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Abstract: It is important to predict extreme electricity demand in power utilities as the uncertainties
in the future of electricity demand distribution have to be taken into consideration to achieve the
desired goals. The study focused on the prediction of extremely high conditional quantiles (between
0.95 and 0.9999) and extremely low quantiles (between 0.001 and 0.05) of electricity demand using
South African data. The paper discusses a comparative analysis of the additive quantile regression
model with an extremal mixture model and a nonlinear quantile regression model. The estimated
quantiles at each level were then combined using the median approach. The comparisons were
carried out using daily peak electricity demand data ranging from January 1997 to May 2014. Proper
scoring rules were used to compare the three models, and the model with the smallest score was
preferred. The results could be useful to system operators including decision-makers in power utility
companies by giving insights and guidance for future electricity demand patterns. The prediction
of extremely high quantiles of daily peak electricity demand could help system operators know
the possible largest demand that will enable them to supply adequate electricity to consumers
and shift demand to off-peak periods. The prediction of extreme conditional quantiles of daily
peak electricity demand in the context of South Africa using additive quantile regression, nonlinear
quantile regression, and extremal mixture models has not been performed previously to the best of
our knowledge.

Keywords: additive quantile regression; extremal mixture model; extreme conditional quantiles;
nonlinear quantile regression; scoring rules

1. Introduction

In an attempt to diversify the energy mix, the South African government has devel-
oped a Renewable Energy Independent Power Producer Procurement Program (REIPPPP).
The REIPPPP has proven to be a very successful program especially in bringing renewable
energy projects to commercial operations over the past five years [1]. The country also
came up with a new plan, namely the National Development Plan (NDP). The NDP is
a plan for infrastructure development from 2013 to 2030. Moreover, the NDP is also an
excellent guiding economic plan that set the GDP growth target per annum for the country
to be able to meet its economic, social and political objectives [2].

In identifying the national goals relevant to establishing renewable energy policy
objectives, South Africa needs to identify the key goals for the nation and how the electricity
sector fits in among its priorities. The country also needs to take urgent actions to ensure
the sustainability of renewable energy and energy efficiency by 2030. According to [3],
renewable and energy efficiency have a positive impact on electricity demand during
peak hours.
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It is important to accurately predict extremely high quantiles of electricity demand.
Uncertainties related to electricity demand have to be taken into account when predicting
electricity demand. The superiority of extreme conditional quantile models over the least
squares (conditional mean) model in the extremes of the conditional distribution is well
established in the literature. Hence, accurate prediction of electricity demand at extreme
levels could produce more useful information to decision-makers on the sustainability of
renewable energy, energy generation and energy purchases. Furthermore, the accurate
prediction of extreme electricity demand distributions would have a significant impact on
mitigating load shedding and overloading and allow energy-efficient storage.

The main contribution of this paper is the use of additive quantile regression (AQR),
extremal mixture (EM) and nonlinear quantile regression (NLQR) models in estimating
the extremely high and extremely low quantiles of electricity demand using South African
data. Such a study has not been carried out elsewhere to the best of our knowledge.

The highlights of the study are summarised as follows:

1. The study carried out a comparative analysis of EM, AQR and NLQR models in
predicting extremely high and low daily peak electricity demand;

2. The identification of how electricity demand will change in the distribution networks
in five to fifteen years going forward;

3. The prediction of extremely high quantiles of DPED could help system operators
know the possible largest demand that will enable them to supply adequate electricity
to consumers;

4. Knowing the possible largest demand of electricity at a given point in time can help
system operators shift demand to off-peak periods.

The rest of the paper is structured as follows: Section 2 reviews several approaches
proposed in the literature with some previous studies. Section 3 focuses on the semipara-
metric extremal mixture models, additive quantile regression model, nonlinear quantile
regression model, and a brief explanation of the scoring rules. Section 4 presents the data
used in the study including the exploratory data analysis. Section 5 gives a discussion of
the results. Finally, the study is then concluded in Section 6.

2. Literature Review

Many statistical applications focus on either the lower or upper quantiles of the distri-
butions. Consequently, the theory of extreme value techniques has been extensively used
in many disciplines for the past several decades. The extremal quantile regression (EQR)
model can also be utilised to model extreme values as an alternative to classical extreme
value theory (EVT) techniques. EVT is widely used as a tool for risk management. Several
estimators have been proposed for the estimation of extreme conditional quantiles, which
include [4–8], among others. The literature has extensively dealt with EQR, which consists
of one-stage and two-stage approaches. A study by [4] used a two-step procedure based on
two case studies in estimating extreme conditional quantiles. The procedure was evaluated
using small sample simulation for both heavy-tailed and right-bounded distributions. The
limitation of quantile regression (QR) in estimating extreme conditional quantiles is that a
one-step extreme conditional quantile procedure based on QR underestimates these condi-
tional quantiles. The introduction of a two-step extreme conditional quantile procedure
suggested a way of overcoming this limitation [4]. However, the results showed that the
two-step procedure did not prove to be useful for practical purposes [4], and hence, it was
not considered in this paper.

