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Abstract: The seismic sensors used for automatic seismic trip systems (ASTS) of nuclear power plants
(NPPs) are mainly arranged on the raft foundation of reactor buildings; however, the arrangement
principle of seismic sensors is not clear. In order to analyze the seismic response sensitivity of the
raft foundation of reactor building in NPPs, this paper carried out the seismic response sensitivity
research at seven positions on the raft foundation of a reactor building under three site conditions,
with two sets of time histories as input. The results show that (1) the peak acceleration of the outer
ring point of the raft foundation was the largest, and the peak acceleration of the center point was
the smallest; (2) the peak value of the floor response spectrum at the outer ring point of the raft
foundation was the largest, and the peak value at the center point was the smallest. In an earthquake,
the outer ring point of the raft foundation of the reactor building was the most sensitive. It was
suggested that the seismic sensors used for ASTS should be arranged at the outer ring of the raft
foundation NPP reactor building, and the shutdown threshold shall be calculated according to site
conditions and structural characteristics.

Keywords: nuclear power plant; automatic seismic trip systems; ground motion parameters;
soil–structure interaction

1. Introduction

According to the Seismic Design and Evaluation of NPPs (HAD102/02) [1], the max-
imum threshold and trigger level of reactor shutdown shall be determined by reference
to SL-2 for the automatic seismic trip systems (ASTS). At present, the seismic instruments
used for the ASTS are mainly arranged on the raft foundation of the reactor building. For
nuclear safety guidelines or national standards [1–6], the arrangement principle is not clear.
The third-generation NPPs are equipped with automatic seismic trip systems in China [7].
The seismic sensors used for ASTS are uniformly distributed on the raft foundation reactor
building. Some are arranged according to the fire compartment, and some are arranged
according to the place with the lowest radiation dose. In addition, seismic sensor layout
and shutdown threshold for ASTS do not consider the impact of site conditions.

The finite element analysis method has been considered as one of the most effective ap-
proaches for simulating seismic behaviors of civil infrastructures and nuclear structures [8].
The influence of soil structure interaction (SSI) should be considered in the seismic response
analysis of nuclear power plant structure [9–11].

Halbritter et al. [12] compared and analyzed two methods of soil structure interaction
based on the Russian VVER-440 and VVER-1000 pile types, and the results showed that
the soil structure interaction can be more truly represented by using the soil structure
interaction model. Elaid and Eissa [13] proposed a three-dimensional seismic soil structure
interaction analysis method for NPP structures. Leonardo et al. [14] analyzed the soil
structure interaction of AP1000 on six typical sites and compared the floor response spectra.
Mansour Tabataie et al. [15] established a three-dimensional finite element model and a
lumped mass rod model of the EPR and made a comparative analysis using the SASSI
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program. They believed that the rod model could basically represent the seismic response,
but the vertical response was relatively conservative.

In order to determine the layout principle and the shutdown threshold of ASTS, this
paper intends to carry out sensitivity analysis of the seismic response of the raft foundation
of the reactor building under different site conditions.

2. Numerical Analysis Method and Models
2.1. Finite Element Model

Referring to the relevant drawings of the NPP, the finite element model of soil struc-
ture interaction was established using the finite element software ABAQUS. The soil
structure system, including the raft foundation and the NPP structure, is shown in Figure 1.
NEWMARK implicit integration was used for the calculation. The finite element model of
NPP structure included nuclear auxiliary building and shielding building. The influences
of the steel containment, equipment holes, and air inlets on the shield building, as well
as the annular water tank, were not considered; solid and shell elements were used for
modeling. There were 182,031 elements and 216,807 nodes in the finite element model of
the raft foundation and NPP structure.
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Figure 1. Finite element model of raft foundation and NPP structure.

