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Abstract: Implementation of the smart transformer concept is critical for the deployment of IIoT-
based smart grids. Top manufacturers of power electrics develop and adopt online monitoring
systems. Such systems become part of high-voltage grid and unit transformers. However, furnace
transformers are a broad category that this change does not affect yet. At the same time, adoption of
diagnostic systems for furnace transformers is relevant because they are a heavy-duty application
with no redundancy. Creating any such system requires a well-founded mathematical analysis of the
facility’s condition, carefully selected diagnostic parameters, and setpoints thereof, which serve as the
condition categories. The goal hereof was to create an expert system to detect insulation breach and
its expansion as well as to evaluate the risk it poses to the system; the core mechanism is mathematical
processing of trends in partial discharge (PD). We ran tests on a 26-MVA transformer installed on a ladle
furnace at a steelworks facility. The transformer is equipped with a versatile condition monitoring
system that continually measures apparent charge and PD intensity. The objective is to identify the
condition of the transformer and label it with one of the generally recognized categories: Normal,
Poor, Critical. The contribution of this paper consists of the first ever validation of a single generalized
metric that describes the condition of transformer insulation based on the online monitoring of the
PD parameters. Fuzzy logic algorithms are used in mathematical processing. The proposal is to
generalize the set of diagnostic variables to a single deterministic parameter: insulation state indicator.
The paper provides an example of calculating it from the apparent charge and PD power readings.
To measure the indicativeness of individual parameters for predicting further development of a
defect, the authors developed a method for testing the diagnostic sensitivity of these parameters
to changes in the condition. The method was tested using trends in readings sampled whilst the
status was degrading from Normal to Critical. The paper also shows a practical example of defect
localization. The recommendation is to broadly use the method in expert systems for high-voltage
equipment monitoring.

Keywords: furnace transformer; technical condition; monitoring; fuzzy logic; diagnostic criteria;
diagnostic sensitivity

1. Introduction

The smart transformer is a key concept in digital industry and energy development.
CIGRE’s guidelines can be generalized to define the smart transformer as an energy-saving
unit equipped with digital control systems and online condition monitoring systems [1].
This concept is pursued by the top manufacturers of power electrical equipment. Known
developments affect grid transformers in electric power systems as well as unit transformers
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used at power plants. However, another class of transformers—furnace transformers—so far
remains unaffected by these developments. The reason is that such transformers are used by
steelworks facilities that feature a complete technological cycle; these units are uncommon.

However, a scientific validation and practical implementation of a smart furnace
transformer is a relevant undertaking for the industry. The critical challenge consists in
developing the theory, methods, and systems for predictive condition monitoring in real
time. Condition analysis should be based on a set of features combined into a generalized
parameter. This paper covers some aspects of the problem. However, we first need to cover
the diagnostic features and methods for condition monitoring, which are applicable to any
class of transformers.

1.1. Development of Online Monitoring Systems

Paper [2] notes that high-voltage equipment is a special category of complex equipment subject
to continuous diagnosis. In that category, it is power transformers that require most attention and
regular checkups. The reason is that they are critical for uninterrupted electricity delivery to
consumers [3]. Paper [4] states that power transformers are significant and valuable units, and
that this is why condition monitoring is crucial in their case. Should a critical transformer fail in a
transmission grid, energy security might be jeopardized.

Unscheduled shutdown of a furnace transformer disrupts the process cycle of the
steelworks facility. Such disruption will result in undersupply and multimillion losses.
Worse than that, furnace transformers have no redundancy, unlike their grid or unit
counterparts. The service life of a power transformer depends on the condition of its
insulation, which is degraded by loads of various physical natures. These include thermal,
electrical, mechanical, and environmental loads [5].

The adoption of smart grid technologies [6,7] and the advancement of IIoT-based smart
grids [8–11] have brought attention to the condition monitoring of power transformers.
Paper [12] considers using AI for condition analysis. Its authors claim that novel methods
are capable of accurate fault detection even where data is uncertain. Papers [13–16] presents an
overview of transformer condition testing methods for use in smart distribution grids. It
analyzes the latest methods in terms of their strengths and weaknesses [8,17–21].

Constant enhanced monitoring is necessary for the transformers of high-power elec-
tric arc furnaces and ladle furnaces. This is heavy-duty machinery operating under asym-
metric, drastically variable loads. The windings of a furnace transformer are exposed to
electrodynamic shock loads resulting from current surges that in turn are a result of the
electric arc melting technology [22,23]. Besides this, on-load tap changing, which occurs
several times a year in case of a grid transformer, might be performed up to 1000 times a
day on a furnace transformer [24]. However, condition monitoring of furnace transformers
remains under-investigated.