Although many approaches have been discussed in the literature on the estimation of
extreme quantiles, which includes those of [9–12], among others, the comparison of the
performances of additive quantile regression (AQR), extremal mixture (EM) and nonlinear
quantile regression (NLQR) models at extremely high and low quantiles using South
African electricity demand data has not been performed to the best of our knowledge. The
present study took an alternative approach from that of [9–13] in that it compared extreme
conditional quantiles between 0.95 and 0.9999.
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A study by [14] built on EVT to develop EQR models. It studied the asymptotic
theory of extremal quantile regression. In this context, the study obtained the large sample
properties of extremal (extreme order and intermediate order) quantile regression for the
class of linear quantile regression models with conditional tails of the response variable.
This was restricted to the domain of minimum attraction and closed under the tail equiva-
lence across conditioning values. Based on the results from [14], the present paper built
on this procedure to estimate extremal conditional quantiles. This was done using the
scoring rules for evaluating the predictive accuracy of the developed models. Scoring
rules were considered in this study, as they are significantly important in: (1) parameter
estimation, (2) evaluating the predictive performance of extreme conditional quantiles and
AQR models; and (3) obtaining the probabilities of rare events.

The use of scoring rules in forecasting evaluation with an emphasis on extreme events
has been proposed in the recent literature. The paper by [15] compared the predictive per-
formance of the forecasting models using the continuous ranked probability score (CRPS)
and logarithmic score (LogS). The LogS was computed under the assumption of a normal
predictive distribution with mean and variance considered in the experiment, while CRPS
was computed using numerical methods. For evaluating probability forecasts with scoring
rules, [16] emphasised the scoring rules as a comparative forecast evaluation of probability
models that cover a wide range of situations in statistical applied works. The authors
used several examples including economics examples, where the predictive distribution
was given as a simulated sample to compute the CRPS and LogS by applying Bayesian
forecasts of the United States (U.S.) gross domestic product (GDP) growth rates. However,
the authors did not include the Dawid–Sebastiani score (DSS) in their comparative analysis.

To treat the asymptotic theory of extreme conditional quantile estimators, models
such as parametric, semiparametric and nonparametric quantile regression can be used.
For instance, [17] proposed kernel smoothing for extremal quantile regression. The paper
used nonparametric regression quantiles obtained by inverting a kernel estimator of the
conditional distribution. The main idea of the paper was to extend the asymptotics of
the extreme conditional quantile estimator in a nonparametric regression model. Non-
parametric models have also received more considerable attention in papers such as [4]
and [18]. The extreme conditional quantiles estimator’s approach is one way of modelling
extremes by fitting the generalised extreme value distribution (GEVD) or generalised Pareto
distribution (GPD) where the location (µ), shape (ξ) and scale (σ) parameters depend on
either parametric or nonparametric covariates. According to [7], this approach captures
the covariate effects at different tails of the response distribution. However, the limitation
of extreme conditional quantile estimators is instability with heavy-tailed distributions
due to scarce data in the tails of the distributions [7]. Researchers, [19,20] have developed
semiparametric and parametric models by establishing the asymptotic normality of a
simple estimation procedure, which combines QRs in the tails or EQRs with the minimum
distance, as well as reviewing the technique and proposing some extensions based on
the point process of high-level exceedances, respectively. The approach suggested by [21]
uses a stagewise pack of a fit testing procedure to propose the excess distribution function.
They introduced the procedure for selecting the sufficiently high threshold, which is the τ
quantile. Their simulation results showed that the proposed adaptive procedure nearly
captures the best choice for testing Pareto degrees of freedom. It was also shown that the
choice based on the detection of the lack of fit point introduces a significant bias.

The study undertaken by [22] considered modelling the extremal behaviour of stock
market data to compare the tail distribution of the generalised logistic distribution (GLD),
GEVD and GPD. The empirical results from the study showed that the three distributions
were asymptotically equivalent in their tails. Hence, the GLD plays the central role as
it possesses important characteristics in classical extreme value theory for distribution
properties, stability and convergence. The study by [18] proposed a standard Pareto model
using a simulation study. It used the mean-squared relative error (MSRE) of adaptive
quantile estimators in 0.99, 0.999 and 0.9999 quantiles. The findings suggested that the



Energies 2021, 14, 6704 4 of 21

developed model provides excellent approximation in the Fréchet domain of attraction.
This current paper differs from the previous one by [18], as it used three scoring rules in
evaluating the extremely low and high quantiles of daily peak electricity demand (DPED).
The GPD is the distribution that can be used to model the under demand and over demand
prediction of peak electricity demand providing a basis for risk assessment and quantifica-
tion with forecasting uncertainty [23]. However, for the GPD, only the observations above
the threshold are considered, and therefore, a large amount of information is not wasted.

