 = β2,2; γk,1 = γk,2 ∀ k = 1, . . . K F (8, 7472) = 1403.43

H1 : β1,1 6= β1,2; β2,1 6= β2,2; γk,1 6= γk,2 ∀ = 1, . . . K Prob > F = 0.0000

The F test’s results lead us to perform six different regressions for the two subsamples.
Results are shown in Tables 12 and 13. In the first two models we employ as health variable
the number of people hospitalized (Hosp.). Models differ in the mobility variables; we use
the Work Mob. variation in the first and the Stat. Mob. variation in the second. In the third
and fourth models we change the health variable with Int. Care. In the last two models we
replace the health variable with Tot. Positive.

Table 12. Regression Results: Period between 1 January–30 September.

M(1) M(2) M(3) M(4) M(5) M(6)

b/s.d. b/s.d. b/s.d. b/s.d. b/s.d. b/s.d.

Hosp. −0.000000055 *** −0.000000125 ***
0.0000000153 0.0000000167

Int. Care
−0.000000532 *** −0.000000920 ***

(0.0000000997 (0.000000105

Tot. Positive
0 −0.000000182 ***

0.0000000561 0.0000000576

Work Mob.
−0.0000168 *** −0.0000215 *** 0.00000645

0.0000503 0.00000483 0.00000405

Stat. Mob.
−0.0000507 *** −0.0000514 *** −0.0000235 ***

0.00000606 (0.00000562 0.00000461

d.March
0.001894 *** 0.001168 *** 0.002053 *** 0.001345 *** 0.001758 *** 0.001217 ***

0.000324 0.000335 0.000325 0.000335 0.000323 0.000338

d.April 0.002738 *** 0.002397 *** 0.002640 *** 0.001866 *** 0.001952 *** 0.000963 **
0.000398 0.000398 (0.000365 0.000376 0.000356 0.000389

d.May 0.002865 *** 0.002400 *** 0.002549 *** 0.001725 *** 0.002391 *** 0.001535 ***
0.000314 0.000318 (0.000306 0.000321 0.000353 0.000379

d.June 0.002702 *** 0.002514 *** 0.002540 *** 0.002255 *** 0.002615 *** 0.002286 ***
0.000295 0.000292 (0.000296 0.000294 0.000308 0.000308

d.July 0.002531 *** 0.002583 *** 0.002452 *** 0.002511 *** 0.002586 *** 0.002545 ***
0.000292 0.000287 (0.000292 0.000287 0.000293 0.000289

d.August 0.001813 *** 0.002143 *** 0.001675 *** 0.002062 *** 0.002022 *** 0.002150 ***
0.000307 0.000287 (0.000307 0.000287 0.000301 0.000289

d.September −0.007554 *** −0.007147 *** −0.007637 *** −0.007263 *** −0.007505 *** −0.007320 ***
0.000293 0.000292 0.000293 (0.000289 0.000293 0.000293

d.Tuesday −0.000514 *** −0.000477 *** −0.000516 *** −0.000477 *** −0.000537 *** −0.000563 ***
0.000162 0.000161 0.000161 0.00016 0.000163 0.000163

d.Wednesday −0.00026 −0.000292 * −0.00025 −0.000278 * −0.000282* −0.000319 *
0.000163 0.000162 0.000163 0.000162 0.000164 0.000164

d.Thursday −0.0001 −0.00014 −0.000096 −0.00012 −0.00097 −0.00011
0.000163 0.000162 0.000163 0.000162 0.000163 0.000163

d.Friday 0.000177 0.000162 0.000184 0.000188 0.000192 0.00018
0.000163 0.000162 0.000163 0.000162 0.000163 0.000163

d.Saturday −0.000045 0.00017 0.000014 0.000204 −0.00014 −0.000017
0.000169 0.000168 0.000169 0.000167 0.000168 0.000167

d.Sunday 0.000720 *** 0.000676 *** 0.000847 *** 0.000693 *** 0.000476 ** 0.000520 ***
0.000208 0.000169 0.000206 0.000168 0.000198 0.000169

Constant
−0.009640 *** −0.010409 *** −0.009696 *** −0.010416 *** −0.009497 *** −0.009852 ***

0.000291 0.000306 0.00029 0.000302 0.000288 0.000296

Note: standard deviations in the second row in italics. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 13. Regression Results: Period between 1 October–31 December.