Designing an online monitoring system for complex equipment consists in completing
two related objectives: They are:

• hardware and software development;
• validation of mathematical analysis methods and selection of diagnostic parameters

and condition categories.

Below are considered some aspects of the second objective for online monitoring systems
implemented on the transformers of two ladle furnaces at a steelworks facility [25,26].

1.2. Validation of Condition Analysis Methods Fuzzy Logic

Paper [27] states that in recent years, several developments haven taken off that rely on
AI models: neural networks, support vector machines, hybrid methods, etc. They are intended
to diagnose power transformer malfunctions by analyzing the gases. These methods, although
performing quite well, face limitations with respect to the accuracy of identifying the exact moment
of multiple small-scale malfunction; besides, they are difficult to implement. Partial discharge
monitoring is a commonly recognized method for early fault diagnosis. This is why it is
proposed to diagnose emergent failures by PD monitoring enabled by fuzzy logic (FL).
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FL methods are common in condition assessment of high-voltage equipment [28–32].
The reason for this is that the condition of most physical objects cannot be described in
binary terms: serviceable vs. faulty. There are multiple intermediate states that would be
logical to determine by means of FL. Paper [33] emphasizes that the relation between faults
and their causes is complex in case of power equipment. This is why FL is the method of choice for
internal transformer diagnostics. A similar conclusion is drawn in [34]: fuzzy logic is a smart
and accurate tool for the automated detection of transformer faults.

FL applications for diagnosing faults in power transformers are covered in [35–40].
However, most developments concern dissolved gas analysis (DGA); FL diagnosis based
on other monitoring methods remains understudied.

1.3. Selection of Diagnostic Parameters—Partial Discharge Monitoring

PD monitoring is a promising, rapidly developing method for high-voltage equipment
condition monitoring [41–43]. PD intensity is an important diagnostic feature of oil and
solid insulation condition. IEC 60270 defines partial discharge as a localized electrical discharge
that only partially bridges the insulation between conductors [44]. In practice, PDs are both
symptoms and causes of insulation aging, and they can cause equipment failure in the long term [45].
PD monitoring helps prevent early aging of insulation. Meanwhile, it is crucial to know the
characteristics of the discharge itself for the purposes of monitoring. The next step is to apply fuzzy
logic to evaluate equipment condition. This approach, stated in [46], is the foundation of the
research presented herein.

The core PD readings are:

1. Apparent discharge, Q02 [nC], which is quantitatively proportional to the maximum
pulse amplitude [44,47].

2. PD power, usually reduced to PDI−Partial Discharge Intensity. This parameter is
defined as the total energy of discharges divided by the time of their summation,
which is why it has the same dimensionality as power [maw]. The parameter describes
the power and intensity of PD and is determined by the dependency [48,49].

PDI =
1
T

m

∑
i=1

QiUd, (1)

where m is the number of pulses recorded over the observation time T; Ud is the effective voltage.
A drastic increase in Q02 and PDI is an unambiguous sign of insulation destruction. If

these values change significantly over 3–4 observations, or at least double over a year, then
the insulation has an expanding defect [50].

1.4. Generalized Transformer Condition Indicators

Cluster analysis is a promising mathematical tool for assessing equipment condition
from PD readings [51–53]. PD intensity can be analyzed, and PD clusters can be localized
PD in the transformer tank. However, quantifying insulation wear is difficult. The reason
for this is that there is not a single condition indicator based on PD readings.

Papers [54,55] validate a risk indicator for power transformers, which is based on electrical
measurements (an EM indicator). A similar condition parameter was adopted for DGA results.
Paper [56] presents an algorithm for quantifying the EM indicator. They also quantify the
generalized oil analysis-based indicator. Thus, they validated condition indicators for three
diagnostic methods: DGA, electrical measurements, and oil analysis. Apparently, this approach
should also be applicable to PD localization as a condition indicator.

Thus, the key objective hereof is to find such a generalized transformer condition
indicator based on continually monitored PD readings and FL algorithms. Another objective
is to evaluate the sensitivity of PD parameters for predictive condition monitoring.

Similar problems are addressed in [57–60]. In [61], they adopt the insulation state
indicator (ISI) to quantify the degradation (aging) of insulation in electric machines. The
indicator is the standard deviation between reference and later measurements. They
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compare the amplitude spectra of voltage as recorded for a machine in normal condition
against later measurements. This paper presents a similar approach to deriving insulation
condition from PD readings.

2. Problem Statement
2.1. Monitoring System Description

Below are the results of studies performed on ETTsNKV-40000/110-UHL-4 transform-
ers manufactured by Elektrazavod JSC (St. Petersburg, Russia). They are installed on
ladle furnace transformers at a full-cycle steelworks facility. Table 1 shows the nominal
parameters [49].

