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Abstract: In this paper, two main ideas of chemical kinetics are distinguished, i.e., a hierarchy and
commensuration. A new class of chemical kinetic models is proposed and defined, i.e., egalitarian
kinetic models (EKM). Contrary to hierarchical kinetic models (HKM), for the models of the EKM
class, all kinetic coefficients are equal. Analysis of EKM models for some complex chemical reactions
is performed for sequences of irreversible reactions. Analytic expressions for acyclic and cyclic
mechanisms of egalitarian kinetics are obtained. Perspectives on the application of egalitarian models
for reversible reactions are discussed. All analytical results are illustrated by examples.

Keywords: hierarchical kinetics; egalitarian kinetics; acyclic and cyclic mechanisms

1. Introduction

Classical models of chemical kinetics of complex reactions are presented by sets of
ordinary differential equations of the type:

dc
dt

= f (k, c) (1)

in which c is a vector of concentrations, and k is a vector of kinetic parameters [1].
For a linear (monomolecular) reaction system, the differential equations of the non-

steady-state kinetic behavior can be written via the matrix form:

dc
dt

= Kc (2)

where K is the matrix of kinetic coefficients of first-order reactions. In our paper, kinetic
models of type (2) will be studied.

Regarding the parameters, two main ideas of chemical kinetics can be distinguished,
i.e., hierarchy and commensuration.

In the early 20th century, hierarchical kinetic models were proposed for explanation of
kinetic behavior of fast gaseous reactions (Bodenstein, Chapman) and transformations over
enzymes (Michaelis, Menten). Then, in the 1940–1950s, another class of kinetic models was
proposed for the description of polymerization kinetics (Flory), i.e., models in which all
model parameters are equal. These models can be termed as egalitarian kinetic models, i.e.,
models with no hierarchy of parameters, or—in a more general sense—as commensurate
kinetic models.

1.1. Hierarchical Kinetic Models (HKM)

Typically, chemical kinetics uses the idea of time scale separation based on the big
difference (hierarchy) of parameters of model (1) or (2). This hierarchy creates a variety
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of different cases and regimes, e.g., quasi-equilibrium (QE), quasi-steady-state (QSS),
limiting step (LS), assumption on most abundant reactive intermediates (mari) or surface
intermediates (masi), and, finally, lumping.

The quasi-steady-state (QSS) approximation is the central one among all these simpli-
fications. The QSS principle regarding kinetic intermediates of complex chemical reaction
is typically attributed to Bodenstein [2] and sometimes to Chapman [3]; see [4] as well.

It was based on the idea of fast intermediates, i.e., kinetic parameters related to some
intermediates are much faster than the kinetic parameters of stable molecules. In the
pioneering paper by Michaelis and Menten [5], another hierarchy was considered as well,
i.e., a big difference between the total amounts of main reactants and the total amounts
of intermediates. For the ‘gas-solid’ catalytic reaction, the latter corresponds to the case
when the total number of active catalytic centers is much smaller than the total number
of reactant and product molecules (see [3] chapter 3). Recently, the Michaelis–Menten
approach has been theoretically revisited and generalized (see Gorban and Shahzad [6]). It
was shown that, rigorously, the Michaelis–Menten kinetics, as we refer it here, should be
attributed to Briggs and Haldane [7].

In accordance with the QSS method, the derivatives for the chemical intermediate are
replaced by “zeros”, and the corresponding differential equations transform to algebraic
ones. Since Bodenstein and Michaelis–Menten, for more than 100 years to the present
day, the QSS principle, and, generally, the hierarchy in kinetic parameters, was the most
popular tool in the theoretical study of complex chemical reactions, both homogeneous
and heterogenous.

However, for 50 years the mathematical status of the QSS method was very unclear,
as there was no understanding of why the derivative of ‘fast’ intermediates is replaced
by zero. Only starting in the 1950s would the rigorous mathematical concept of QSS be
created on the basis of the theory of singularly perturbed ordinary differential equations
(ODEs) that had been developed by Tikhonov and his colleagues [8–11].

The QSS ideology became a manifestation of the so called ‘small parameter’.
First, in 1955, Sayasov and Vasilieva published the first pioneering paper [9] on the

mathematical status of the QSS using the radical gas chain reaction with fast intermediates
as an example. The small parameter was chosen as the ratio of kinetic parameters.

