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Abstract: The new energy industry (NEI) is key to achieving a clean and low-carbon economy.
Improving its technical efficiency, a factor reflecting the ability of an enterprise or industry to
produce maximum economic outputs from a given set of inputs and production technologies, is vital
for the healthy development of the NEI. Nevertheless, due to the fragmentation of industry data,
it is still difficult to accurately measure the technical efficiency of China’s NEI and understand
the driving factors behind it. Based on the panel data derived from 17,457 observations on new
energy enterprises in 29 Chinese provinces during 1998 and 2013 (latest data available), this paper
uses data envelopment analysis (DEA) and geographically and temporally weighted regression
(GTWR) for the first time to investigate the spatiotemporal characteristics and driving factors of the
technical efficiency of China’s NEI. The results show that the technical efficiency of China’s NEI
was relatively low and increased modestly from 0.44 in 1998 to 0.52 in 2013. Exploring the reasons
from the perspective of spatiotemporal heterogeneity, we find that enterprise scale and technological
progress are the major driving factors for increasing NEI’s technical efficiency. However, the role of
economic development in improving efficiency has gradually disappeared. Moreover, the negative
effect of state-owned enterprises on efficiency becomes increasingly obvious. The effect of new
energy resources is negligible. Our main contribution is the technical efficiency of China’s NEI
which is measured at the provincial level and its main driving factors are explored by considering
spatiotemporal heterogeneity. Accordingly, we put forward some specific recommendations to
improve the technical efficiency of China’s NEI.

Keywords: new energy industry; technical efficiency; DEA model; GTWR model; spatiotemporal
heterogeneity

1. Introduction

Climate change and global warming are prompting all countries to transition towards
a clean and low-carbon development path [1–3]. As the largest emitter, China has formally
pledged to achieve carbon peak by 2030 and carbon neutrality by 2060 [4,5]. However,
China’s primary energy reserve is dominated by coal [6], with less oil and little gas,
which makes it extremely difficult and challenging for China to achieve this ambitious
goal [7,8]. Consequently, it is imperative and urgent for China to accelerate the development
and deployment of low carbon energy technologies.

The new energy industry (NEI) is an industry engaged in the research, development,
promotion, application and production of new energy technologies and systems, mainly in-
cluding nuclear, wind, solar, biomass, geothermal and ocean energy industries [9]. Since the
implementation of the Renewable Energy Law of the People’s Republic of China in 2006,

Energies 2021, 14, 4151. https://doi.org/10.3390/en14144151 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3165-5870
https://orcid.org/0000-0002-2815-2503
https://doi.org/10.3390/en14144151
https://doi.org/10.3390/en14144151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14144151
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14144151?type=check_update&version=1


Energies 2021, 14, 4151 2 of 21

the Chinese government has vigorously supported the development of NEI [10,11]. In 2019,
China’s cumulative installed solar and wind power capacity (205 and 210 GW, respectively)
and new energy power generation (732.3 TWh) both ranked first globally [12].

However, there are hidden problems behind these optimistic data on China’s NEI.
On the one hand, the Chinese government has implemented many financial support
measures such as feed-in tariffs, tax incentives and direct subsidies to encourage the de-
velopment of NEI [11,13–15]. Unfortunately, the government is under significant subsidy
burden and pressure with the rapid expansion of new energy deployment, leading to a sub-
sidy shortage exceeding 140 billion RMB in 2018. Due to the subsidy shortage, many new
energy enterprises have shortages of funds, which has led to difficulties in production and
operation. On the other hand, the scale of the NEI is still small compared with the large
scale of traditional energy [16]. Moreover, the Chinese government requires new energy
power generation to reach grid parity as soon as possible [17,18]. However, the cost of
new energy power generation is still higher than that of thermal power [19], which results
in the lack of competitiveness of new energy power generation in the market. Therefore,
facing the dual pressure of subsidy shortage and grid parity, new energy enterprises must
make full use of existing production resources to reduce costs and improve their technical
efficiency to achieve a win-win situation in economic performance.

Technical efficiency reflects the ability of an enterprise or industry to obtain max-
imum economic outputs from a given set of inputs and production technology [20,21].
Nevertheless, due to the fragmentation of industry data, it is still difficult to accurately
estimate the technical efficiency of China’s NEI, let alone understand the driving factors
behind it. This knowledge gap makes it difficult for policy makers to plan and facilitate the
development of the NEI based on its technical efficiency and driving factors.