This present study was motivated by [24], who used partially linear additive quantile
regression with an application to the unit commitment problem to forecast short-term
electricity demand during peak hours. The South African data from January 2009 to June
2012 were considered for their analysis. Their results showed that the hourly peak load
demand occurred between 18:00 and 20:00. The study revealed that electricity demand
forecasting during this period is important to system operators as they have to use power
plants to balance the high demand with what can be supplied. Even though the study is
useful to system operators in power utility companies in South Africa, the study did not
consider extreme peak load forecasting. The extreme peaks could be useful in assessing
the power reliability in South Africa, as indicated by [25]. The study by [26] used the
peak-over-threshold (POT) model for modelling extreme peak electricity demand during
a heatwave. The authors used South African data from 2000 to 2013 for their analysis.
Their results showed that electricity demand increases as a result of heat during days of
extremely high temperature, especially during October, November and February. The
proposed model in their study could help the South African government know how much
electricity is needed during a heatwave period. However, the study failed to extend the
analysis of extreme peak electricity demand to seasons, for example spring and autumn.
In South Africa, the impact of the COVID-19 pandemic is still emerging. However, it
seems that the energy sector will also continue to be significantly impacted. The following
methods were used to analyse the impacts of the COVID-19 pandemic on electricity
demand forecasting: regressive and neural network models [27], hybrid multi-objective
optimizer-based models [28], bidirectional long short-term memory (Bi-LSTM) models [29],
autoregressive integrated moving average with exogenous (ARIMAX) and artificial neural
network (ANN) models [30], among others.

The different methods applied have limitations as they failed to prove that they are
useful for practical purposes especially when modelling extreme peaks in electricity de-
mand. This study was based on three techniques, namely AQR, EM and NLQR, which were
compared using the historical electricity demand data. These models are very important in
predicting the extremely high and low peaks of electricity demand as they yield accurate
predictions. The accurate prediction of the extreme electricity demand distribution is
important to decision-makers in the electricity sector and should be monitored regularly.

A summary of some previous studies on the modelling and forecasting of extremely
high quantiles is given in Table 1.

Table 1. Summary of previous studies on the modelling and estimation of extremely high quantiles.

Authors Data Models Main Findings

Muller et al. [31] Marseilles hourly rainfall data
from 1882–2003

GPD and SHYPRE hourly
rainfall stochastic models.

Results show that both methods give
similar results and have similar

uncertainties. Moreover, the
sensitivity of the GPD to the shape

parameter is quite high.

Gardes and Girard [32] French hourly rainfall data
from 1993–2000 Nearest neighbour model.

The results show that the nearest
neighbour Hill estimator gives the

same weight to all the
largest observations.
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Table 1. Cont.

Authors Data Models Main Findings

Sigauke et al. [9] Eskom aggregated DPD data
from 2000–2011

GSP distribution and
GPD models.

The Q-Q plot of the GSP
distribution incorporates most
extreme observations in the tail

slightly better than the GPD.

Cai and Reeve [33] Venice sea-level data from
1931–1981

Semiparametric, QR, and
parametric quantile

function models.

The performances of the
parametric and the

semiparametric approaches are
very similar at the lower quantile
levels. However, the performance
of a quantile function modelling
approach may vary from dataset
to dataset at high quantile levels.

Chavez-
Demoulin et al. [34]

USB data from 27 June 2002 to
18 May 2010

NPOT and classical
POT models.

The results of NPOT confirmed a
rather precise and adapted

estimation of high quantile-based
risk measures for financial

time series.

Diriba et al. [10] Port Elizabeth weather station
data from 1949–2013 GPD model.

The GPD model for the minimum
daily winter temperature shows

no improvement in the parameter
estimates’ precision.

Gijbels et al. [35] Hurricane data from
1971–2017

Semiparametric and
nonparametric models.

The results show that the
semiparametric model provides

the smallest estimated prediction
error compared to the
nonparametric model.

Taylor [36] Hourly Nord Pool market
prices data from 2013–2018

AR-GJR-GARCH and
AR models.

The results show that the
AR-GJR-GARCH model performs
better than the AR model for both

wider and narrower
quantile intervals.

3. Methodology

An overview of the semiparametric extremal mixture, AQR and NLQR models with
their implementations based on extreme quantiles is discussed in this section. The additive
quantile regression models discussed here are becoming increasingly popular in many
applications as they are known to be robust and flexible.