M(1) M(2) M(3) M(4) M(5) M(6)

b/s.d. b/s.d. b/s.d. b/s.d. b/s.d. b/s.d.

Hosp.
−0.00000015

**
−0.00000016

**
0.00000007 0.00000008

Int. Care
−0.00000761

*** 0.00000188 ***

0.000001 0.000001

Tot. Positive
−0.0000000454 −0.0000000389
0.0000000367 0.0000000368

Work Mob.
0.000308 *** 0.000308 *** 0.000303 ***

0.00003 0.00003 0.00003

Stat. Mob.
0.000367 *** 0.000375 *** 0.000337 ***

0.000035 0.000035 0.000033

d.November
0.166493 *** 0.166968 *** 0.164738 *** 0.165973 *** 0.162923 *** 0.170827 ***

0.00373 0.00373 0.003655 0.003656 0.003157 0.003288

d.December
0.152931 *** 0.152706 *** 0.151418 *** 0.151692 *** 0.148774 *** 0.155281 ***

0.003626 0.003621 0.003589 0.003583 0.003172 0.003312

d.Tuesday 0.026777 *** 0.025981 *** 0.026749 *** 0.025954 *** 0.026869 *** 0.026207 ***
0.001172 0.001171 0.001173 0.00117 0.00118 0.001179

d.Wednesday 0.032459 *** 0.032448 *** 0.032418 *** 0.032403 *** 0.032459 *** 0.032670 ***
0.001174 0.001173 0.001175 0.001172 0.001176 0.001174

d.Thursday 0.032863 *** 0.032908 *** 0.032858 *** 0.032865 *** 0.033118 *** 0.033180 ***
0.001151 0.001151 0.001152 0.00115 0.001179 0.001178

d.Friday 0.033272 *** 0.033361 *** 0.033245 *** 0.033289 *** 0.033419 *** 0.033640 ***
0.001174 0.001174 0.001176 0.001174 0.001193 0.001193

d.Saturday 0.024276 *** 0.024903 *** 0.024244 *** 0.024791 *** 0.024523 *** 0.025361 ***
0.001175 0.001172 0.001177 0.001172 0.001214 0.001208

d.Sunday −0.004999 *** −0.000979 −0.004949 *** −0.001 −0.004450 *** −0.000733
0.001213 0.001171 0.001214 0.001169 0.001272 0.001218

Constant
−0.243751 *** −0.246370 *** −0.243944 *** −0.246259 *** −0.244284 *** −0.246467 ***

0.003285 0.003237 0.003285 0.003234 0.003284 0.003241

Note: standard deviations in the second row in italics. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 12 shows results for the first regression referring to the period
1 January–30 September. In all six different models the health variables always have a
negative sign, when significant.

This means that the worse the health situation, the more negative the estimates
of elasticity are. That is, the worsening of the health situation at national level made
the demand for electricity even more elastic. The effect of the health variables on the
responsiveness of the demand price is however very low. For instance, increasing the total
number of hospitalized patients by one turns into in an increase (in absolute value) in the
elasticity of demand between −5.5 × 10−8, in the model with Work Mob., and −1.25 × 10−7

in the model with Stat. Mob. The greatest effect on elasticity comes from the number of
patients in intensive care (Int. Care), whose coefficient ranges between −5.32 × 10−7 and
−9.2 × 10−7 in the model with Work. Mob. and Stat. Mob., respectively. In the last two
models, the Tot. Positive health variable is significant only in the model associated with the
mobility of the stations, with a value equal to −1.82 × 10−7.

Looking instead at the mobility variables, their coefficients are also always negative
when significant. This means that an increase in either workplace or station mobility
made the values of the elasticity estimates even more negative. Conversely, a shrinkage of
mobility increased the value of elasticity, bringing it closer to zero. In other words, the sharp
reduction in mobility caused by the lockdown restrictions made the demand for electricity
more inelastic. This was due to the strong contraction in demand from big consumers that
changed the composition of loads, increasing the share of energy consumption for essential
industrial activities which could not be interrupted and, therefore, that were more inelastic.
The coefficients relating to workplace mobility lie between −1.68 × 10−5 and −2.15 × 10−5.
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The effects of station mobility on elasticity are greater (in absolute value), and between
−2.35 × 10−5 and −5.14 × 10−5.