Hitherto, a large number of research reports and seminal publications have been
documented on the efficiency of China’s NEI (see Table 1). From the enterprise or industry
perspectives, these studies use data envelopment analysis (DEA) or stochastic frontier
analysis (SFA) to evaluate the efficiency and the fixed coefficient method to investigate
the driving factors. From the enterprise perspective, scholars have studied the technical
efficiency, investment efficiency or innovation efficiency of wind energy enterprises [14,22],
solar energy enterprises [13,23], and other new energy enterprises [24,25] based on data
about listed new energy enterprises. From the industry perspective, research on the
efficiency of the NEI mainly focuses on one specific new energy industry or uses data
on proxy industries. For instance, Xu et al. [26] evaluated the technical efficiency of
the biomass energy industry in 20 Chinese provinces using evidence from the recycling
industry. Based on China’s wind power installed capacity data, Liu et al. [27] estimated
the efficiency of China’s wind power industry. DEA and SFA are the two most common
models used to measure the NEI’s efficiency. SFA is an econometric model, which requires
a production function to be set based on strict economic assumptions [28–30]. Therefore,
the method is rigid and cumbersome to use. DEA is a linear programming method that uses
the characteristics of the value itself to construct the production front without constructing
a production function, making it more convenient to operate and more popular [31–33].
In addition, after measuring the NEI’s efficiency, it is also essential to explore its driving
factors. Existing studies mainly use the Tobit model and multiple linear regression to
estimate these driving factors, which are not able to determine the spatial and temporal
heterogeneous effects on the efficiency. For example, Lin et al. [13] used the DEA model
to calculate the innovation efficiency of 44 listed solar photovoltaic enterprises and used
the Tobit model to analyze its influencing factors. However, China is a vast country and
there are obvious regional differences in the development of NEI. Moreover, the Chinese
government has issued different policies at different stages to support the NEI. As a result,
China’s NEI not only shows regional differences but also stage differences. Therefore,
this paper adopts a geographically and temporally weighted regression (GTWR) model
to explore the driving factors for technical efficiency of China’s NEI by considering the
spatiotemporal heterogeneity.
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Table 1. Previous research on the efficiency of China’s new energy industry.

Objective Industry Scale Data Sources Methodology

Zhao et al. [22]
Delineate the technical

efficiency of China’s wind
power industry

Wind power
industry Enterprise-level 28 wind power

listed enterprise
Four-stage

DEA method

Lin et al. [14]

Analyze the impact of
government subsidies on
innovation efficiency of

China’s wind
power industry

Wind power
industry Enterprise-level 40 wind power

listed enterprises
Stochastic

frontier analysis

Lin et al. [13]

Analyze the impact of
government subsidies on

innovation efficiency
of China’s

photovoltaic industry

Photovoltaic
industry Enterprise-level 44 photovoltaic

listed enterprises
DEA method;
Tobit model

Zhang et al. [23]

Analyze the operating
performance, industry

agglomeration and spatial
characteristics of China’s

photovoltaic industry

Photovoltaic
industry Enterprise-level 58 photovoltaic

listed enterprises

DEA method;
spatial

autocorrelation
analysis

Wang et al. [24]
Evaluate the innovation
efficiency of China’s new

energy industry

Solar, wind and
nuclear power

industries
Enterprise-level 38 listed

enterprises DEA method

Zeng et al. [25]

Evaluate the investment
efficiency of China’s new

energy industry and
investigates driving factors

New energy
industry Enterprise-level 74 listed

enterprises
Four-stage

DEA method

Xu et al. [26]

Conduct an empirical
analysis for the technical

efficiency of biomass energy
in China

Biomass
energy

Industry-level;
Provincial level

Data from
recycling
industry

Stochastic
frontier analysis

In summary, the existing studies on NEI’s efficiency are mainly conducted at an
enterprise level, focus on one specific new energy industry and/or use data on proxy
industries. However, study on the efficiency of the entire NEI at a macro level using
data specific for NEI is still very limited. This knowledge gap hinders effective decision-
making by policy makers to support the development of China’s NEI at the national and
regional levels.

To fill this knowledge gap in the technical efficiency of China’s NEI at the macro
level, this paper uses the DEA and GTWR model for the first time to explore the technical
efficiency of China’s NEI and its driving factors from the perspective of spatiotemporal
heterogeneity, based on a panel dataset of the NEI in 29 provinces in China from 1998 to
2013. Our main contribution is that we assessed the technical efficiency of China’s NEI
at a provincial level and investigated the heterogeneous influence of the driving factors
on the efficiency from spatial and temporal perspectives. The findings from our study
are expected to enrich the empirical evidence for the technical efficiency of China’s NEI
and support policy-making in promoting the sustainable development of China’s NEI at a
macro level.

The rest of the paper is organized as follows: Section 2 introduces the methodology,
data sources and variables. Section 3 presents the empirical results, discussion and policy
implications. Section 4 presents the conclusions.

The abbreviations in this study are provided in Abbreviations.

2. Methodology and Data
2.1. Methodology

Figure 1 shows the overall research methodology of this paper. The main steps are
as follows: First, we extracted 17,457 observations on new energy enterprises from the
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Chinese Industrial Enterprises Database [34]. Through the processing of these observations,
we obtained panel data of the NEI in 29 Chinese provinces from 1998 to 2013. These panel
data are an effective record of the status of the NEI in each province, which is different
from the data of listed enterprises or data on proxy industries used in previous studies.
Second, we used the super-efficiency slacks-based measure (SBM) model combined with
DEA window analysis to measure the technical efficiency of China’s NEI and capture
its dynamic change over time. Finally, GTWR method was employed to conduct an in-
depth study on the influencing factors for the technical efficiency of China’s NEI. Different
from the fixed coefficient method, the GTWR model shows the elasticity of all provinces
at each time, which can more thoroughly show the spatiotemporal heterogeneity of the
technical efficiency.
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2.1.1. Super-Efficiency SBM Model

Data envelopment analysis (DEA) is a non-parametric linear programming methodol-
ogy for assessing relative efficiency for each member of a set of peer decision-making units
(DMUs) with multiple inputs and multiple outputs [35]. The traditional DEA models are
the CCR model and the BCC model, which consider the proportion of reduction (increase)
of inputs (outputs) and ignore the slacks in variables. Tone (2001) proposed the method
of the SBM model, which can deal with input excess and output shortfall [36]. However,
the maximum efficiency (value = 1) makes it impossible to further distinguish efficient
DMUs in the traditional DEA, including SBM model. Therefore, Tone (2002) [37] proposed
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a super-efficiency SBM model that can solve the incomparability problem between efficient
DMUs, which is also more suitable for calculating the NEI’s technical efficiency.