3.1. Semi-parametric Extremal Mixture Models

Let Xt1 , ..., Xtn denote the DPED, where ti, i = 1, ..., n is a sequence of times (0 ≤ t1 ≤
... ≤ tn ≤ Tmax). Suppose the random variable Xti has a distribution function Fti . We
seek to estimate extreme quantiles, i.e., F−1

t (τ) for 0.950 ≤ τ ≤ 0.9999. Now, if Ft is in the
domain of attraction of the Fréchet distribution, then the excess distribution function given
in Equation (1) can be estimated by a Pareto distribution in Equation (2) [37]:

Ft,τ(x) = 1− 1− Ft(x)
1− Ft(τ)

, x ∈ [τ, ∞) (1)

Gτ,θ(x) = 1−
( x

τ

)− 1
θ , x ∈ [τ, ∞), (2)

where θ > 0 and τ ≥ x0 (τ is the unknown threshold). Consider a semiparametric mixture
model (bulk model and tail model) given by [18]:
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Ft,τ,θ(x) =

{
Ft(x) if x ∈ [x0, τ]

1− (1− Ft(τ))(1− Gτ,θ(x)) if x > τ,
(3)

where τ ≥ x0 represents the threshold. For any p ∈ (0, 1), the extreme quantile of Xt is
given by:

qp(t, h) =

F−1
t,h (p) if p < pτ

τ
(

1−pτ
1−p

)θt,h,τ
otherwise,

(4)

where:

Ft,h(x) =
1

∑n
i=1 K

(
ti−t

h

) × n

∑
i=1

K
(

ti − t
h

)
IXti≤x, (5)

where K(.) is a kernel function, h is the bandwidth and I is an indicator function.

Threshold Selection

In peaks-over-threshold models, the threshold is normally estimated first before
fitting the desired model to the exceedances [38]. A sufficiently high threshold is vital to
guarantee the stability of the parameters. If the threshold is incorrectly chosen at some
value larger than τ, the number of observations on which the distribution is fit becomes
smaller, which leads to unstable parameter estimates. However, if the threshold is too
high, it produces fewer excesses to estimate the scale and shape parameters, resulting
in a higher variance [39]. Classically, a quantile-based approach to find an appropriate
threshold is used. The study provides a threshold selection method given in Equation (3)
that effectively detects whether a sample follows a certain distribution F. However, it is
noted that other threshold selection methods might be equally valid, depending on the
circumstances.

3.2. Additive Quantile Regression Model

The study used the quantile generalised additive model (quantGAM) based on the
work of [40] and extended by [41], defined as:

yt,τ =
p

∑
j=1

sj,τ(xtj) + εt,τ ; τ ∈ (0, 1). (6)

The smoothing function, s, is written as:

sjτ(x) =
q

∑
k=1

βkjbkj(xtj), (7)

where βkj denotes the jth parameter and bkj(x) represents the jth basis function with the
dimension of the basis being denoted by q. The parameter estimates of Equation (6) are
obtained by minimising the function given in Equation (8) as:

qY|X(τ) =
n

∑
t=1

ρτ

(
yt,τ −

p

∑
j=1

sj,τ(xtj)

)
, (8)

where qY|X(τ) is the extreme conditional quantile function of τ and ρτ(u) = u[τ− I(u < 0)]
is a check function. In this study, we are interested in estimating extreme conditional
quantiles, i.e., for τ ∈ (0, 1).
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3.3. Nonlinear Quantile Regression

NLQR is an extension of linear quantile regression in which the models are nonlinear
in their parameters, whereas the linear-in-parameters quantile regression model is given by:

qY|X(τ) = XT β(τ), (9)

The NLQR model (nonlinear in parameters) is given in Equation (10) and was discussed in
detail in [42]:

qY|X(τ) = g(X, β0(τ)) (10)

and the corresponding estimator is given by:

β̂(τ) = argmin
b∈B

n

∑
i=1

ρτ(yi − g(xi, b)), (11)

where g(xi, b) is a function with unknown parameters, B ∈ Rp and β̂(τ) is the unknown
regression coefficient for the τth quantile. The NLQR model is formed by replacing the
linear quantile regression model in Equation (8) with the quantile curve in Equation (10).
The study by [43] proposed the interior point algorithm approach for computing NLQR
estimates. The proposed estimation is used to solve Equation (11).

3.4. Combination of Estimated Extreme Quantiles

The median (Md) method is fairly easy to use and is not sensitive to outliers [44].
The Md uses the position rather than the specific value of each data entry. If the extreme
values of a dataset change, the Md usually does not change and is not sensitive to outliers.
Moreover, the Md does not change because it is only dependent on the middle observation’s
value. It is given as:

LMd = median(L1, ..., LK)UMd = median(U1, ..., UK), (12)

where LMd and UMd are the lower and upper median values; L1, ..., LK and U1, ..., UK are
the sequences of the lower and upper values, respectively.

Table 2 presents a summary of the strengths and weaknesses of the proposed, additive
quantile regression, extremal mixture and nonlinear quantile regression models.

Table 2. Comparison of the models.

Models Strengths Weaknesses

M1 (AQR)

1. A hybrid model that combines
GAMS with QR.
2. Estimation is distribution free.
3. Robust to outliers in the response
variable.