Table 13 shows the regression results referring to the period 1 October–30 December.
The health variables confirm their negative coefficients when significant. The daily

variation of positive cases is no longer significant. Since the end of the summer, the increase
in the number of positive cases was in fact considered a marginal factor, because COVID-19
had become increasingly endemic.

The public authorities, on the other hand, were looking with great concern at the
increase in the number of hospitalized patients, whose acceleration could once again impose
a health emergency and a collapse of hospitals, unable to accommodate an increasing
number of severely ill patients. This phenomenon provides an analogy with the non-
significance of Tot Positive on the performance of economic activities and, in turn, on
the elasticity of the electricity demand. The other two health variables (Hosp. and Int.
Care) show instead coefficients higher than those of the previous period (in absolute
value), ranging from −1.6 × 10−7 to −1.5 × 10−7 for Hosp. and 0 to 10 for Int. Care.
This highlights how the number of hospitalized patients (in intensive care and not) made
elasticity even more negative and, in turn, the electricity demand more elastic. The risk of
hospital congestion has in fact conditioned the pace of economic activities at the national
level, leading local authorities to fine-tune specific measures to again constrain the spread
of disease.

The coefficients of variables proxying the changes in mobility are significant, but
they changed sign, becoming positive in the last period of the year. It is noteworthy
that, by the second wave of the pandemic, many business and economic activities had
already changed their operational schemes, introducing systematic forms of smart and tele
working. Therefore, they had been ready to face new restrictions and lockdowns, avoiding
the dramatic slowdown of the economy and the sharp contraction of energy demand.

4. Conclusions

In this paper we investigated the impact of the COVID-19 pandemic shock on the
price responsiveness of Italian electricity demand. The restrictions governments worldwide
undertook to contain the spread of the pandemic affected the electricity demand loads. We
showed that the level and the profile of electricity loads dramatically shrank during the
period of heavy lockdown. Furthermore, we highlighted that the composition of the loads
changed, recording growth in share of residential demand and drastic decline in share of
big consumers, due to industry closedowns and travel ban. All this necessarily resulted in
a change in the elasticity of demand that we investigated.

Results of the study highlighted that, during the heavy lockdown period, price de-
mand elasticity shrank. Indeed, businesses that remained operational referred to essential
activities whose electricity demand could not be adjusted during the day according to
the hourly equilibrium prices expected in the DAM. We also showed that the last period
of the year, characterized by the recrudescence of the pandemic and weaker restrictions
on mobility, recorded a structural break on the dynamic of elasticity, which increased
dramatically. This structural break has been explained with the reversal trend of natural
gas and oil prices, which consistently rose from the end of summer, and the changes in
marginal technologies, with gas- and coal-based plants increasing their frequency of being
closing technology defining the clearing price.

The analysis of the dynamics of price elasticity showed that, in the first subperiod, the
health variables were significant and the spread of the disease in terms of positive cases and
hospitalizations increased the price responsiveness of electricity demand. The variables
representing the changes in mobility were also significant with negative coefficients, high-
lighting that the reduction in mobility made demand more rigid. The strong contraction
in demand from big consumers changed the composition of loads, increasing the share of
energy consumption for those essential activities which could not be interrupted and, in
turn, that were more rigid. After the structural break, in the second subperiod, the health
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variables continued to be significant with negative coefficients, except for the number of
positive cases. These findings highlighted that only hospitalizations and the linked risk
of hospital congestion were the significant variables that affected the pace of economic
activities and, in turn, energy demand. The coefficients relating to the mobility variables
became instead positive. A reduction in mobility due to restrictive measures made elasticity
even more negative and, in turn, demand even more elastic. Many economic activities had
already changed their operational schemes, by reorganizing human resources and intro-
ducing smart working. Therefore, many businesses were ready to face the new challenges
of the pandemic second wave, avoiding the drastic decline of the economy and a sharp
contraction in energy demand.