Assume there are n DMUj (j = 1, 2, · · · , n), each DMU has m inputs and q outputs,
then the input and output matrices are X = (xij)m×n, Y = (yrj)q×n, respectively.

The production possibility excluding DMUk is set as{
(x, y)| x ≥

n

∑
j = 1, j 6=k

xijλj, y ≤
n

∑
j = 1, j 6=k

yrjλj, λj ≥ 0

}
(1)

where λj is the non-negative weight.
The input-oriented super-efficiency SBM under constant returns to scale (CRS) as-

sumption can be described as follows:

ρ∗ = minρ = 1 + 1
m

m
∑

i = 1

s−i
xik

s. t. ∑n
j = 1,j 6=k xijλj − s−i ≤ xik

n
∑

j = 1,j 6=k
yrjλj ≥ yrk

λ, s−i ≥ 0
i = 1, 2, · · · , m; r = 1, 2, · · · , q; j = 1, 2, · · · , n (j 6= k)

(2)

where s−i is the input excess; ρ∗ is the relative efficiency value. If ρ∗ ≥ 1, the DMU is
technical efficient, otherwise it is technical inefficient. This study uses variable returns to
scale (VRS) super-efficiency SBM model by adding constraints ∑n

j = 1,j 6=k λj = 1. The VRS
assumption is adopted because it is consistent with actual production situation. As for
the orientation, it seems to be more logical to conserve inputs for given outputs [38],
and there is only one good output in this study, so the super-efficiency SBM model used is
input-oriented and under VRS assumption.

DEA window analysis is a variation of the traditional DEA that can handle panel data to
capture dynamic effects [39]. The data used in this paper are panel data. Hence DEA window
analysis is used to be combined with super-efficiency SBM model to measure NEI’s technical
efficiency (detailed descriptions in Supplementary Note S1 and Supplementary Table S1).

2.1.2. GTWR Model

To fully understand the driving factors of NEI’s technical efficiency, this paper con-
structs the panel regression model as follows:

lnEit = β0 + β1lnFSit + β2lnSOit + β3lnTEit + β4lnPGDPit + β5lnNEit + uit (3)

where β0 is the constant term; β1, β2, β3, β4 and β5 are the estimated coefficients of each
explanatory variable; E represents NEI’s technical efficiency calculated by super-efficiency
SBM model; FS is enterprise scale (103 RMB); SO denotes enterprise ownership structure
(%); TE indicates technological progress (%); PGDP means economic development mea-
sured by per capita GDP (RMB); NE stands for new energy resources, which is measured
by new energy power generation (108 kWh). Detailed explanations of these variables are
in Section 2.2.2. The i and t represent the number of provinces and the year respectively
and u is the random error term. To eliminate heteroscedasticity, all variables are converted
to natural logarithms. Since there are some zero values in the SO and NE data, we added
0.0001 to zero value to take the natural logarithm.

China is a vast country, and there is a significant difference in economic development,
new energy availability, and technology level among provinces. In fact, spatial effect is
quite common in socio-economic phenomena. Existing research shows that China’s NEI has
significant spatial disparities [40–42]. To further reveal the spatiotemporal heterogeneity
influence of driving factors on NEI’s technical efficiency, it is appropriate to use a variable-
coefficient model to reflect the difference in coefficients across time and space. Thus,
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a GTWR model is applied in this paper. Compared with traditional ordinary least squares
(OLS) method, GTWR can overcome the shortcomings that the coefficients estimated are
average effect, which cannot reveal the spatiotemporal heterogeneity of driving factors.

GTWR model is expanded from the traditional GWR model. Geographically weighted
regression (GWR) proposed by Fotheringham et al. can reveal spatial heterogeneity by
allowing the variation of parameters with different locations [43]. However, the GWR
model only considers the variation from spatial dimension and ignores the temporal
dimension, so the GTWR model was developed by Huang et al. to capture both spatial
and temporal heterogeneity [44]:

Yi = β0(ui, vi, ti) + ∑k βk (ui, vi, ti) Xik + εi i = 1, 2, · · · , n (4)

where (ui, vi, ti) is the time-space coordinates at observation i. β0(ui, vi, ti) represents the
estimated intercept value for ith observation. βk(ui, vi, ti) denotes coefficient estimated of
kth independent variable for ith observation. The estimation of βk(ui, vi, ti) can be given:

β̂(ui, vi, ti) =
[

XTW(ui, vi, ti)X
]−1

XTW(ui, vi, ti)Y (5)

where W(ui, vi, ti) = diag(αi1, αi2, · · · , αin) and n is the number of observations. The di-
agonal elements αij(1 ≤ j ≤ n) are time-space distance functions, which can be expressed
as follows:

αij = exp

−
(

dS
ij

)2

h2
S

× exp

−
(

dT
ij

)2

h2
T

 (6)

where dS
ij =

√(
ui − uj

)2
+
(
vi − vj

)2, dT
ij =

√(
ti − tj

)2 are spatial distance and temporal
distance, respectively. hS and hT stand for spatial and temporal bandwidths, respectively.
In this study, Gaussian function is used as a spatial kernel function [45] and Akaike
information criterion (AIC) is adopted to select bandwidth [46].