1. Requires a smoothing function of the
covariates.
2. Parameters are harder to estimate.
3. Does not give any details about the
size of the high level of possible
exceedances.

M2 (EM)

1. Semiparametric extremal mixture
model.
2. Based on one covariate, which is
t = 1, ..., n.

1. Has limitations on accuracy and
stability.
2. Very sensitive to numbers and the
location of the measured points.

M3 (NLQR)

1. Inference is performed based on
large sample approximation.
2. Robust to outliers in the response
variable.

1. Requires a smoothing parameter.
2. Outliers only have an influence on
quantile curves close to them, i.e., they
affect extreme quantiles
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3.5. Scoring Rules for Quantiles

The scoring rules were used to evaluate the probability forecasts by assigning a real
number to the predictive distribution and observations. The score values were used to
compare the models. The scoring rule S(y, p) is defined as a special case of a loss function
L(yt, qτ), measuring the negative worth of behaviour when the variable Y turns out to
be yt, where qτ and yt denote the quantile forecast and actual value of the DPED [45].
Moreover, the proper scoring rules are preferable if the calibration and sharpness are
measured simultaneously. This study used the scoring rules designed for the comparative
forecasting evaluation, namely: continuous ranked probability score (CRPS), logarithmic
score (LogS), Dawid–Sebastiani score (DSS), pinball loss (PL) and interval width (IW).

3.5.1. Continuous Ranked Probability Score

The CRPS has recently attracted much attention in forecasting performance as it
quantifies and takes into consideration both sharpness and calibration [46]. The CRPS is
defined by:

CRPS(F, y) =
∫ ∞

−∞
{F(x)− I(y ≤ x)}2dx, (13)

where y is the actual observation, I(.) is an indicator function equal to one for y ≤ x
and F(x) is the cumulative distribution function (CDF).

3.5.2. Logarithmic Score

The LogS is the only proper local score that assumes the regularity conditions of f (y, θ)
for almost all the actual observations, where θ is a parameter [15]. The LogS is given by:

LogS(F, y) = −Log( f (y)), (14)

where f (y) is the probability density function (PDF) and F is a strictly proper scoring rule
relative to the probability distribution.

3.5.3. Dawid–Sebastiani Score

The DSS depends on the first and second moments of the forecast. The DSS is given
by [46]:

DSS(F, y) =
(y− µF)2

σ2F
+ 2Log(σF), (15)

where F is the predictive distribution of y with first and second moments µF and σ2F,
respectively, (y− µF)2 is a squared error score and µF and σ2F denote the mean and
variance of the predictive distribution F, respectively.

3.5.4. Pinball Loss Function

The pinball loss (PL) function is relatively easy to use and is given as:

PL(qτ,t) =

{
2(1− τ)|yt − qτ,t|, if yt < qτ,t,
2τ|yt − qτ,t|, if yt ≥ qτ,t,

(16)

where qτ,t is the quantile forecast at time t and yt is the observed value of the DPED at time t.
The interpretation of PL(qτ,t) is made easier by the inclusion of the multiplier number 2 ([47]).
When τ = 0.5, PL0.5,t = |yt − qτ,t|, which is the same as the absolute error. Hence, PL(τ,t) is
generally interpreted as an absolute error.

3.5.5. Estimated Intervals’ Widths

The interval width (IW) is the difference between the estimated upper and lower
quantile values. It is given in Equation (17) as:

IWt = qτ,t − q(1−τ,t), (17)
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where qτ,t and q(1−τ,t) are the upper and lower quantiles, respectively. The coverage
probability (CP) is the probability procedure for constructing random regions to produce an
interval covering the true value. The CP is used to evaluate the performance of estimated
intervals. It is considered as a property of the interval-producing procedure, which is
independent of the particular sample to which such a procedure is applied. It also evaluates
the reliability of the estimated interval widths and is given in Equation (18) by:

CP =
1
h

h

∑
t=1

It, It =

{
1 if ytε(Lt, Ut)

0 otherwise
, (18)

where Lt and Ut are the lower and upper specification limits, respectively.

4. Empirical Results
4.1. Data and Software

The data used in this paper were from Eskom, South Africa’s power utility company.
The data considered were Net Energy Sent Out (NESO). The NESO, measured in megawatts,
is the rate at which electrical energy is delivered to customers. The NESO considered in
this paper is the daily peak electricity demand (DPED), which is the maximum hourly
demand in a 24 h period. Aggregated DPED data are used for the agricultural, commercial,
domestic and industrial sectors of South Africa and were for the period January 1997 to
May 2014, giving us a total of 6299 observations. The R statistical package Version 4.04 [48]
was used in this study.