Table 1. Parameters of the transformer ETTsNKV-40000/110.

Type Rated Capacity,
kVA Rated Coil Voltage, V

Diagram and
Group of Coil

Connection

Number
of OLTC
Positions

Cooling
System

Mass,
Tons

Length ×Width
× Height, mm

ETTsNKV-40000/
110-UHL-4 26,000–20,282 110,000 HV

421–289.5 LV Υ/∆-11 9 Suspended“OFWF” 80 4840 × 3540
× 6200

The online monitoring systems were based on the diagnostic equipment manufactured
by Dimrus, Perm, Russia, complemented with a MINITRANS continuous gas and oil
humidity monitor (Kelman) [62]. The key diagnostic device is TDMS (Transformer Diagnostics
Monitor Special). It consists of five primary sensor modules, a microprocessor module, and
a PSU, all installed in a cabinet, see Figure 1. For details on the modules, see [26].

Figure 1. TDMS structure.

Figure 2 shows a simplified functional diagram of the system. Electrolocation is
used to measure the PD readings. The method consists in using DB sensors installed
on the PIN terminals of high-voltage bushings; the sensors record the flowing current
pulses [63]. Apparent charges are derived from the signal amplitudes, whereas the number
of discharges is derived from pulse rates. For details on the system, see [49,64]

The system registers pulses that last ≤640 ns; however, there should be no pulses
with an amplitude of >30% of the original pulse amplitude for at least 2560 ns. Failure
to meet this requirement classifies the pulse as noise and prevents it from being logged.
A PD pulse is considered to periodically repeat if its repetition rate is 0.2 pulses per grid
voltage period. The measured apparent charge Q02 is quantitatively proportional to the
maximum amplitude of the repeated discharge of pulse U02. It is determined by the linear
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dependency Q02 = U02/k0, where k0 = 32.56 is a coefficient set in the system configuration.
Thus, the values Q02 and U02 are related and are essentially the identical PD readings.

Figure 2. Part of the functional diagram of the furnace transformer condition monitoring system.

The second PD reading is its power. This parameter is reduced to the integral PDI,
which is found by the dependency (1). Both parameters can be used to indirectly assess
insulation condition on the basis of the PD readings (Table 2) [65].

Table 2. Classification of insulation conditions based on PD parameters.

Insulation Condition Maximum Amplitude of
Apparent Discharge, pC Recurrence Rate, Pulses/s PD Power, MW

Dry, clear–concentration of impurities
< 50 particles/mL <30 25–30 <0.2

Relatively clear–after repair with
insulation flushing 250–380 120–150 0.5–0.9

Contaminated with hard impurities 300–400 120–150 50–90
Wet, heavily polluted with impurities 220–400 1000–1800 470–800

2.2. Experimental PD Analysis

In course of the research, we used the newly adopted system to analyze the PD
readings in transformer phases from 1 January to 31 December 2015. Figure 3 shows the
trends in these readings as logged from 11 February to 22 April 2015 [66]. Figure 3a shows
trends in U02 as recorded when monitoring constant discharges; Figure 3b shows trends
in PDI.
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Figure 3. Trends in the repeated discharge amplitude (a) and PDI (b) in Phases A, B, C of high-
voltage bushings.

Table 3 shows normalized limits for each condition category, which can be derived
from PD readings [67]. For furnace transformers, the boundary values indicative of the
poor insulation condition (U1D and P1D) can be found by the inequalities [49]:

U02 > U1D = 80 mV (Q02 > Q1D = 2.5 nC); PDI > P1D = 60 mW;

For critical condition: (Q2D and P2D)

U02 > U2D = 160 mV (Q02 > Q2D = 5 nC); PDI > P2D = 80 mW.

The limit values determining the object’s state based on the results of the discharge
activity control were not determined specifically for furnace transformers, and they are not
provided in the regulatory documents. Therefore, the values such as U1D, U02, U2D (etc.)
were selected the same way as the grid transformer parameters. They are set out in the
Methodology Guidelines MU 0634-2006 [67].
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Table 3. Determination of transformer condition based in discharge monitoring results.