2.2. Variables
2.2.1. Input-Output Variables of Technical Efficiency Measurement

This paper uses super-efficiency SBM model to estimate the technical efficiency of
China’s NEI. When using this model, it is essential to select the input and output variables.
Two inputs (total assets and number of employees) and one output (main business income)
are selected as input-output variables according to the existing literature [22].

2.2.2. Driving Factors of Technical Efficiency

The development of NEI is affected by many factors, including macroeconomic and
policy factors, micro-enterprise factors and regional resource availability factors. Based on
the theoretical relationship between relevant economic variables and the development of
NEI, five main driving factors are chosen, including enterprise scale, enterprise ownership
structure, technological progress, economic development, and new energy resources.

Enterprise scale (FS): Enterprise scale has an important impact on the development
of enterprises as well as the industry. Zhao et al. found that the average efficiency of
large enterprises in the wind power industry was higher than that of small enterprises [22].
Large enterprises have sufficient resources to buy advanced equipment and carry out
research and development activities. Therefore, they can improve the technical efficiency
by reducing costs through technological progress. The development of NEI especially
requires capital and technological support. Therefore, this study incorporates enterprise
scale into the analytical framework. This factor is measured by the average main business
income, which is calculated as the ratio of total main business income to the number of
enterprises in each province.
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Enterprise ownership structure (SO): Previous studies have investigated the relation-
ship between enterprise ownership and technical efficiency among different industries,
but the results are mixed. Many hold the view that private ownership outperforms state
ownership [47–49]. In terms of China’s state-owned enterprises, they are controlled and
supported by the Chinese government, resulting in a lack of innovation and competitive-
ness. Some studies have also shown that private-owned enterprises are more efficient than
state-owned ones in China’s manufacturing [48] and wind power industries [22]. The NEI
is no exception. Therefore, the influence of enterprise ownership on the technical efficiency
of NEI should also be considered. This study uses the proportion of state-owned enterprises
in the total main business income to represent the ownership structure in each province.

Technological progress (TE): NEI is a technology-intensive emerging industry, and its
development highly relies on advanced technologies [50]. Improved new energy tech-
nologies may reduce the production cost of new energy products and increase economic
output. It is believed that higher technology level results in higher efficiency of NEI. Tech-
nological progress is thus considered in this study to reveal the impact on NEI. Research
and development (R&D) expenditure intensity (RDI) has been used in previous studies to
measure technological progress [25]. In general, the higher RDI, the more emphasis the
region puts on technological innovation and the greater technological progress it can make.
Thus, RDI was also selected to indicate the provincial technological progress. However,
the data of R&D expenditure in the field of new energy at the provincial level was not
available. Lin and Chen [11] showed that the R&D expenditure in new energy sector has
the same trend with the total R&D investment. Therefore, the RDI is proxied by the ratio of
R&D expenditure to GDP in each province in this study.

Economic development (PGDP): In the early stages, economic growth in China greatly
promoted the consumption of fossil energy, which caused serious environmental pollution.
To achieve sustainable economic development, the Chinese government significantly ex-
panded the use of clean energy, thus encouraging the development of NEI [51]. Moreover,
NEI is a capital-intensive industry, which requires a lot of investment in the early stages.
In general, the more developed the region, the more it can promote the development of
NEI. Therefore, economic development is an important factor affecting the development of
NEI. Economic development is generally measured by two variables, namely GDP and per
capita GDP. Per capita GDP can better reflect the real level of economic development in a
region or a country [9]. Therefore, this study uses per capita GDP to measure the economic
development in each province.

New energy resources (NE): The NEI is mainly derived from the discovery and ap-
plication of new energy. New energy resources therefore play an important role in the
development of NEI. China is rich in new energy resources. Wind and solar power, in par-
ticular, are the most popular emerging new energy in China. As of 2019, the cumulative
installed solar and wind capacity in China increased to 205 GW and 210 GW, respec-
tively [12]. However, China’s new energy resources are unevenly distributed, with most
new energy resources mainly distributed in western regions. In this study, new energy
resources are measured by new energy power generation and obtained by total power
generation minus thermal and hydropower generation in each province.