4.2. Exploratory Data Analysis

Table 3 presents the summary statistics of the DPED. The minimum and maximum
DPED values during the sampling period were 17 605MW and 37 158MW, respectively.
The skewness value was −0.232, showing that the distribution of the DPED was skewed to
the left. The density (Panel (c)) and box (Panel (d)) plots given in Figure 1 confirm that the
distribution of the DPED was negatively skewed.

Table 3. Descriptive statistics of DPED.

Var Min Q1 Mean Median Q3 Max Skew Kurt

DPED 17,605 25,706 28,688 29,149 31,596 37,158 −0.232 2.287

Figure 1 (a) shows a plot of the DPED. The DPED data were not normally distributed
as shown by Panel (b) of Figure 1.

A plot of the DPED superimposed with a nonlinear trend variable is given in Figure 2.
A penalised cubic regression spline was used to obtain the nonlinear trend, which was
used as a covariate for all the models, except for the extremal mixture model, where a linear
trend was used as a covariate.

The penalised cubic regression smoothing spline model is given in Equation (19) as:

π(t) =
n

∑
i=1

(yi − f (ti))
2 + λ

∫ (
f ′′(t)

)2dt, (19)

where yi denotes the DPED and λ is a smoothing parameter. The optimal estimate of
the smoothing parameter λ was found based on the generalised cross-validation (GCV).
Considering the AQR model, we have:

qY|X(τ) =
n

∑
t=1

ρτ

(
yt,τ − sτ(noltrend)

)
, τ ∈ (0, 1). (20)

In this study, we considered four quantile values, which were 0.95, 0.99, 0.999 and
0.9999, respectively.
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Figure 1. DPED plot (a), Q-Q plot (b), density plot (c) and box plot (d).
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Figure 2. Daily peak electricity demand superimposed with a nonlinear trend.

4.3. Results

The probabilistic accuracy measures (scoring rules) were calculated as follows: we
fit a parametric distribution to the forecasts and then estimated its parameters. The study
considered a comparative analysis of three models, i.e., the AQR (M1), EM (M2) and NLQR
(M3) models at 0.95, 0.99 and 0.9999 quantile forecasts. To evaluate the forecast accuracy
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measures of the AQR, EM and NLQR models, we used the CRPS, LogS, DSS, interval width
and the pinball losses, as described in Section 3.5. We used the empirical scores of the
CRPS, Logs, DSS, PL and interval width to evaluate the forecast performances. The lower
the values of the scoring rules, the better the prediction performance was. The scoring
rules were then computed based on the fitted parametric distribution.

A comparison of the models at both extremely high and extremely low quantiles is
given in Tables 4 and 5, respectively. At the 0.95 quantile, the EM model had the lowest
CRPS, LogS and DSS, making it the best fitting model at this quantile level. The AQR
model was the best fitting model at the 0.99, 0.999 and 0.9999 quantiles based on the CRPS
and DSS evaluation metrics. Based on the prediction interval width coverage probability
of 0.98 (see Table 4), all the models had valid coverage probabilities since they were all
greater than 0.98. However, the EM model provided the largest coverage probability, which
was 0.9886, and had the least number of observations below the 0.01 and 0.99 quantiles,
respectively. As for the extremely low quantiles, the NLQR model had the smallest CRPS,
LogS and DSS at the 0.05 quantile. At the 0.01 quantile, the AQR model had the smallest
LogS and DSS values. The NLQR model was the best fitting model at the 0.001 quantile
based on the CRPS, LogS and DSS evaluation metrics.

Table 4. Model comparisons (extremely high quantiles).

95.0 th percentiles (0.95 quantile)

Models CRPS LogS DSS PL

M1 (AQR) 2144.546 9.6088 17.4418 165.9795
M2 (EM) 2069.789 9.5560 17.3701 209.2725

M3 (NLQR) 2155.875 9.6116 17.4495 161.9122
M4 (Median) 2155.875 9.6116 17.4495 165.5629

99.0th percentiles (0.99 quantile)

Models CRPS LogS DSS PL

M1 (AQR) 2125.457 9.5947 17.4256 43.2765
M2 (EM) 2131.232 inf 17.4315 56.8979

M3 (NLQR) 2163.629 inf 17.4598 42.6107
M4 (Median) 2163.629 inf 174598 43.2509

99.9th percentiles (0.999 quantile)

Models CRPS LogS DSS PL

M1 (AQR) 2172.784 inf 17.4759 5.529
M2 (EM) 2426.084 inf 17.7509 7.9267

M3 (NLQR) 2190.201 inf 17.4958 5.3599
M4 (Median) 2190.201 inf 17.4958 5.4869

99.99th percentiles (0.9999 quantile)

Models CRPS LogS DSS PL

M1 (AQR) 2168.997 inf 17.4747 0.6116
M2 (EM) 2945.86 inf 18.3882 1.0272

M3 (NLQR) 2202.221 inf 17.5149 0.6053
M4 (Median) 2202.221 inf 17.5149 0.6274

Interval widths for the 0.01 and 0.99 quantiles (CP = 0.98)

Models Ave IW Cov Prob Below 0.01 quantile Above the 0.99 quantile

M1 (AQR) 5364 0.9833 59 46
M2 (EM) 6807 0.9886 52 20

M3 (NLQR) 5312 0.9806 65 57
M4 (Median) 5385 0.9843 56 43
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Table 5. Model comparisons (extremely low quantiles).