To summarize, the impacts due to the pandemic posed various challenges and con-
sequently opened the door for new opportunities and improvements in the power sector.
Utilities were challenged to overcome the normal scenarios and they had to be prepared
to combat new, unforeseen threats. One of the most effective strategies the electricity
sector should undertake is investing in improved system flexibilities to tackle the technical
issues raised by the reductions and changes of electricity loads. We acknowledge that this
work has some limitations, assuming an atomistic competitive market. Further work may
include assumptions on strategic behavior and test for oligopolistic market power. As a
final recommendation for the future, we think that this approach can be useful for the regu-
lators to study more in depth the characteristics of demand. In fact, as demand elasticity
plays a pivotal role in defining load profiles, this study can provide a new methodological
framework for both regulators and utilities to monitor demand price responsiveness in the
Italian wholesale electricity market.
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Appendix A

Table A1 shows the summary statistics (the mean, minimum and the maximum) of
the hourly elasticity estimates aggregated by peak and off-peak hours. Looking at the
months from September to December, the range between the minimum and the maximum
enlarged: the minimums in fact decreased, in both groups of hours (peak and off-peak),
and maximums increased. Even the averages increased in the last four months of the year
in both groups of hours.

If we disaggregate elasticities according to the day of the week we do not see large
differences among days. Table A2 shows the averages by day of the week aggregated by
peak and off-peak hours. The highest average values of the estimates was recorded during
Sunday, when average elasticities were lower than 0.03 (for both the peak and off-peak
groups), showing that during public holidays the electricity demand is less stiff. However,
similar figures were recorded for a working day such as Monday.
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Table A1. Summary Statistics of the Elasticity Estimates Aggregated by Month-Peak and Off-
Peak Hours.

ε
Peak Off-Peak

Max Mean Min Max Mean Min

January −0.0188 −0.0102 −0.0048 −0.0181 −0.0118 −0.0051
February −0.0151 −0.0097 −0.0055 −0.0150 −0.0101 −0.0043

March −0.0118 −0.0077 −0.0036 −0.0127 −0.0076 0.0000
April −0.0141 −0.0072 −0.0039 −0.0142 −0.0073 −0.0034
May −0.0111 −0.0070 −0.0043 −0.0131 −0.0065 −0.0037
June −0.0097 −0.0068 −0.0047 −0.0110 −0.0066 −0.0041
July −0.0103 −0.0067 −0.0039 −0.0111 −0.0070 −0.0036

August −0.0119 −0.0072 −0.0042 −0.0135 −0.0075 −0.0040
September −0.2736 −0.0243 −0.0055 −0.2426 −0.0230 −0.0049

October −0.1234 −0.0648 −0.0284 −0.1307 −0.0723 −0.0346
November −0.1223 −0.0673 −0.0081 −0.1172 −0.0763 −0.0117
December −0.1611 −0.0818 −0.0482 −0.1426 −0.0860 −0.0439

Mean −0.2736 −0.0251 −0.0036 −0.2426 −0.0269 0.0000

Table A2. Summary Statistics of the Elasticity Estimates Aggregated by Day of the Week-Peak and
Off-Peak Hours.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

January Peak −0.0105 −0.0099 −0.0088 −0.0101 −0.0107 −0.0106 −0.0108
Off-Peak −0.0114 −0.0125 −0.0103 −0.0116 −0.0128 −0.0121 −0.0118

February Peak −0.0090 −0.0099 −0.0095 −0.0096 −0.0100 −0.0097 −0.0100
Off-Peak −0.0092 −0.0105 −0.0098 −0.0103 −0.0105 −0.0104 −0.0100

March
Peak −0.0079 −0.0078 −0.0082 −0.0077 −0.0076 −0.0081 −0.0069

Off-Peak −0.0072 −0.0077 −0.0079 −0.0073 −0.0072 −0.0088 −0.0072

April Peak −0.0063 −0.0072 −0.0076 −0.0077 −0.0070 −0.0079 −0.0065
Off-Peak −0.0065 −0.0072 −0.0082 −0.0077 −0.0076 −0.0070 −0.0065