2.3. Data Source and Processing

Public data on the NEI is limited as NEI is a strategic emerging and pilot industry
in China [9]. The main data used in this study is derived from the Chinese Industrial
Enterprises Database released by the National Bureau of Statistics for the period of 1998
to 2013 [34]. The database covers all state-owned enterprises and non-state enterprises
with annual sales greater than 5 million RMB (changed to 20 million RMB in 2011) in the
following three industries: (1) manufacturing, (2) mining, (3) production and distribution
of electricity, gas and water. Therefore, we mainly focused on NEI involved in the above
three industries without considering new energy engineering construction and new energy-
related tertiary industry. It is estimated that the enterprises covered in the database account
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for about 90% of the total industrial output [52]. According to the Classification of Strategic
Emerging Industries of China (2018), 76% of NEI at the 4-digit level are included in this
database. We also believe that the database covers most new energy enterprises. Since the
database does not include small non-state enterprises, the calculation of technical efficiency
could be biased. Based on previous research, the efficiency of small enterprises is generally
low [22], so this study could potentially overestimate the technical efficiency of China’s NEI.
Nevertheless, the database would still be appropriate for covering new energy enterprises.

Firstly, we selected those new energy-related enterprises. For each enterprise in the
database, there are three industry codes at 2-digit, 3-digit and 4-digit level indicating
which industry each enterprise belongs to, and these three codes correspond to the In-
dustrial Classification for National Economic Activities. According to the Classification
of Strategic Emerging Industries of China (2018), we kept industries (at 4-digit level) that
all belong to the NEI (as shown in Supplementary Table S2A) and selected other new
energy enterprises by keywords from enterprise names and main products (as shown
in Supplementary Table S2B). As three versions of the Industrial Classification for National
Economic Activities were used during the sample period, different industry codes were retained
for different versions. Secondly, we removed observations that satisfy the following conditions:
(1) missing, negative or zero value in any of the input-output variables (i.e., total assets, number
of employees and main business income); (2) enterprises with less than 10 employees (small
enterprises usually lack reliable accounting systems [53]). After these procedures, we finally got
a total of 17,457 observations for the period of 1998–2013. Finally, we grouped these observations
as panel data of 29 Chinese provinces from 1998 to 2013 (Guizhou, Tibet, Taiwan, Hong Kong
and Macao are not included due to data missing or not available).

To estimate the technical efficiency of NEI, two inputs and one output were calculated
based on those enterprises selected above. These three variables of each enterprise in the
same province were added together to obtain the total assets, number of employees and
main business income of each province. When there were no new energy enterprises in
a certain province of a certain year, we used interpolation to process missing data after
getting the unbalanced panel data. Regarding the panel data, missing values in the middle
of the time series were estimated by interpolation and missing values in the previous
stages of the time series were assumed to be the same as their nearest values. To eliminate
the impacts of prices, price indices for investment in fixed assets and producer price
indices for industrial products were used to transform nominal total assets into real total
assets and to convert the nominal main business income into actual main business income
(1998 = 100), respectively.

Among the above five driving factors, enterprise scale (FS) and enterprise ownership
structure (SO) were also calculated based on those selected enterprises. The panel data
of technological progress (TE) were from the China Statistical Yearbook on Science and
Technology (1998–2013) [54]. Economic development (PGDP) was obtained from China
Statistical Yearbook (1998–2013) [55]. However, the raw data of new energy resources (NE)
were from China Energy Statistical Yearbook (1998–2013) [56]. To eliminate the impact of
prices, we converted nominal per capita GDP into real per capita GDP (1998 = 100).

2.4. Data Description

To investigate the development disparities of NEI between regions, this paper divides
the 29 provinces, autonomous regions and municipalities into eastern, central and western
regions based on their uneven resource access and economic development.

The NEI showed a rapid upward trend during the sample period (see Figure 2).
The number of new energy enterprises increased from 125 in 1998 to 3684 in 2013, with an
average annual growth rate of 23.5%. The development of NEI was very slow before 2004
but has grown rapidly since 2006 due to the implementation of the “Renewable Energy
Law of the People’s Republic of China” that year. In addition, the NEI was promoted
as a strategic emerging industry in 2009, which further facilitated the growth of NEI.
With the support of the Chinese government, all provinces are committed to developing the
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NEI. Nevertheless, China has obvious regional variation during the development of NEI.
As shown in Figure 2, the distribution of NEI was even among these three regions before 2003.
However, the number of new energy enterprises increased dramatically in Eastern China
since 2003, whereas that in the Central and Western China increased noticeably in 2007.
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Figure 2. Number of new energy enterprises in China from 1998 to 2013.