The finite element model of the raft foundation is shown in Figure 2, all of which
were solid elements. The size of the raft foundation was 500 × 500 × 80 m, with a total of
155,992 units and 184,214 nodes. The first four modes calculated are shown in Figure 3.
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2.2. Site Conditions

As for site conditions, three site conditions were selected in this paper, namely, bedrock
site, firm rock site (shear wave velocity is divided into 2500 m/s, 1146 m/s), and actual
layered site, provided by the Site Safety Analysis Report of Guangdong NPP Phase I Project;
the three sites were marked as site I, site II, and site III, as shown in Table 1 below.

Table 1. Sites geotechnical parameters.

Site Depth (m) Shear Velocity (m/s) Density (kg/m3) Elastic Modulus (MPa) Poisson Ratio

Firm rock (site II) 80 1146.224 2460 8539 0.321

Bedrock (site I) 80 2500 2500 40,625 0.3

Guangdong NPP
site (site III)

5 967.071596 1910 4923 0.378
15 458.45863 2020 1092 0.286
20 1146.22413 2460 8539 0.321
40 756.684691 2470 3612 0.277

As for damping, Rayleigh damping was selected to simulate the energy dissipation
caused by materials [16,17] in the calculation and analysis, and the calculation formula was
as follows:

C = αM + βK

where M is the mass matrix, K is the stiffness matrix, α is the mass coefficient, and β is the
stiffness coefficient.
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α and β were, respectively, determined by the following formulas:

α =
2ωiωj(ωjξi − ωiξ j)

ω2
j − ω2

i

β =
2(ωiξi − ωjξ j)

ω2
i − ω2

j

where ξi and ξ j are the damping ratio of the i and j modes, respectively, and ωi and ωj are
the circular frequency of the i and j modes, respectively.

2.3. Ground Motion Input

The combination of seismic site response and viscoelastic boundary realized the input
mode of ground motion fluctuation that converts the site seismic response into equivalent
load on the truncated boundary [18,19].

In this paper, the actual earthquake ground motion provided in the Site Safety Analysis
Report of Guangdong NPP Phase I Project was selected. Its input location was at the
bedrock, and time histories are shown in Figure 4.
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Figure 4. Time history of Guangdong NPP site.

Considering the uncertainty of the time history, the Kobe earthquake record was
selected, whose input location was also the bedrock. The time histories are shown in
Figure 5, with a total duration of 30 s. The ground motion of the Kobe earthquake in Japan
was selected mainly because of the difference between its frequency spectrum characteristics
and the ground motion of the Guangdong NPP site. Figure 6 is the comparison of four
ground response spectra.

From Figure 6, it can be seen that there was a certain difference in the predominant
period of the acceleration response spectra recorded between the ground motions of the
Guangdong NPP site and the Kobe earthquake. The ground motions of the Kobe earthquake
were with abundant seismic records mainly at low frequencies. Therefore, two sets of time
histories selected in this paper were representative. At the same time, in order to make the
analyzed data comparable, the time histories of the Kobe earthquake were also amplitude
modulated according to the peak value time histories of the Guangdong NPP site.
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3. Layout Principle

In order to carry out sensitivity analysis of seismic response of the raft foundation
reactor building, seven representative positions were selected. The outer ring of the raft
foundation, a point at an interval of 120 degrees; the inner ring of raft foundation, a point
at an interval of 120 degrees; and the center point of the raft foundation are shown in
Figure 7 below.
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Figure 7. Schematic diagram of representative point selection of the raft foundation.

The mesh density of the soil structure interaction finite element model in this section
was selected according to the formula recommended in the Code for Seismic Design of
Nuclear Power Plants (GB 50267-2019) [2],

h ≤ β· Vs

fmax

where Vs is the shear wave velocity of foundation soil; fmax is the highest frequency of
seismic vibration; and β is a coefficient between 1

5 − 1
12 .