May Peak −0.0065 −0.0077 −0.0071 −0.0077 −0.0072 −0.0065 −0.0066
Off-Peak −0.0059 −0.0072 −0.0076 −0.0071 −0.0062 −0.0060 −0.0058

June Peak −0.0060 −0.0077 −0.0075 −0.0068 −0.0064 −0.0068 −0.0064
Off-Peak −0.0061 −0.0077 −0.0076 −0.0067 −0.0061 −0.0063 −0.0060

July Peak −0.0066 −0.0070 −0.0071 −0.0063 −0.0067 −0.0064 −0.0065
Off-Peak −0.0067 −0.0072 −0.0076 −0.0071 −0.0072 −0.0068 −0.0066

August Peak −0.0070 −0.0081 −0.0074 −0.0078 −0.0072 −0.0071 −0.0065
Off-Peak −0.0068 −0.0083 −0.0079 −0.0084 −0.0079 −0.0071 −0.0065

September Peak −0.0204 −0.0180 −0.0543 −0.0169 −0.0158 −0.0193 −0.0195
Off-Peak −0.0191 −0.0162 −0.0571 −0.0144 −0.0140 −0.0168 −0.0165

October
Peak −0.0803 −0.0642 −0.0566 −0.0545 −0.0526 −0.0577 −0.0951

Off-Peak −0.0889 −0.0699 −0.0662 −0.0632 −0.0617 −0.0626 −0.1011

November
Peak −0.0849 −0.0592 −0.0460 −0.0604 −0.0521 −0.0674 −0.0906

Off-Peak −0.0905 −0.0726 −0.0581 −0.0711 −0.0625 −0.0750 −0.0960

December
Peak −0.1146 −0.0745 −0.0712 −0.0650 −0.0737 −0.0816 −0.1004

Off-Peak −0.1177 −0.0797 −0.0781 −0.0705 −0.0788 −0.0833 −0.1011

Mean
Peak −0.0300 −0.0234 −0.0243 −0.0217 −0.0214 −0.0241 −0.0305

Off-Peak −0.0312 −0.0256 −0.0272 −0.0238 −0.0236 −0.0252 −0.0313
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16. Şahin, U.; Ballı, S.; Chen, Y. Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown
using fractional grey prediction models and machine learning methods. Appl. Energy 2021, 302, 117540. [CrossRef]

17. Halbrügge, S.; Buhl, H.U.; Fridgen, G.; Schott, P.; Weibelzahl, M.; Weissflog, J. How Germany achieved a record share of
renewables during the COVID-19 pandemic while relying on the European interconnected power network. Energy 2022, 246,
123303. [CrossRef]

18. Euroeletric. Impact of COVID-19 on costumers and society. In Recommendations from the European Power Sector; Eurelectric
Recommendations Paper Series; Euroeletric: Brussels, Belgium, 2020; pp. 1–35.

19. Rugani, B.; Caro, D. Impact of COVID-19 outbreak measures of lockdown on the Italian Carbon Footprint. Sci. Total Environ. 2020,
737, 139806. [CrossRef] [PubMed]

20. Zhong, H.; Tan, Z.; He, Y.; Xie, L.; Kang, C. Implications of COVID-19 for the electricity industry: A comprehensive review. CSEE
J. Power Energy Syst. 2020, 6, 489–495.

21. Apadula, F.; Bassini, A.; Elli, A.; Scapin, S. Relationships between meteorological variables and monthly electricity demand.
Applied Energy 2012, 98, 346–356. [CrossRef]

22. Contreras, J.; Espinola, R.; Nogales, F.; Conejo, A. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst.
2003, 18, 1014–1020. [CrossRef]

23. Gonzalez, J.P.; Roque, A.M.S.; Perez, E.A. Forecasting functional time series with a new Hilbertian ARMAX model: Application
to electricity price forecasting. IEEE Trans. Power Syst. 2017, 33, 545–556. [CrossRef]

24. Babu, C.N.; Reddy, B.E. A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl. Soft
Comput. 2014, 23, 27–38. [CrossRef]

25. Wang, Q.; Li, S.; Li, R. Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time
series forecast techniques. Energy 2018, 161, 821–831. [CrossRef]