5.0th percentiles (0.05 quantile)

Models CRPS LogS DSS PL

M1 (AQR) 3826.125 10.3962 19.1919 226.0744
M2 (EM) 4225.651 10.5635 19.6090 287.7971

M3 (NLQR) 3789.174 10.3804 19.1481 220.9624
M4 (Median) 3789.174 10.3804 19.1481 224.6259

1.0th percentiles (0.01 quantile)

Models CRPS LogS DSS PL

M1 (AQR) 4529.206 10.6899 20.0098 64.0034
M2 (EM) 5089.073 10.9302 20.6903 79.2499

M3 (NLQR) 4523.984 10.6905 20.0264 63.6298
M4 (Median) 4523.984 10.6905 20.0264 64.45815

0.1th percentiles (0.001 quantile)

Models CRPS LogS DSS PL

M1 (AQR) 5050.386 10.9086 20.6212 7.793396
M2 (EM) 5257.614 11.0022 20.9055 8.342102

M3 (NLQR) 5033.644 10.9037 20.6112 7.756549
M4 (Median) 5033.644 10.9037 20.6112 7.781235

Figures 3–5, respectively, show the DPED superimposed with the 0.95, 0.99 and 0.01
quantiles from the M1, M2 and M3 models, respectively. All figures reflect the peak
identification in the electricity demand based on the 0.95, 0.99 and 0.999 quantiles of the
DPED data. Furthermore, Figures 3–5 show the black solid line depicting the DPED from
January 1997 to May 2014, the red dotted line the M1 model distribution, the blue dotted
line the M2 model and the green dotted line the M3 model distribution, respectively. Model
M2 gave the best results at the 0.95 quantile.
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Figure 3. DPED superimposed with the 0.95 quantiles from the M1, M2 and M3 models.
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Figure 4. DPED superimposed with the 0.99 quantiles from the M1, M2 and M3 models.
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Figure 5. DPED superimposed with the 0.01 quantiles from the M1, M2 and M3 models.

Figures 6–8, respectively, show three box plots of the 0.99, 0.999 and 0.9999 quantiles
with the AQR, EM and NLQR models. The box plots for the EM model have shorter left
tails and longer right tails compared to the other two models, AQR and NLQR, respectively.
The medians of the AQR and NLQR models are all at the same level; however, their box
plots show very different distributions for the DPED data.
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Figure 6. Box plots of the 0.99 quantile.
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Figure 7. Box plots of the 0.999 quantile.
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Figure 8. Box plots of the 0.9999 quantile.

Figure 9 shows the forecast distributions for the DPED data from 1997 to 2021. It also
summarises the forecast distributions drawn at each specific date interval. For every five
years, the histogram represents a sample from the model’s forecast distribution.
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Figure 9. Distributions for the DPED for every five years.

The Murphy diagrams in Figures 10–12 show empirical scores and differences in
scores for the M1 and M2, M1 and M3 and M2 and M3 models, respectively. A negative
difference means that the regime-switching forecast is preferable. It must be noted that
Murphy diagrams (Figures 10–12) might lead to inconclusive situations in which neither of
the three forecast methods dominates the other, and as a result, it would be unhelpful in
decision-making. The p-values of the three models for three different forecasting horizons
were analysed. Based on the information given in Section 3.4 , the forecast accuracies of
the 0.95, 0.99, 0.999 and 0.9999 quantiles are summarised. Since all p-values were less than
0.05, we, therefore, rejected the null hypothesis that there was no significant difference in
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the predictive abilities amongst the models. The forecasting performance of all the models
was significant. Hence, the forecasting accuracy of M1 was better than that of the M2 and
M3 models in extremely high quantiles, and the M3 model was better than the M1 and M2
models in extremely low quantiles.

15000 25000 35000

0
10

0
20

0
30

0
40

0
50

0
60

0

Empirical Scores

θ

E
m

pi
ric

al
 S

co
re

M1
M2

15000 25000 35000

−
35

0
−

30
0

−
25

0
−

20
0

−
15

0
−

10
0

−
50

0

Difference in scores

θ

D
iff

er
en

ce
 in

 s
co

re
s

Figure 10. Murphy diagrams for the comparison of the 0.99 quantiles of AQR99 and Extremal99 (M1
and M2).