Energies 2022, 15, 7135 7 of 15

4. Analysis of Different Sites
4.1. Seismic Response Analysis of the Raft Foundation in the Bedrock Site

The raft foundation (position 1–7) at the site of 2500 m/s was taken to calculate the
acceleration response and the floor response spectrum. Meanwhile, in order to make
the analysis more targeted, the frequency band (2–10 Hz) that has a great impact on the
structural, system, and components (SSCs) of the NPPs [20] was extracted for compar-
ative analysis. The seismic response of seven points of the raft foundation is shown in
Figure 8a–d. In addition, the seismic responses in the y directions of the seven points were
calculated, as shown in Figure 9.
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Figure 8. Peak acceleration and floor response spectrum of the raft foundation at 7 positions in the x
direction. (a) Acceleration time history of the raft foundation in the x direction. (b) Peak acceleration
of the raft foundation in the x direction. (c) Floor response spectrum of the raft foundation in the x
direction. (d) Floor response spectrum of the raft foundation in the x direction (2–10 Hz).
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4.2. Seismic Response Analysis of the Raft Foundation in the Firm Rock Site

The raft foundation (position 1–7) of the 1146 m/s site was taken to calculate the
acceleration response and floor response spectrum. Meanwhile, in order to make the
analysis more targeted, the frequency band (2–10 Hz) was extracted for comparative
analysis. The seismic response of seven points of raft foundation is shown in Figure 10a–d.
In addition, the seismic responses in y directions of seven points were calculated, as shown
in Figure 11.

4.3. Seismic Response Analysis of Raft Foundation in Guangdong NPP

The actual layered site of Guangdong NPP was taken. Similarly, the raft foundation
reference point (position 1–7) was taken to calculate the acceleration and floor response
spectrum. Meanwhile, in order to make the analysis more targeted, the frequency band
(2–10 Hz) was extracted for comparative analysis. The seismic response of seven points
of raft foundation is shown in Figure 12a–d. In addition, the seismic responses in the y
directions of seven points were calculated, as shown in Figure 13.
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Figure 10. Peak acceleration and floor response spectrum of the raft foundation at 7 positions in the x
direction. (a) Acceleration time history of the raft foundation in the x direction. (b) Peak acceleration
of the raft foundation in the x direction. (c) Floor response spectrum of the raft foundation in the x
direction. (d) Floor response spectrum of the raft foundation in the x direction (2–10 Hz).
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Figure 12. Peak acceleration and floor response spectrum of the raft foundation at 7 positions in the x
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of the raft foundation in the x direction. (c) Floor response spectrum of the raft foundation in the x
direction. (d) Floor response spectrum of the raft foundation in the x direction (2–10 Hz).
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5. Results and Discussion
5.1. Seismic Response Analysis under the Ground Motion of the Guangdong NPP Site

In order to analyze the change of peak acceleration at different positions of raft foun-
dation under the same shear wave velocity, we took seven points on the raft foundation,
namely, the outer ring point (positions 5, 6, and 7), the inner ring point (positions 2, 3, and 4),
and the center point (position 1). With the change of site conditions, the peak acceleration
(A), raft foundation position, and reduction rate of A(δ) are shown in Table 2.

A(δ) =
Amax − Amin

Amin

As for the peak accelerations at different positions of the raft foundation, it can be
seen from the above table, under the same site, that the peak value of the acceleration
at the outer ring point (positions 5, 6, and 7) was the largest, and the peak value of the
acceleration at the center point (position 1) was the smallest. The reduction rate of the peak
value varied from 3% to 10%. Whether or not it has an impact on the safety of the NPPs, it
is necessary to analyze the reduction rate of the floor response spectrum.
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Table 2. Peak acceleration at different positions of the raft foundation.

Direction Type Amax (g) Position Amin (g) Position A(δ)/%

x
Site I 0.40 6 0.37 1 8
Site II 0.32 7 0.31 1 3
Site III 0.27 7 0.25 1 8

y
Site I 0.42 6 0.40 1 5
Site II 0.33 7 0.30 1 10
Site III 0.27 5 0.25 1 8

In order to analyze the reduction rate of the floor response spectra at different positions
of the raft foundation under the same site condition, seven points on the raft foundation
were taken, namely, the outer ring point (positions 5, 6, and 7), the inner ring point
(positions 2, 3, and 4), and the center point (position 1). In accordance with the calculation
results, peak acceleration of the floor response spectrum (S), the raft foundation position,
and reduction rate of S(δ) under the same site conditions are shown in Table 3.