Classification
According to [67]

Classification
of Condition

Defect
Evolution in

Compliance with
RD EO-0069-97 RU

Values of Maximum Amplitudes of Partial Discharges, C

In Windings and
between Coils

Main Insulation,
Barriers, According

to RD cl.4.9.4
Inputs According to

RD cl.4.9.4

Failed condition

PRE-EMERGENCY Limit condition Over 5 nC Over 100 nC Over 10 nC

IMPAIRED Fatal defect Up to 2.5 nC 5–25 nC 0.5–2.5 nC

NORM with
significant deviations Major defect Up to 500 pC 1–5 nC Up to 500 pC

Operative condition
NORM

with deviations Minor defect Up to 100 pC Up to 1000 pC Up to 100 pC

NORM No evident defects - Up to 100 pC -

Comparison against the dependencies (Figure 3) revealed an expanding destructive
process. However, it is not always possible to unambiguously classify the condition of a
transformer into one of these categories. Thus, Phase A insulation has the worst condition,
as shown in Figure 3a. Its mean charge of 3.2 nC (the solid line) corresponds to poor
condition per Table 3. Phase B and Phase C bushings are in a better condition. Their
discharge intensity ranges between 0.5−2.5 nC, although the condition is also poor per
Table 3.

However, should we analyze the dependencies in Figure 3b, we find Phase C to be
in the worst condition. The mean total PD power (solid line) equals ~200 mW, whereas
the thresholds are 60 mW and 80 mW. In other phases, however, the insulation is stable
and normal. Thus, these readings are confusing with regards to the transformer condition.
The reason for this is that Q02 describes the PD amplitude; however, there can be defects,
whose expansion increases the number and total power of pulses without affecting the
amplitude. This is why PDI is believed to be more defect-sensitive. Authors of several
papers, in particular [48], agree.

This analysis proves the relevance of creating an expert system for assessing trans-
former condition on the basis of its PD readings. To that end, we hereby introduce a
generalized indicator: insulation state indicator based on partial discharge (ISIPD). This param-
eter is a linguistic variable for FL studies.

To test the informativeness of readings, we need to evaluate the diagnostic sensitivity (DSe)
of U02 (or Q02) and PDI to the actual transformer condition. Papers [68–70] discuss application
of a similar metric to analyze the condition of power system equipment; papers [71,72] present
a similarly designed comparison of transformer models. However, these developments have
not found a practical application yet. It would be relevant to devise a DSe calculation method
based on PD readings, and to verify the method experimentally.

3. Materials and Methods

In pursuit of the objectives hereof, the authors were guided by research presented
in [73]. The paper proposes a method that applies fuzzy logic to calculate the probability
of condition features manifesting (or not manifesting); it returns a formalized result. For
condition features, they used gas concentration in the oil as well as thermal imaging-
detected overheated spots. Four condition categories were specified, each with a specific
range of the selected indicators within the specified limits.

The weakness of the method lies in its assumption that the condition categories are
independent. Thus, transformer condition should be described by a set of independent
features. However, many features are not [74]. This can be seen, in particular, in the
presented analysis of PD readings, see Figure 3.

For condition testing, we use the parameters U02 and PDI. A stable reading of any
of these characterizes the expansion of insulation defects when compared against the set
thresholds. From the standpoint of ordinary crisp sets, insulation condition can be shown
as in Figure 4.
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Figure 4. Transformer insulation condition assessment based on PD readings and using crisp sets:
1 for normal condition; 2 for poor condition; 3 for critical condition; 2’ for near-critical condition; 3’
for emergency condition.

In this case, condition can be diagnosed by applying the characteristic function µA(U02,
PDI) of membership in one of the three condition sets:

• normal condition (1) if 0 ≤ U02 < U1D or 0 ≤ PDI < P 1D;
• poor condition (2) if U1D ≤ U02 < U2D or P 1D ≤ PDI < P 2D;
• critical condition (3) if U2D ≤ U02 or P 2D ≤ PDI.

As can be seen in the figure, there are two more subsets:

• near-critical condition (2’) if U1D ≤ U02 < U2D or P 1D ≤ PDI < P 2D;
• emergency condition (3’) if U2D ≤ U02 or P 2D ≤ PDI.

In fact, the transition between insulation conditions at a threshold is purely conven-
tional and indefinite. This is why FL is the best condition assessment method. A literature
overview reveals many approaches that use fuzzy linguistic variables in decision making.
Software that applies fuzzy set theory to address the problems of industrial equipment
operation is quite common [75,76]. In this research, we used Fuzzy Logic Toolbox for MatLab.

The degree of a member’s membership in a fuzzy set is determined by the membership
function whose specific value is characterized by the membership coefficient. The variables
used in fuzzy statements of the subconditions of fuzzy inference rules serve as the input
linguistic variables. In turn, the variables used in subconclusion statements are the output
linguistic variables. For each of the selected variables, specify corresponding term sets and
membership functions.

The input linguistic variables are the maximum PD amplitude and power PDI, whereas
the output linguistic variable is ISIPD. Table 4 shows the linguistic variables and their
corresponding term sets.