Based on sample data, we explored the spatial distribution characteristics of the
five driving factors across China in 2013 (see Figure 3). There are significant regional
disparities in these factors. (1) Enterprise scale (FS). According to the Statistical Standards
for the Classification of Large, Medium, Small and Micro Enterprises, industrial enterprises
with employees between 300 and 1000, and revenue between 20 and 400 million RMB
belong to medium-sized enterprises. However, this paper only used the average main
business income to indicate enterprise scale. Figure 3 shows that the average size of
enterprises in most provinces is medium-sized, except for Tianjin, Jiangsu, Shaanxi, Jiangxi
and Guangxi, where the average main business income is over 400 million RMB. Although
these enterprises are large- and medium-sized according to the standards, the enterprise
scale in different provinces still varies greatly. (2) Enterprise ownership structure (SO).
The proportion of state-owned economic components in the NEI varies significantly among
provinces. The provinces with a relatively low proportion of state-owned economy are
mainly concentrated in the eastern coastal region and several provinces in the central region.
The provinces with more than 50% of state-owned content are Gansu, Hunan, Shaanxi,
and Yunnan. (3) Technological progress (TE). China’s R&D investment increased from
48.57 billion RMB in 1998 to 880.59 billion RMB in 2013, with an average annual growth
rate of 21.3%. However, compared with developed countries, China’s R&D investment
is still very low. In 2013, the RDI was very low for all provinces (less than 3.56%), except
for Beijing (5.98%). Moreover, the provinces with higher RDI are mainly concentrated in
the southeast coast and some provinces of the central region. (4) Economic development
(PGDP). Regional disparity is a specific feature of China’s rapid economic development
over the last few decades. The eastern region is the most developed, and the degree
of development decreases from east to west. (5) New energy resources (NE). China is
a vast country and rich in new energy resources. According to China Electric Power
Yearbook [57], China’s total new energy power generation was 258.5 billion kWh in 2013,
of which 111.5 billion kWh was from nuclear power, 138.3 billion kWh from wind power,
and 8.4 billion kWh from solar power. However, the distribution of new energy resources
in China is uneven with obvious spatial disparity. The three northern regions, including
northwest (Xinjiang, Ningxia, Qinghai, and Gansu), northeast (Heilongjiang, Jilin and
Liaoning) and north China (Inner Mongolia, Hebei and Shanxi), have the most abundant



Energies 2021, 14, 4151 10 of 21

onshore wind energy resources. For offshore wind, the coastal areas (Shandong, Jiangsu,
Zhejiang, Fujian and Guangdong) have the most potential [58]. Solar energy resources are
also mainly concentrated in the northwest provinces, topped by Inner Mongolia, Xinjiang
and Gansu [59].
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3. Results and Discussion
3.1. The Spatiotemporal Analysis of NEI’s Technical Efficiency

The technical efficiency of China’s NEI during 1998–2013 is shown in Table 2. Figure 4
presents the average efficiency of three regions and the whole country during 1998–2013.
The national average efficiency increased modestly by 18.37% during the period, from 0.44
in 1998 to 0.52 in 2013. It is relatively low compared with other industries in China, e.g.,
the national average technical efficiency of biomass energy from the recycling industry is
0.60–0.75 between 2006 and 2015 [26]. Moreover, there are significant spatial differences
in the efficiency of the three regions (see Figure 5). Eastern China has the highest average
efficiency over the period (0.67), significantly higher than the other two regions. The differ-
ence between the average efficiency of Central China (0.46) and Western China (0.47) is
small. Overall, the gaps between the efficiency of these three regions have decreased over
time. From a provincial perspective, the significant variations in efficiency indicate that
inefficient enterprises have the potential to catch up by benchmarking best-performing
enterprises, thereby improving the NEI’s efficiency [25].

As can be seen from Figure 5, there are obvious regional differences in NEI’s efficiency.
Eastern China is the most developed area in terms of industry, especially some high-tech
industries. At the same time, the quality of human resources is very high due to the highest
per capita wages. Compared to Eastern China, Western China is underdeveloped, but rich
in new energy resources. In 2017, 50% and 49% of the nation’s wind power and solar power
generation came from Western China. On the contrary, Eastern and Central China have
less new energy power generation but consume the most energy. Therefore, in terms of
industrial chain of NEI, Eastern China is more likely to form R&D and high value-added
parts manufacturing. Based on our calculations, 67% of national new energy manufacturing
enterprises were located in Eastern China in 2013. Instead, Central and Western China are
new energy resources supply regions [40]. In the development of NEI, different regions
play different roles, which also leads to differences in efficiency between regions.
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Table 2. NEI’s provincial technical efficiency from 1998 to 2013 in China.

Region Province 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Eastern China

Beijing 0.412 0.596 0.782 0.653 0.513 0.637 0.499 0.402 0.345 0.319 0.331 0.652 1.248 0.520 0.315 0.292
Tianjin 0.458 0.458 0.550 0.819 0.578 0.368 0.798 1.103 0.930 0.966 1.166 0.972 1.002 0.715 0.670 0.769
Hebei 0.388 0.726 0.719 0.769 0.909 1.192 0.754 0.728 0.797 0.743 0.731 0.767 0.797 0.634 0.464 0.437

Shanghai 1.260 0.361 0.311 0.449 0.438 0.380 0.455 0.480 0.692 0.456 0.962 0.593 0.922 0.732 0.551 0.437
Jiangsu 0.836 1.067 0.615 0.720 0.773 0.683 1.301 1.115 1.200 0.790 0.913 0.994 0.956 1.050 0.871 1.000

Zhejiang 0.340 0.280 0.550 0.597 0.460 0.503 0.665 0.625 0.544 0.446 0.567 0.506 0.690 0.544 0.466 0.409
Fujian 0.871 1.037 0.509 0.403 0.249 0.288 0.231 0.185 0.386 0.241 0.253 0.418 0.319 0.523 0.512 0.334

Shandong 0.660 1.073 1.134 1.055 1.349 1.000 0.552 0.807 0.714 0.729 0.918 1.174 0.875 0.983 1.010 1.035
Guangdong 0.893 1.232 0.916 1.096 0.826 1.723 1.009 0.842 0.671 0.502 0.386 0.511 0.527 0.478 0.405 0.368