S(δ) =
Smax − Smin

Smin

Table 3. Floor response spectrum at different positions of the raft foundation.

Direction Type Smax (g) Position Frequency
(Hz) Smin (g) Position Frequency

(Hz) S(δ)/%

x
Site I 1.23 6 4.16 1.15 1 4.16 7
Site II 1.11 6 4.00 1.05 1 3.33 6
Site III 0.85 5 3.33 0.77 1 3.33 10

y
Site I 1.22 6 4.16 1.16 1 4.16 5
Site II 1.03 5 3.7 0.96 1 3.57 7
Site III 0.79 5 2.77 0.75 1 2.77 5

It can be seen from the above table that the peak acceleration of the floor response
spectrum of the raft foundation was mainly at the outer ring, i.e., positions 5 and 6. The
minimum value of the peak acceleration of the floor response spectrum was essentially at
the center of the ring (position 1). The reduction rate of the floor response spectrum was
from 5% to 10%, mainly within 10%.

In order to make the analysis more targeted, this paper extracted the frequency band
(2–10 Hz) for comparative analysis, as shown in Table 4.

Table 4. Acceleration floor response spectrum at different positions of the raft foundation (2–10 Hz).

Direction Type Smax (g) Position Frequency
(Hz) Smin (g) Position Frequency

(Hz) S(δ)/%

x
Site I 1.23 6 4.16 1.15 1 4.16 7
Site II 1.11 6 4.00 1.05 1 3.33 6
Site III 0.85 5 3.29 0.80 1 3.29 6

y
Site I 1.22 6 4.16 1.16 1 4.16 5
Site II 1.03 5 3.7 0.96 1 3.57 7
Site III 0.78 5 2.77 0.75 1 2.77 4

It can be seen from the above table that the maximum value of the floor response
spectrum (2–10 Hz) was mainly in the outer ring, that is, positions 5 and 6. The reduction
rate of the floor response spectrum was from 4% to 7%, mainly within 7%.

From Tables 2–4, for different site conditions, the acceleration, floor response spectrum,
and other calculation results of the seismic response of the raft foundation structure, we
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can draw the following conclusions: the change of the shear wave velocity of the site had a
significant impact on the response of the NPP structure. With the increase in the shear wave
velocity, the seismic response increased at the raft foundation. The main reason was that
the soil structure interaction (SSI) effect essentially changed the actual input ground motion
at the raft foundation NPPs reactor building. Thus, the shutdown threshold for the ASTS
shall be calculated according to different site conditions and NPP structural characteristics,
and then the threshold will be set according to SL-2.

5.2. Seismic Response Analysis under the Ground Motion of the Kobe Earthquake

In order to consider the fact that the uncertainty of the earthquake ground mo-
tion and the layered site is more representative, this section analyzes the peak acceler-
ation changes under the time histories of the Kobe earthquake. We took seven points
on the raft foundation, namely, outer ring points (positions 5, 6, and 7), inner ring
points (positions 2, 3, and 4), center point (position 1), peak acceleration, raft foundation
position, and reduction rate of acceleration, as shown in Table 5.

Table 5. Peak acceleration at different positions of the raft foundation.

Direction Amax (g) Position Amin (g) Position A(δ)/%

x 0.46 5 0.44 1 5
y 0.27 5/6/7 0.26 1 4

As for the peak acceleration at different positions of the raft foundation, it can
be seen from Table 5 that the peak value of the acceleration at the outer ring point
(positions 5, 6, and 7) was the largest, and the peak value of the acceleration at the center
point (position 1) was the smallest. The reduction rates of these peak acceleration rates
were 4% and 5%.