Table 4. Linguistic variables.

Linguistic Variable
Type Name of the Term Set

Input

PD amplitude
(U02)

Low
Medium

High

PD power
(PDI)

Low
Medium

High

Output
Insulation
condition

ISIPD)

Normal
Poor

Critical
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Insulation condition was determined by a matrix of rules as a function of PD readings,
see Table 5. The table was used to formulate 9 fuzzy inference rules for condition assessment.

Table 5. Insulation Condition Assessment Rule Matrix.

Maximum PD Amplitude
(U02)

PD Power (PDI)

Low Medium High

Low Normal Poor Critical
Medium Poor Poor Critical

High Critical Critical Critical

Rule 1: if U02 is Low AND PDI is Low, the condition is Normal.
Rule 2: if U02 is Medium AND PDI is Low, the condition is Poor
etc.
The Gaussian membership function was used for the input variables. This is explained

by the natural use of the standard data distribution law relative to the maximum of the
membership function for the terms such as ‘low’, ‘medium’, and ‘high’. Besides this, the
Gaussian function is smooth and takes non-zero values throughout the applicable domain.
The output variable of insulation state relies heavily on the discrete valuation. In this case,
it is feasible to use a triangular membership function for the output linguistic variables.

Each condition has a weight Fi, (i = 1, 2, . . . 9) ranging in [0, 1]. For initial rulemaking,
the weights are assumed to equal 1. Further optimization of the fuzzy inference rule base
and its adjustment for the real-world data led to adjustments in the weights.

For fuzzy models, the input signals are the U02 and PDI readings that uniquely
determine the inputs. That means that for the given inputs, the outputs should be uniquely
determined as well. These sets interact through a fuzzy system that has an input fuzzifier
and an output defuzzifier [77].

For the inputs, the assumption is that the maximum PD amplitude ranges from 0 to
1.25·U2D = 200 mV, and the PD power ranges from 0 to 1.25·P2D =100 mW. For the output
variable Insulation Condition, the range is 0 to 10 points. The input variables have three
functions named Low, Medium, and High. Assume that the first two variables are Gaussian,

gaussm f (x, σ, c) = exp

[
−
(

x− c
σ

)2
]

, (2)

whereas the last variable is a two-sided Gaussian membership function

gauss2m f (x, σ1, c1,σ2, c2), (3)

where c is the mathematical expectation; σ is the standard deviation; and σ1, c1, σ2, c2 are
the Gaussian function parameters that determine the membership function curve shape to
the left and to the right of the modal value.

For the output variables, set three triangular membership functions named Normal,
Poor, and Critical. Poor condition is set at 5 points, and critical condition corresponds to
7.5 points. Description of a triangular membership function is known

trim f (x, a, b, c) =


0, x ≤ a
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0, x ≥ c

. (4)

where a, b, c are numerical parameters whereby a ≤ b ≤ c.
Table 6 shows the membership function specifications; Figure 5 shows the functions

themselves for the input and output variables.
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Table 6. Specifications of membership functions for input and output variables.

Name of the Term Set Membership Function Type Values of the Membership Function Parameters

Maximum
PD amplitude

Low Gaussian [x; 30; 0]

Medium Gaussian [x; 30; U1D]

High Two-sided Gaussian [x; 30; U2D; 3, 4;
1, 25·U2D]

PD power

Low Gaussian [x; 20; 0]

Medium Gaussian [x; 10; P1D]

High Two-sided Gaussian [x; 6, 8; P2D; 3, 4;
1, 25·P2D]

Insulation condition

Normal Triangular [−4; 0; 4]

Poor Triangular [1; 5; 9]

Critical Triangular [6; 10; 14]

Figure 6 shows a surface diagram based on this data and the selected membership
functions; the diagram shows how the linguistic inputs affect the linguistic output ISIPD.
This surface was produced by applying fuzzy inference rules to assess operational hazard
with the given defuzzifier (Mamdani algorithm). For the selected membership functions,
the output variable had a high of 8.7 points and a low of 1.3 points. As specified in the
model, poor condition corresponded to ~5 points, and critical condition corresponded to
~7.5 points. Matlab evalfis can be used to obtain fuzzy inference function values to further
plot the output parameter as a function of one of the input variables.

Energies 2022, 15, x FOR PEER REVIEW 11 of 22 
 

 

 
(а) 

 
(b) 

 
(c) 

Figure 5. Membership functions for the input variables: Maximum PD Amplitude (a); PD Power (b); 
and for the output variable Insulation Condition (c). 