A similar point of view was expressed in 1963 by Bowen, Acrivos, and Oppenheim [12].
That same year, Heineken, Tsuchiya, and Aris (HTA) published a paper [13] on the math-
ematical status of the QSS for the Michaelis–Menten two-step mechanism. The small
parameter used by HTA was another one, which was different from the ratio of kinetic
parameters; it was the ratio of two numbers, the number of enzyme active sites, and the
number of substrate molecules. Considering the small amount of enzyme in comparison
with the amount of substrate, this ratio was small. A similarly small parameter, i.e., the
ratio of the total amount of surface intermediates, mol, to the total amount of reacting
components, mol, was used in monographs [1,14] for obtaining general results in catalytic
kinetics (see also the early monograph [15]).

For the general contemporary methodology in the study of hierarchical kinetics, see
“Asymptotology” by Gorban [16–18], as well.

1.2. Egalitarian Kinetic Models (EKM)
1.2.1. EKM for Polymerization Reactions

In the literature on chemical kinetics, the historical development of egalitarian kinetic
models was practically unrecognized. Thus, in this paper we decided to present some
milestones of this development illustrating it by essential quotations.

In 1953, Paul Flory in the book Principles of Polymer Chemistry introduced the
idea of “equal reactivity” (“We may conclude that at all stages of the polymerization the
reactivity of every like functional group is the same.”, pp. 102–103) [19]). In addition, Flory
interpreted the molecular weight distribution based on this idea of “equal probability”
(“According to the principle of equal reactivity, at every stage of the polymerization process
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an equal opportunity for reaction is available to each functional group of a chemical type,
irrespective of the molecule to which it is attached. The probability that a given functional
group has reacted will then be equal to the fraction p of all functional groups of the same
type which have condensed”, pp. 318–319).

Then, Flory presented his understanding of the reactivity in more detail: “Here we
introduce the equally plausible postulates of equal reactivity from the point of thermody-
namic equilibrium in the sense that every functional group shares an equal probability of
existing at any instant in the related condition, regardless of the size of the molecule to
which it belongs” (p. 320).

Flory efficiently used this idea for calculations of the molecular weight distribution
of polymer systems. “These relationships have been derived above from the principle of
equal reactivity in the kinetic sense that all functional groups of the same chemical type are
equally susceptible to condensation” (p. 320).

In 1955, Hermans et al. [20] concretized Flory’s concept of equal reactivity as the
equality of equilibrium constants for the sequence of polymerization steps. According to
Hermans et al., introduction of the Flory–Schulz assumption requires that the equilibrium
constants of polymerization reactions between the n-mer and m-mer are independent of
the numbers n and m. Hermans et al. demonstrated that “most of the experimental values
for [ACA] fulfill the theoretical condition of the Flory–Schulz distribution within errors of
about ±20%” ([20] p. 454).

Within Flory’s concepts, the initial steps of polymerization, one or two, present
exceptions among other steps; their characteristics (reactivities, equilibrium constants)
are different. Excluding these steps, the mechanism and corresponding kinetic model will
be egalitarian.

The next milestone in kinetic modelling based on the egalitarian principle was an
assumption on equal values of kinetic parameters. This idea was expressed explicitly by
different researchers, O’Driscoll et al. [21], Yamada [22], and Moad and Solomon [23].

O’Driscoll et al., 1976 [21] studied radical polymerization reactions for methyl methacry-
late and indicated that the propagation rate parameters of polymerization are independent
of polymer molecular weight in a certain range. At 25 ◦C, the kinetic parameter for methyl
methacrylate was reported as kp = 315 L·mol−1 s−1.

In a study by Yamada et al., 1992 [22], the propagation rate parameters for styrene
were evaluated at different chain lengths of the polymer radical. The study indicated that
over a wide range of degree of polymerization, the value of the propagation rate parameter
remained constant. Over the range of degree of polymerization from 40 to 410, the value of
kp remained a constant 480 ± 10 L·mol−1 s−1.

Moad and Solomon, 1995 [23] concluded that the propagation rate constant changes
insignificantly starting from a certain degree of polymerization. (“It is usually assumed
that the propagation rate constants in homopolymerization (kp) are independent of chain
length and, for longer chains (length > 20), there is an experimental evidence to support
this assumption”) (pp. 220–222).

Based on results from O’Driscoll, Yamada, and Moad and Solomon, it can be con-
cluded that the radical polymerization process includes a big sequence of steps with equal
parameters. It relates to the concepts of “egalitarian kinetics” as formulated above.