Hainan 1.055 1.009 0.976 0.961 0.870 0.860 1.153 0.638 0.837 0.907 0.869 1.794 0.262 0.452 0.442 0.486
Liaoning 0.151 0.145 0.155 0.195 0.187 0.166 0.228 0.280 0.488 0.631 0.322 0.436 0.650 0.543 0.564 0.417
Average 0.666 0.726 0.656 0.701 0.650 0.709 0.695 0.655 0.691 0.612 0.674 0.802 0.750 0.652 0.570 0.544

Central China

Shanxi 0.086 0.086 0.083 0.453 0.700 0.194 0.523 0.729 0.262 0.687 1.198 0.940 0.428 0.503 0.462 0.249
Anhui 0.601 0.269 1.602 0.237 0.303 0.127 0.158 0.138 0.549 0.511 0.479 0.516 0.613 0.648 0.635 0.601
Jiangxi 0.189 0.189 2.006 0.779 1.653 0.458 0.225 0.296 0.489 0.327 0.598 0.498 0.614 1.115 0.876 0.957
Henan 0.166 0.189 0.272 0.221 0.202 0.210 0.276 0.300 0.366 0.639 0.570 0.568 0.666 0.680 0.680 0.705
Hubei 0.086 0.102 0.362 0.418 0.542 0.449 0.906 0.312 0.860 0.367 0.376 0.340 0.297 0.393 0.349 0.415
Hunan 0.406 0.246 0.185 0.198 0.247 0.773 1.278 0.577 0.617 0.453 0.612 1.091 0.758 0.685 0.637 0.588

Jilin 0.166 0.191 0.197 0.312 0.258 0.859 0.408 0.324 0.124 0.142 0.146 0.428 0.361 0.516 0.497 0.419
Heilongjiang 0.381 0.134 0.228 0.181 0.303 0.291 0.139 0.209 0.177 0.162 0.189 0.214 0.227 0.236 0.333 0.303

Average 0.260 0.176 0.617 0.350 0.526 0.420 0.489 0.361 0.431 0.411 0.521 0.574 0.496 0.597 0.559 0.530

Western China

Inner Mongolia 0.176 0.466 0.306 0.338 0.380 0.278 0.262 0.293 0.156 0.202 0.273 0.354 0.351 0.499 0.451 0.399
Guangxi 0.210 0.423 0.376 0.463 0.503 0.894 0.652 1.375 0.862 0.415 0.411 0.546 0.600 0.596 1.234 1.027

Chongqing 0.200 0.177 0.148 0.374 0.519 0.637 0.194 0.312 0.275 0.408 0.387 0.693 0.715 0.795 0.696 0.498
Sichuan 0.248 0.257 0.238 0.161 0.191 0.271 0.355 0.420 0.355 0.269 0.252 0.273 0.336 0.471 0.399 0.218
Yunnan 0.234 0.250 0.369 0.300 0.855 0.284 0.295 0.342 0.344 0.376 0.383 0.252 0.328 0.371 0.292 0.267
Shaanxi 0.204 0.182 0.229 0.168 0.167 0.281 0.240 0.253 0.318 0.431 0.419 0.507 0.447 0.430 0.567 1.036
Gansu 0.216 0.216 0.277 0.165 0.138 0.342 0.219 0.147 0.131 0.160 0.132 0.090 0.409 0.524 0.526 0.306

Qinghai 0.569 0.569 0.569 0.569 0.560 0.398 0.683 0.762 0.751 0.962 1.156 0.643 1.000 0.825 0.442 0.259
Ningxia 1.000 1.000 1.000 1.000 1.000 1.000 1.237 0.075 0.593 0.471 0.507 0.821 0.477 0.366 0.237 0.237
Xinjiang 0.328 0.244 0.262 0.281 0.255 0.529 0.779 0.702 1.030 0.893 0.795 1.884 0.781 0.843 0.734 0.684
Average 0.338 0.378 0.377 0.382 0.457 0.491 0.492 0.468 0.482 0.459 0.472 0.606 0.544 0.572 0.558 0.493

China Average 0.441 0.454 0.549 0.494 0.549 0.554 0.568 0.509 0.547 0.504 0.562 0.672 0.609 0.609 0.563 0.522
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3.2. Performance of GTWR Model

Before using the GTWR model, the first consideration is whether the GTWR model
can describe the dataset better than the OLS model. Therefore, we compared the results
of the OLS regression and GTWR model. As shown in Table 3, the adjusted R2 (0.623) of
GTWR model is far greater than that of OLS model (0.249). Furthermore, the AIC value
and the residuals sum of squares from GTWR model are both much smaller than those
in OLS regression. These results show that the GTWR model performs better in fitting
the data, indicating that there is a noticeable spatiotemporal heterogeneity of NEI. Thus,
this paper uses the GTWR model to estimate the parameters.

Table 3. Comparison result of OLS and GTWR.