Figure 6 shows a surface diagram based on this data and the selected membership 
functions; the diagram shows how the linguistic inputs affect the linguistic output ISIPD. 
This surface was produced by applying fuzzy inference rules to assess operational hazard 
with the given defuzzifier (Mamdani algorithm). For the selected membership functions, 
the output variable had a high of 8.7 points and a low of 1.3 points. As specified in the 
model, poor condition corresponded to ~5 points, and critical condition corresponded to 
~7.5 points. Matlab evalfis can be used to obtain fuzzy inference function values to further 
plot the output parameter as a function of one of the input variables. 

0

0.5

1.0
Low Medium High

Input variable 
“Amplitude”

20 40 60 80 100 120 140 160 180 200

Input variable 
“Power”

0

0.5

1.0

10 20 30 40 50 60 70 80 90 100

Low Medium High

0

0.5

1.0

1 2 3 4 5 6 7 8 9 10

Output variable 

Normal Poor Critical
Figure 5. Cont.



Energies 2022, 15, 3519 11 of 21

Energies 2022, 15, x FOR PEER REVIEW 11 of 22 
 

 

 
(а) 

 
(b) 

 
(c) 

Figure 5. Membership functions for the input variables: Maximum PD Amplitude (a); PD Power (b); 
and for the output variable Insulation Condition (c). 

Figure 6 shows a surface diagram based on this data and the selected membership 
functions; the diagram shows how the linguistic inputs affect the linguistic output ISIPD. 
This surface was produced by applying fuzzy inference rules to assess operational hazard 
with the given defuzzifier (Mamdani algorithm). For the selected membership functions, 
the output variable had a high of 8.7 points and a low of 1.3 points. As specified in the 
model, poor condition corresponded to ~5 points, and critical condition corresponded to 
~7.5 points. Matlab evalfis can be used to obtain fuzzy inference function values to further 
plot the output parameter as a function of one of the input variables. 

0

0.5

1.0
Low Medium High

Input variable 
“Amplitude”

20 40 60 80 100 120 140 160 180 200

Input variable 
“Power”

0

0.5

1.0

10 20 30 40 50 60 70 80 90 100

Low Medium High

0

0.5

1.0

1 2 3 4 5 6 7 8 9 10

Output variable 

Normal Poor Critical

Figure 5. Membership functions for the input variables: Maximum PD Amplitude (a); PD Power (b);
and for the output variable Insulation Condition (c).

Figure 6. This surface shows how PD power and amplitude affect the output linguistic variable (in points).

4. Implementation
4.1. Example of Generalized Indicator-Based Transformer Condition Assessment

Figure 7 shows the online readings of PD amplitude U02 and PDI for the tested transformer
as points. Input data were smoothed by moving the average over 50 points and are shown as
solid lines [49]. These data was collected from 9 September to 22 December 2016; the sample
was ~650 points for each phase. Such late data retrieval was due to the fact that it was in this
period that the transformer’s condition went from normal to poor. Timely diagnosis prevented
its escalation to critical. No similar situations have arisen since. This is why these trends in PD
readings, although not being freshly collected data, do contain important (and, to an extent,
unique) diagnostic information. To further support this statement, we hereby report that we
have not been able to find similar data in the literature.
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Figure 7. Input and smoothed trends of power and amplitude of partial discharges from 9 September
to 22 December 2016: (a)—Phase A; (b)—Phase B; (c)—Phase C.
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In the data sample, a drastic increase in PD intensity can be observed in all phases from
late September to early October. PDI rose the most in Phase C, see Figure 7c. Thus, on ~18
October it exceeded 60 mW (the poor condition threshold); on 28 October, it went past 80 mW
(the critical condition threshold). In late October, PD power and amplitude began decreasing
in Phases A and B, see Figure 7a,b; however, they kept increasing monotonically in Phase C.
This continued until Nov 3 (PDI ≈ 98 mW); then, the process stabilized in Phase C, but the
power settled at a higher level. After a relatively flat segment in the PDI trend, PD intensity
began to rise drastically, starting on ~15 December. In all phases, PD power and amplitude rose
1.5–2-fold. In Phases A and B, there was an increase in amplitude (U02 > 80 mV), whereas in
Phase C, power rose to poor and then to critical levels (PDI > 80 mW).

Figure 8 shows a change in ISIPD in phases over the same timeframe. To that end, PD
power and amplitude readings were processed in Fuzzy Logic Toolbox for MatLab. Smoothed
data shown in Figure 7 as solid lines were used as input variables.

Figure 8. Change in the generalized diagnostic parameter ISIPD from 9 September to 22 December 2016.