Certainly, the whole mechanism can include steps whose parameters can be of another
order of magnitude, slow or fast. However, starting from a certain degree of polymerization,
all steps will have approximately equal kinetic parameters. In the typical case, the sequence
of steps of free radical polymerization can be presented in a wide experimental domain
as follows:

Pn−1
kp→ Pn

kp→ Pn+1 (3)

It is an acyclic mechanism, a set of consecutive irreversible reactions with equal kinetic
coefficients. P represents the polymer radical, and the subscripts n− 1, n, n + 1, represent
the length of the polymer, respectively.
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Generally, a chain growth propagation reaction can be described as a set of corre-
sponding reversible reactions, as follows:

Pn−1 + m � Pn
Pn + m � Pn+1

P represents the polymer radical, and the subscripts represent the length. The
monomer is represented by m.

Since the monomer is assumed as the abundant species, the reaction rate can be
considered as only dependent upon the polymer concentration. Therefore, the nonlinear
polymerization mechanism can be approximated by the corresponding linear mechanism:

Pn−1

k1
+

�
k1
−

Pn

k2
+

�
k2
−

Pn+1

where k1
+, k1

−, k2
+, and k2

− are the apparent kinetic coefficients for the reactions, which
include monomer concentration as a factor.

1.2.2. EKM for Heterogeneous Catalytic Reactions

In open catalytic systems, cyclic mechanisms of intermediate transformations are
quite popular. i.e., the most known two-step catalytic mechanism (Temkin-Boudart mecha-
nism) [24].

(1) A + Z → AZ (4)

(2) AZ + B → C + Z; (5)

Deriving the upper bound for the surface relaxation time towards the steady state of a
catalytic reaction, Temkin found that this result relates to the conditions of the equality of
the apparent kinetic coefficients of steps (1) and (2) [25].

Similar assumptions on apparent kinetic coefficients have been used in the analysis of
more complicated complex catalytic reactions with so-called linear mechanisms in which
only one molecule of catalytic intermediates participates [26,27].

Gorban analyzed eigenvalues of the matrix defining the right-hand sides of the general
linear kinetic model (Equation (2)) related to linear mechanisms under assumptions of
equal kinetic parameters [28].

2. Goal of the Paper

The goal of this paper is the analysis of the transient properties of some egalitarian
kinetic models of complex chemical reactions. This analysis is performed under the
assumption that all reactions are linear (first-order kinetics), and that all kinetic coefficients
are equal.

In our analysis, the following factors are analyzed:

1. The structure of the mechanism: is the mechanism cyclic or acyclic?
2. Reversibility of reactions: are the reactions reversible or irreversible?
3. The type of reactor in which the reactions occur: i.e., a batch reactor (BR), or a steady-

state CSTR.

Special attention is paid to the concentration maxima, their times, and values.

3. Results
3.1. Irreversible Reactions
3.1.1. Acyclic Mechanism

The analyzed acyclic mechanism is a set of consecutive first-order reactions. As men-
tioned, all kinetic coefficients are considered equal. This case was analyzed theoretically and
justified experimentally for the propagation process in free radical polymerization [29–31].
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This result is presented in Figure 1, where Z is the chemical substance, k is its number, λ is
the characteristic root, and m denotes the multiplicity of the root.

Z1
1→ Z2

1→ . . . 1→ ZN (6)

λ = −1, k = 1, . . . , N, m = 1. (7)

In this equation, the evolutions start at Z1(0) = 1, Z2(0) = Z3(0) = · · · = 0.
It is shown that in a batch reactor (BR), using the mathematical convention that t0 = 1,

even when t = 0,
Zk(t) = tk−1

(k−1)! exp(−t), k = 1, . . . , N − 1,

ZN(t) = 1−
N−1
∑

k=1

tk−1

(k−1)! exp(−t) (8)

and for k = 1, . . . , N − 2, Zk intersects Zk+1 at t = k in the latter’s maximum, whereas in
a CSTR,

Zk(τ) =
τk−1

(1 + τ)k , k = 1, . . . , N − 1, ZN(τ) =
τN−1

(1 + τ)N−1 . (9)

Figure 1. Evolutions in a BR (a) and in a CSTR (b) of the acyclic irreversible mechanism, N = 10.

The following features of transient concentration trajectories in batch reactor (BR)
were found:

Obviously, the initial and final substance concentrations were decreasing and increas-
ing, respectively. The final substance curve Zn(t) grew to the limit value 1.

The area under each concentration curve was 1.
The sequence of dependencies was characterized by an upper envelope; the lower one

was absent.
The (k − 1)th “c–t” trajectory intersected the kth trajectory at the point of the extremum.

This interesting fact is a generalization of the similar result obtained previously for the two-
step consecutive irreversible reaction with equal kinetic coefficients for both reactions [32]:

A k→ B k→ C

The concentration maximum in time was reached, corresponding to the equation(
(k− 1)tk−2 − tk−1

)
e−t = 0, i.e., at t = k− 1 dimensionless time units.