15000 25000 35000

0
10

0
20

0
30

0
40

0

Empirical Scores

θ

E
m

pi
ric

al
 S

co
re

M1
M3

15000 25000 35000

−
60

−
40

−
20

0
20

40

Difference in scores

θ

D
iff

er
en

ce
 in

 s
co

re
s

Figure 11. Murphy diagrams for the comparison of the 0.99 quantiles of AQR99 and NLQR99 (M1
and M3).
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Figure 12. Murphy diagrams for the comparison of the 0.99 quantiles of Extremal99 and NLQR99
(M2 and M3).

5. Discussion

The current study was motivated by the need to accurately predict the largest possible
demand for electricity at any given point in time. This can help system operators in shifting
demand to off-peak periods including the scheduling of generating units during peak
periods.

The study carried out a comparative analysis of the AQR, EM and NLQR models
in predicting extremely high and extremely low quantiles of daily peak electricity de-
mand. Other approaches, for example [4,13,32] among others, underestimated conditional
quantiles or failed to estimate extreme conditional quantiles from their proposed models.

The additive quantile regression models are becoming increasingly popular in many
applications as they are known to be flexible and robust. The AQR model does not require
a predetermined function fit; however, it determines the best fit from the DPED data
under extremely high quantiles. Table 4 shows the AQR model as a powerful method as
suggested by the low evaluation metrics. Table 5 shows NLQR to be the best fitting model
for extremely low quantiles.

The predictive performance of the models was evaluated based on three evaluation
metrics, the CRPS, LogS and DS, respectively. The models were compared based on these
scoring rules. The comparative forecast evaluation is generally applauded for giving
critical features with out-of-sample forecasts in modelling comparison. The AQR model
showed the smallest values of the scoring rules in all three extremely high quantiles, except
for one quantile. All sets of scores’ (CRPS, LogS and DSS) values in Table 4 suggest that
the M1 model was the best model, while Table 5 suggests that M3 was the best fitting
model. Hence, the model M1 provided the highest predictive accuracy at the 0.95 and 0.99
quantiles, respectively, as given in both Figures 3 and 4.

The accurate predictions in extreme conditional quantiles of electricity demand in
this study are necessary for planning power systems and assessing investment projects in
South Africa. Based on the Murphy diagrams, M1 (AQR model) had the highest predictive
ability compared to the extremal mixture and nonlinear quantile regression models. The
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question of model comparisons in both extremely high and low quantiles in this study
arises from the need to:

1. Address the uncertainties that seem to be ignored in practice (for example, the uncer-
tainty in the process that is generating the occurrence of the extreme events);

2. Quantify the uncertainties in the estimated parameters of the distribution;
3. Predict extremely high quantiles of daily peak electricity demand. This helps system

operators know the possible largest demand, which will enable them to supply
adequate electricity to consumers and shift load to off-peak periods.

A limitation of this study is that the sample data were for the period 1997–2014. It
would have been good to cover the period of the COVID-19 pandemic. However, at
the time of the study, the data covering the pandemic period were not available to the
researchers. This would have helped in seeing the impact of the pandemic on electricity
demand. Future research, when data are made available, should include this period.
Other future research directions would include the inclusion of more covariates such as
meteorological and economic including calendar variables so that we may capture their
effect on the prediction of extremely high and extremely low electricity demand.

6. Conclusions

The paper presented a comparative analysis of the prediction of extremely high and
extremely low daily peak electricity demand. An extremal mixture model in which a
kernel density was fit to the bulk model and a Pareto distribution fit to the tail model
was compared with an additive quantile regression and a nonlinear quantile regression
models. The results indicated that the additive quantile regression model produces the
most accurate predictions at both extremely high and low quantile levels. Furthermore, the
additive quantile regression and nonlinear quantile regression models fit well based on the
Murphy diagrams for the comparison of the 0.99 quantile compared to the other models.
The results from this study could be useful to decision-makers in power utility companies
in the prediction of extremely high and low electricity demand, thereby assisting them in
the management of the risk of overprediction and underprediction.
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AR Autoregressive
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CP Coverage probability
CRPS Continuous rank probability score
DPD Daily peak demand
DPED Daily peak electricity demand
DSS Dawid–Sebastiani score
EQR Extreme quantile regression
EVT Extreme value theory
GARCH Generalized autoregressive conditional heteroskedasticity
GCV Generalised cross-validation
GDP Gross domestic product
GEVD Generalised extreme value distribution
GJR Glosten–Jagannathan–Runkle
GLD Generalised logistic distribution
GPD Generalised Pareto distribution
GSP Generalised single Pareto distribution
IW Interval width
LMd Lower median
LogS Logarithmic score
Md Median
MSRE Mean-squared relative error
NDP National Development Plan
NPOT Nonparametric peaks-over-threshold
PDF Probability density function
PL Pinball loss
POT Peaks-over-threshold
QR Quantile regression
quantGAM Quantile generalised additive model
REIPPPP Renewable Energy Independent Power Producer Program
UMd Upper median
USB United States Bancorp
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