Broken lines show poor and critical condition levels (5 points and 7.5 points), as
validated above. As can be seen in Figures 7 and 8, Phase C is the most ‘problematic’ one.
It is in this phase where, starting from ~18 October, we can observe a poor condition that
becomes critical in 10 days. ISIPD then drops to ~5 points, beginning to rise again on 13–15
December; it simultaneously increases in Phases A and B. By 20 December, Phase B readings
reached a poor condition, whereas Phases A and C reached a critical condition.

4.2. PD Readings Sensitivity Testing

Pursuant to the objectives, we further proceeded to test the reliability of U02 and PDI
readings as insulation condition indicators. Tests relied on the aforesaid indicator DSe.
Calculations were based on experimental data. The developed methodology included the
following steps.

1. For quantification, it is proposed to use a generalized indicator descriptive of the
hazard of PD for insulation. In this case, such an indicator has to be a normalized
characteristic of the informative parameters Yi with respect to the difference between
the poor/critical condition threshold (YjD) and normal (background) readings. Yi0

Xi =

∣∣Yi −Yi0
∣∣∣∣YjD −Yi0
∣∣ . (5)
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Normalized values (Xi) ensure that the requirements of dimensionlessness and 0–1
rating scale uniformity are met at Yi0 ≤ Yi ≤ YiD.

2. Since PD activity is measured by reading the voltage U02 and the power PDI, they
correspond to two normalized indicators: XU and XP. For the parameter of their
co-effect, we suggest the geometric mean hereinafter referred to as PD Activity Level.

LPD =
√

XU · XP. (6)

Given the expressions (5) and (6)

LPD =

√
|Pi − P0|∣∣PjD − P0

∣∣ · |Ui −U0|∣∣UjD −U0
∣∣ , (7)

where P0 and U0 are the initial PDI and U02, PjD, UjD are the thresholds for poor
condition (j = 1) and critical condition (j = 2).

3. Calculate the mean of each signal over the specified timeframe

Yi =
1
N

N

∑
k=1

(Xk). (8)

or the Euclidean norm

Yi =

√√√√ N

∑
k=1

(Xk)
2, (9)

where N is the number of points for the specified timeframe. These parameters need
to be introduced because Pi and Ui are random values that can deviate substantially
from the means. In order to prevent random scatter, assume values averaged over a
small interval, which are calculated by the dependencies (8) or (9).

4. To find out which of the parameters (PDI or U02) is more sensitive to insulation
condition, we hereby suggest considering how the difference in their normalized
values changes over time:

∆X =
|Pi − P0|∣∣PjD − P0

∣∣ − |Ui −U0|∣∣UjD −U0
∣∣ . (10)

When critical condition is observed, calculate the magnitude and sign of ∆X from the
readings. If a high-PD phase is confirmed to have a defect as detected, e.g., by transformer
disassembly, a positive ∆X signifies a higher influence of PDI, whereas the minus sign
signifies a more pronounced influence of the amplitude U02.

5. Results and Discussion

The method was tested on the online readings shown in Figure 7 as initial data. As
shown above, the condition of the object changed from normal to critical in this range.
Initial PDI and U02 values (shown as P0 and U0) were sampled by averaging a 7-day data
span from 9 September to 15 September 2016. As in the previous case, data were smoothed
by moving the average.

Figure 9a shows trends in LPD for three phases as calculated by the proposed method.
Calculations were based on the averaged values Pi and U02i, as calculated by the Formula (9)
for timeframes of 1 to 3 h. Figure 9b shows trends in the difference ∆X of normalized power
and amplitude as calculated by the dependency (10). Apparently, Phase C had the greatest
activity, which was rising significantly starting from mid-October.
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Figure 9. Trends in LPD (a) and ∆X (b) from 9 September to 22 December 2016 (defect expansion
timeframe).

Trend analysis leads to the following conclusions:

1. Over the time when the transformer was in a normal condition (from the initial
readings to ~10 October), PD activity level (Figure 9a) did not change significantly for
any phase. Therefore, neither reading (PDI or U02) could be considered conclusive.

2. A further positive increase in ∆X signified a substantial increase in the effect of PDI
on discharge activity. Therefore, from ~10 October until mid-December, i.e., when the
condition was poor, PDI would be the more informative parameter.

3. Once the transformer’s condition became critical (after ~18 October), the discharge
activity index LPD (Figure 9a) went up in all phases. That being said, an increased
PD intensity was reported by the sensors installed at the PIN terminals of three
high-voltage bushings.

4. After ~18 October, in light of the looming emergency, it became again difficult to
choose the preferable diagnostic parameter: Figure 9b shows a positive change in ∆X
in Phase C and a negative change in Phases A and B.