As mentioned, each curve intersects the next one at its maximum. In view of the
kinetic equation Zk

′(t) = Zk−1(t)− Zk(t), the value of the maximum of Zk(t) is given by:
(k−1)k−1

(k−1)! e−( k−1), which in view of Stirling’s asymptotic formula for the factorial,
is roughly:

1√
2πk
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The envelope of the dependencies is parametrized by

t = eΨ(k)

y =
(exp(Ψ(k)))k exp(−Ψ(k)− exp(Ψ(k)))

Γ(k)
(10)

The Gamma function Γ(k) and its logarithmic derivative Ψ(k) that occur here are
defined by

Γ(k) =
∫ ∞

0
e−ttk−1 dt, Ψ(k) =

Γ′(k)
Γ(k)

.

Comparing the features of the CSTR dependencies with the similar ones obtained in
the BR, it can be concluded:

1. The height and time of maxima for CSTR dependencies are smaller than for BR ones.
2. In the CSTR, all dependencies enclose each other, except for the final product curve,

which increases.

3.1.2. Cyclic Mechanism

This mechanism (11) (see below) can be interpreted as the simplest catalytic mecha-
nism of the complex reaction that occurs in the open system (the single-route with linear
mechanism). Kinetic coefficients of this mechanism can be considered as apparent ones,
which can include concentrations of other substances as constant parameters. Rigorously,
for the batch reactor, the cyclic reversible mechanism is valid only in some temporal domain.
The result of our analysis is presented in Figure 2.

Z1
1→ Z2

1→ . . . 1→ ZN
1→ Z1 (11)

λ = exp
2πik

N
− 1, k = 0, . . . , N − 1, m = 1. (12)

In a BR,

Zk(t) =
1
N

N−1

∑
l=0

exp
2πi(1− k)l

N
exp

((
exp

2πil
N
− 1
)

t
)

, (13)

whereas in a CSTR,

Zk(τ) =
τk−1(1 + τ)N−k

(1 + τ)N − τN
, k = 1, . . . , N. (14)

Figure 2. Evolutions in a BR (a) and in a CSTR (b) of the cyclic irreversible mechanism, N = 10.

The obtained results can be used for estimating the kinetic coefficient (‘the average value’).
The findings in the BR and CSTR experiments were:
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1. Different from the acyclic case, both the BR and CSTR dependencies are characterized
by the final value.

2. BR dependencies exhibit the undershoot but CSTR dependencies do not.
3. BR curves exhibit damped oscillations caused by imaginary characteristic roots. The

CSTR dependencies approach the final value in a monotonic way.
4. The property of the intersections of BR dependencies is similar to the previous acyclic

case. The CSTR curves do not exhibit these intersections, similarly to the previous
case as well.

5. In the BR, both upper and lower envelopes are present. In the CSTR, such envelopes
are absent.

3.2. Reversible Reactions
3.2.1. Single Reversible Reaction (Racemization)

A reasonable example of the reversible mechanism with equal kinetic parameters is
racemization, i.e., a reversible transformation of one enantiomer into the other.

S 
 R

In this single reaction, the equilibrium constant is 1 at every temperature due to
the symmetry of enantiomer molecules (see Breveglieri and Mazzotti, 2019 [33]), and,
obviously, the forward and reverse kinetic coefficients are equal, k+ = k− = k.

Consequently, the equilibrium concentrations of two enantiomers are equal,

cS, Eq = cR, Eq = ctot/2 (15)

where cS, Eq and cR, Eq are equilibrium concentrations of the enantiomers S and R, respec-
tively; ctot is the total amount of the enantiomer: ctot= cS + cR

It can be written as follows:

dcS
dt

= −k(cS − cR) (16)

dcR
dt

= k(cS − cR) (17)

It is easy to show that the non-steady change of S-enantiomer is presented as:

cS − cS, Eq = (cS,0 − cS, Eq) exp[−2kt] (18)

where cS,0 is the initial concentration of S-enantiomer. If the initial concentration of S-
enantiomer is equal to ctot.

cS =
ctot

2
{ 1 + exp[−2kt]} (19)

In fact, it is the simplest example of the egalitarian kinetic model for the reversible reaction.

3.2.2. Multiple Reversible Reactions with Equal Equilibrium Constants

As mentioned previously, the classical principle of ‘equal reactivity’ was proposed by
Paul Flory for multiple reactions of polymerization in 1953 [19]. Two years later, in 1955,
Heckmans et al. [20] expressed this principle as a statement on the equality of equilibrium
constants for the sequence of polymerization steps.