26. Garcia, R.; Contreras, J.; van Akkeren, M.; Garcia, J. A GARCH forecasting model to predict day-ahead electricity prices. IEEE
Trans. Power Syst. 2005, 20, 867–874. [CrossRef]

http://doi.org/10.1016/j.erss.2020.101683
http://doi.org/10.3390/en15103810
http://doi.org/10.3390/en15041496
http://doi.org/10.3390/en15072662
https://aemo.com.au/-/media/files/major-publications/qed/2020/qed-q1-2020.pdf?la=en&hash=490D1E0CA7A21DB537741C5C18F2FF0A
https://aemo.com.au/-/media/files/major-publications/qed/2020/qed-q1-2020.pdf?la=en&hash=490D1E0CA7A21DB537741C5C18F2FF0A
https://australia-newzealand.uitp.org/sites/default/files/V1_COVID-19%20impacts_AJ_v03.pdf
https://australia-newzealand.uitp.org/sites/default/files/V1_COVID-19%20impacts_AJ_v03.pdf
http://doi.org/10.1016/j.erss.2020.101693
http://doi.org/10.1016/j.envres.2021.111208
http://www.ncbi.nlm.nih.gov/pubmed/33895110
http://doi.org/10.1016/j.aeaoa.2022.100168
https://www.energynetworks.com.au/news/energy-insider/2020-energy-insider/commercial-down-v-residential-up-covid-19s-electricity-impact/
https://www.energynetworks.com.au/news/energy-insider/2020-energy-insider/commercial-down-v-residential-up-covid-19s-electricity-impact/
https://data.enedis.fr/explore/?sort=modified
https://data.enedis.fr/explore/?sort=modified
http://doi.org/10.1016/j.apenergy.2020.115739
http://www.ncbi.nlm.nih.gov/pubmed/32904736
http://doi.org/10.1016/j.enbuild.2021.111330
http://www.ncbi.nlm.nih.gov/pubmed/35431417
https://www.iea.org/reports/global-energy-review-2020
https://www.eia.gov/outlooks/steo/pdf/steofull.pdf
http://doi.org/10.1016/j.apenergy.2021.117540
http://doi.org/10.1016/j.energy.2022.123303
http://doi.org/10.1016/j.scitotenv.2020.139806
http://www.ncbi.nlm.nih.gov/pubmed/32492608
http://doi.org/10.1016/j.apenergy.2012.03.053
http://doi.org/10.1109/TPWRS.2002.804943
http://doi.org/10.1109/TPWRS.2017.2700287
http://doi.org/10.1016/j.asoc.2014.05.028
http://doi.org/10.1016/j.energy.2018.07.168
http://doi.org/10.1109/TPWRS.2005.846044


Energies 2022, 15, 7501 26 of 26

27. Qu, H.; Duan, Q.; Niu, M. Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets. Energy
Econ. 2018, 74, 767–776. [CrossRef]

28. Jan, F.; Shah, I.; Ali, S. Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis. Energies 2022, 15, 3423.
[CrossRef]

29. Shah, I.; Lisi, F. Forecasting of electricity price through a functional prediction of sale and purchase curves. J. Forecast. 2020, 39,
242–259. [CrossRef]

30. Bollino, C.A. Gaids: A generalised version of the almost ideal demand system. Econ. Lett. 1987, 23.2, 199–202. [CrossRef]
31. Deaton, A.; Muellbauer, J. An almost ideal demand system. Am. Econ. Rev. 1980, 70, 312–326.
32. D’Errico, M.C.; Bollino, C.A. Bayesian Analysis of Demand Elasticity in the Italian Electricity Market. Sustainability 2015, 7,

12127–12148. [CrossRef]
33. Bigerna, S.; Bollino, C.A. Electricity Demand in Wholesale Italian Market. Energy J. 2014, 35, 25–46. [CrossRef]

http://doi.org/10.1016/j.eneco.2018.07.033
http://doi.org/10.3390/en15093423
http://doi.org/10.1002/for.2624
http://doi.org/10.1016/0165-1765(87)90039-5
http://doi.org/10.3390/su70912127
http://doi.org/10.5547/01956574.35.3.2

	Introduction 
	Material and Data 
	Model 
	Material 

	Empirical Results and Discussion 
	Conclusions 
	Appendix A
	References