5. In poor condition, the greatest increase in discharge activity was observed in Phase C,
whereas the activity in Phases A and B was not significant, see Figure 9a. It would
be therefore logical to assume that the critical condition was caused by an expanding
defect in Phase C, see proof below.

Given the situation, the ladle furnace was shut down on 23 December 2016. Partial
disassembly revealed a defect, see Figure 10. It was caused by an inappropriate bend in
the wire connecting the high-voltage bushing to the primary winding. As a result, Phase
C output of the high-voltage winding was dangerously close to the acute angle of the
plate welded to the booster transformer beam. Given that charge concentrates on pointed
surfaces, PDs intensified.
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Figure 10. Identified ‘source’ increased discharge activity (Highlighted in a red circle).

After the issue was fixed, we analyzed PD readings dated 1 January to 12 March
2017. 500 points were sampled for each phase, smoothed by moving the average over
50 points. Minimum values of the entire timeframe were picked for background values,
which coincided with the values averaged over the period from 9–15 September 2016. These
data were used to plot the trends shown in Figure 9.

Figure 11a shows trends in PD Activity Level similar to the curves in Figure 9a. They
show LPD values to be relatively low in all phases, decreasing further after 15 February and
never rising above 0.2 again. Figure 11b shows trends in normalized power and amplitude
difference; apparently, compared to Figure 9b, the ∆X(t) dependencies change in a narrower
range in all phases. This leads to the conclusion that the PD-raising fault had been fixed.

Figure 11. Trends similar to those in Figure 9 but sampled from 1 January to 12 March 2017 (after the fix).

6. Conclusions and Future Work

Thus, this paper proposes a method for convolution of two particular PD readings
into a generalized indicator; the method uses fuzzy logic. For the first time, a generalized
determinate insulation state indicator based on partial discharge was rationalized. It allows
for the monitoring of the insulation state based on the results of online monitoring of the
apparent charge and the PD power.

The authors developed a procedure to assess the diagnostic sensitivity of the PD
parameters to the changes in the technical state. The diagnostic sensitivity of parameters
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such as U02 and PDI to the actual state of the transformer was used as the criterion. The
key features of the procedure include the following:

− Calculating the standardized indicator to satisfy the requirements for the grade scale
zero-dimensionality and uniformity.

− Determining the geometric average PD activity level;
− Calculating the average value for each of the signals within the set interval (or Eu-

clidean norm);
− Determining the sensitivity of the PDI and U02 to the insulation state in terms of the

size and sign of the standardized indicator.

Based on the analysis of the parameter trends identified during the changing of the
state from normal to pre-emergency, the authors proved the consistency of using the
suggested procedure to determine the technical state. The authors provided a practical
example of defect localization that confirmed the efficiency of technical state assessment
for the high-voltage equipment using the ISIPD parameter.

The effects of PD amplitude and power are combined into a single deterministic
parameter: an insulation condition indicator based on PD readings. This is a normalized value
that indicates insulation condition.

Logic rules were compiled with the weights Fi being equal to 1. These values are sub-
ject to adjustment when optimizing the fuzzy inference rule base. Additional experimental
data allow the adjustment of the weights to rank the rules by whether PDs can render the
transformer unusable.

The generalized indicator value has been proven theoretically and experimentally
to be relevant for predicting poor or critical condition of a transformer. Continuous PD
monitoring of a transformer in poor condition and the further examination by the repair
crew prove the statement above.

A comparison of trends in normalized power (PDI) and PD(U02) difference showed PDI
to be more sensitive for the assessment (and prediction) of insulation wear in normal condition.

It seems promising to further advance this method in order to adopt integrated
diagnostics. Thus, PD monitoring would be advisable in combination with DGA. This will
enable more informative diagnosis and more reliable condition assessment.

Another area of focus consists in developing methods for localization and identification
of transformer faults. A literature overview shows that methods based on locating PD
hotspots and comparing their location to the equipment layout (windings, OTLCs, etc.) in
the transformer tank [78–80] are more promising.

Since furnace transformers are among the most complex pieces of power equipment,
fuzzy diagnostics tested on them could find much broader use. They are recommendable in
particular for online monitoring of high-voltage switchgear equipment: overvoltage protections,
high-voltage circuit breakers, bushing insulators, etc. Such systems have been developed and
implemented on the closed 110-kV switchgear in the electric steelmaking shop of the steelworks.
The developed method will have a specific application in these systems.

Overall, the research conducted promotes the further development of the predictive
control theory for the state of high-voltage equipment. It also supports the practical imple-
mentation of the smart furnace transformer concept. The development and introduction
of smart online state monitoring systems is a relevant IIoT-based upgrade area for the
metal industry.
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