Regarding other possible examples of kinetic models for multiple reversible reactions
with equal equilibrium parameters, one can mention:

1. Kinetic models of isotope exchange in the vicinity of chemical equilibrium.

In these models, for every step of the mechanism, the forward and reverse kinetic
coefficients of isotope exchange are equal to the forward and reverse reaction rate under the
equilibrium conditions, respectively. This is based on the principle of detailed equilibrium.
Therefore, for all reactions, the apparent equilibrium constant is equal 1.
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2. Kinetic models of complex racemization reactions.

To our knowledge, in the literature there are no examples of complex racemization
reactions with more than two enantiomers. However, from the general perspective, such
complex reactions and corresponding models should be considered.

Consequently, in such complex reactions, all kinetic coefficients for both forward and
reverse reactions are equal.

4. Discussion and Conclusions

Summing up, in the literature on polymerization, two principles have been formulated:

1. Within the Flory’s paradigm, the equilibrium constants are considered equal for some
series of reversible chemical reactions.

2. The kinetic parameters of forward reactions are considered equal for all irreversible
steps of some chemical sequences, e.g., the kinetic parameters of radical polymeriza-
tion, homopolymerization, etc.

These two principles are basic cornerstones of ‘egalitarian kinetics’ that distinguish it
from the traditional ‘hierarchical kinetics’. They can be applied to other areas of chemistry
and chemical/biochemical engineering with large sequences of chemical reactions, e.g., for
describing biochemical networks, aerosol processes, etc.

Moreover, it is reasonable to discuss the possibility of generalizing or modifying
these principles.

Two questions arise:

1. Is it possible to formulate and apply an additional principle in accordance with which
all kinetic parameters for reverse reactions will be equal as well? In this case, the
modified Bronsted-Evans-Polanyi relationship can be used.

2. Is it possible, in some cases, to use a strong simplification of all equal kinetic parame-
ters, both forward and reverse?

This simplification can be used for obtaining simple estimates of steady-state and
non-steady-state characteristics of kinetic behavior. The corresponding results both for
acyclic and cyclic mechanisms are presented in Appendix A.

These questions will be explored further and answered in our future studies.
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Appendix A

Analysis of kinetic models in which all kinetic parameters are equal.

Appendix A.1 Acyclic Mechanism

Z1

1


1

Z2

1


1

. . .
1


1

ZN (A1)
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λ = −4 sin2 πk
2N

, k = 0, . . . , N − 1, m = 1. (A2)

The result is presented in Figure A1.

Figure A1. Evolutions in a BR (a) and in a CSTR (b) of the acyclic reversible mechanism, N = 10.

Findings:

• The height and time of maxima for CSTR are smaller than for BR.
• Unlike the corresponding irreversible case, the final state is not zero. For both the BR

and CSTR, the final state is the same.
• Both intersections and oscillations are absent.

Generally, in this case, the dynamic behavior is simpler than for the corresponding
irreversible case.

Appendix A.2 Cyclic Mechanism

Z1

1


1

Z2

1


1

. . .
1


1

ZN

1


1

Z1 (A3)

If N is even,

λ =


0, m = 1,
−4 sin2 πk

N , k = 1, . . . , N/2− 1, m = 2,
−4, m = 1,

(A4)

if N is odd,

λ =

{
0, m = 1,
−4 sin2 πk

N , k = 1, . . . , (N − 1)/2, m = 2.
(A5)

The result is presented in Figure A2.
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Figure A2. Evolutions in a BR (a) and in a CSTR (b) of the cyclic reversible mechanism, N = 10.

Findings:

• The height and time of maxima for the CSTR are smaller than for the BR.
• The behavior is less complex than for the corresponding irreversible case.

Appendix A.3 Full Graph

The full graph mechanism is the mechanism in which all substances are interlinked
by chemical transformations.

Zi

1


1

Zj, 1 ≤ i < j ≤ N (A6)

λ =

{
0, m = 1,
−N, m = 1.

(A7)

In a batch reactor (BR),

Z1(t) =
1 + (N − 1) exp(−Nt)

N
, Zk(t) =

1− exp(−Nt)
N

, k = 2, . . . , N, (A8)

whereas in a CSTR,

Z1(τ) =
1 + τ

1 + Nτ
, Zk(τ) =

τ

1 + Nτ
k = 2, . . . , N. (A9)

The result is presented in Figure A3.

Figure A3. Evolutions in a BR (a) and in a CSTR (b) of the full mechanism, N = 10. The concentrations of Z2 to Z10 coincide.
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The finding of the full connectivity graph is that there is no maximum but monotone
striving towards the limit.
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