In order to analyze the reduction rate of the floor response spectrum at different
locations of the raft foundation under the same site conditions, seven points on the raft
foundation were also taken, namely, the outer ring point (positions 5, 6, and 7), the inner
ring point (positions 2, 3, and 4), and the center point (position 1). According to the
calculation results, the peak value of the floor response spectrum and the reduction of their
corresponding frequencies can be obtained, as shown in Table 6.

Table 6. Floor response spectrum at different positions of the raft foundation.

Direction Smax (g) Position Frequency
(Hz) Smin (g) Position Frequency

(Hz) S(δ)/%

x 1.70 6 0.82 1.65 3 0.82 3
y 0.98 7 2.38 0.94 1 2.38 4

It can be seen from Table 6 that the maximum peak value of the raft foundation floor
response spectrum was mainly in the outer ring, that is, positions 6 and 7. The minimum
peak value of the floor response spectrum was at the center or inner ring (positions 1 and 3),
and the reduction rates of the floor response spectrums were 3% and 4%.

In order to make the analysis more targeted, the frequency bands (2–10 Hz) that had a
greater impact on the SSCs of the NPP were extracted for comparative analysis, as shown
in Table 7.

Table 7. Acceleration floor response spectrum at different positions of the raft foundation (2–10 Hz).

Direction Smax (g) Position Frequency (Hz) Smin (g) Position Frequency (Hz) S(δ)/%

x 0.86 7 3.33 0.80 1 3.33 7.5
y 0.98 7 2.38 0.94 1 2.38 4
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It can be seen from Table 7 above that the peak value (2–10 Hz) of the floor response
spectrum was also in the outer ring, that is, position 7. The minimum peak value of the
floor response spectrum was also at the center of the ring (positions 1). The reduction rates
of the floor response spectrum were 7.5% and 4%, which were relatively small, mainly
because the main frequency bands of the Kobe earthquake had little impact on the NPP
structure. However, under the two sets of time histories, there is the conclusion that the
peak value of the raft foundation was the largest at the outer ring point and the smallest at
the center point, regardless of whether it was the peak value of the acceleration or the peak
value of the floor response spectrum.

In summary, under the same site conditions, whether the peak acceleration or the peak
value floor response spectrum of the raft foundation, the outer ring point was the largest
and the center point was the smallest. This was not consistent with the conclusion that
there is no layout principle when the seismic sensors for ASTS are deployed on the raft
foundation of the NPPs. Therefore, it is suggested that the seismic sensors used for ASTS
should be arranged on the outer ring of the raft foundation of a reactor building.

6. Conclusions

In this paper, two sets of time histories with different frequency characteristics were
selected as input, and the influence of soil structure interaction (SSI) of NPPs was considered.
Under three site conditions, the distribution characteristics of seismic response at seven
representative locations on the raft foundation of the reactor building were studied. Some
conclusions were derived as follows:

1. The shear wave velocity of the site had a significant influence on the seismic response
of the raft foundation NPP reactor building. With the increase in the shear wave
velocity, the peak acceleration and peak acceleration of floor response spectrum
were increased.

2. Under different site conditions, the peak value of the acceleration at the outer ring
point of the raft foundation reactor building was the largest, and the peak value of
the acceleration at the center point was the smallest. The reduction rate of the peak
acceleration varied from 3% to 10%.

3. Under different site conditions, the peak value of the floor response spectrum at the
outer ring point of the reactor building raft foundation was the largest, and the peak
value of the response spectrum at the center point was the smallest.

4. On the basis of the research in this paper, the outer ring point of raft foundation
reactor building was found to be the most sensitive for an earthquake. It is sug-
gested that the seismic instrument used for ASTS should be arranged at the outer
ring of the raft foundation of the reactor building. Shutdown threshold shall be
calculated according to different site conditions and structural characteristics and set
according to SL-2.
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