R2 Adjusted R2 AICc Residual Squares

OLS 0.257 0.249 751.687 133.775
GTWR 0.627 0.623 636.751 67.297

In addition, this study also assesses the spatial and temporal non-stationarities of pa-
rameters estimated from GTWR model. If there are spatial and temporal non-stationarities,
it suggests that the OLS is not adequate to describe the data and the GTWR model should be
applied. An easy way to examine spatial non-stationarity is to compare twice the standard
errors (SE) of the OLS estimates with the interquartile of parameters estimated from GTWR,
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with larger values of the latter indicating significant spatial non-stationarity [46]. This study
selects the years 1998, 2006 and 2013 as examples and the results are summarized in Table 4.
The interquartile of all estimated parameters in GTWR is greater than the doubled standard
errors of OLS, indicating that the data has significant spatial non-stationarity. As for the
temporal non-stationarity, the parameters estimated from GTWR model for all regions
show a trend of change over time from Figure 6 (more details are discussed in Section 3.3).
Therefore, it is appropriate to apply the GTWR model to explore the driving factors of NEI.

Table 4. Spatial non-stationarity tests of variables for year 1998, 2006 and 2013.

Variables 2 × SE (OLS) Interquartile
(1998)

Interquartile
(2006)

Interquartile
(2013)

lnFS 0.046 0.136 0.187 0.127
lnSO 0.012 0.019 0.064 0.080
lnTE 0.092 0.128 0.287 0.215

lnPGDP 0.117 0.231 0.339 0.378
lnNE 0.013 0.034 0.020 0.041
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Moreover, because of the extensive number of outputs for the estimated coefficients
from GTWR model, Supplementary Table S3 lists several characteristic values of estimated
coefficients as an illustration of the extent of the variability. The residuals from GTWR
are analyzed (see Supplementary Note S2 and Supplementary Figure S1). The mean of
residuals is approximately zero (0.0028) and provinces with standardized residual value
within (−2, 2) account for 95% of the whole observations, indicating it is reliable to adopt
the GTWR model.

3.3. Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency

This study analyzes the estimation results of the GTWR model in detail. This model
presents the results of the effects of the driving factors on NEI’s technical efficiency in
different provinces across 1998–2013. Since the output of the GTWR model is enormous,
this study evaluates the effects of these driving factors in different regions and discusses
the effects from temporal and spatial perspectives (see Figure 6).

3.3.1. Enterprise Scale Effect

As shown in Figure 6a, enterprise scale has a significant positive effect (0.21) on NEI’s
technical efficiency, indicating that large enterprises are conducive to the development of
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NEI. This result is consistent with previous research [22]. There are two reasons for this.
Firstly, this relationship reflects the internal economies of scale in the NEI. This means that
with the expansion of the production scale and the increase of output of the enterprises,
the fixed cost allocated to the unit product will become less and less, leading to reduced
average cost of the product and improved efficiency. Secondly, compared with small
enterprises, large enterprises have strong financial strength and the ability to carry out
research and development activities, thereby reducing costs and improving the efficiency.

From a temporal perspective, the average elasticity of enterprise scale increased from
0.13 in 1998 to 0.42 in 2013, indicating the positive effect gradually increases over time.
The possible reason is as follows: In the early stages, the enterprise scale of China’s NEI was
generally small. However, deep integration has taken place in the industry over time [50]
and there are increasingly more medium- and large-sized enterprises. From the data we
calculated, the average main business income of the new energy enterprises across the
country has increased year by year. During the sample period, this value increased from
71.5 million RMB to 268.1 million RMB. Moreover, as the NEI gradually enters rational
development, economies of scale and management efficiency within enterprises are getting
higher and higher, leading to an increase in the efficiency over time. The difference between
the influence of enterprise scale in the three regions is not obvious, suggesting that the
heterogeneous influence of enterprise scale on the efficiency is mainly reflected in the time
dimension but not the space dimension.

3.3.2. Enterprise Ownership Structure Effect

The average effect (−0.04) of enterprise ownership structure on NEI’s technical ef-
ficiency is negative and small except for that of Western China in 2013 (see Figure 6b),
which was positive mainly because the elasticity of Xinjiang was unusually high at 1.49.
This suggests that state-owned enterprises are less efficient in NEI though the average effect
is small. The results are consistent with the literature that reports state-owned enterprises
generally perform poorly [22]. Bai et al. pointed out that in addition to meeting profit
objectives, Chinese state-owned enterprises must adopt multiple social responsibilities [60],
such as employment, and consequently their financial performance must be poor. This is
especially important in the NEI. In this industry, state-owned enterprises are responsible for
energy conservation and emission reduction, optimizing the energy structure, and promot-
ing technological innovation in the new energy field. Therefore, their financial performance
is expected to be poorer than that of non-state enterprises.

From a temporal perspective, the negative effect of enterprise ownership structure
on NEI’s technical efficiency is stable during 1998–2008. After 2008, the effect gradually
increases as the absolute value of its coefficients increases over time. However, according
to the data we calculated, the proportion of state-owned enterprises in the NEI decreased
from 84% in 1998 to 20% in 2013. Although the proportion of state-owned enterprises has
decreased, the effect on efficiency increased, showing that state-owned enterprises are very
important and the main force in the development of the NEI. From a spatial perspective,
the influence of enterprise ownership structure on NEI’s efficiency in Western China is
basically stable (except in 2013). In Eastern and Central China, the effects are also relatively
stable during 1998–2008, although the absolute value of their coefficients increased after
2008, indicating that this negative effect increased.

3.3.3. Technological Progress Effect

The average effect (−0.08) of technological progress on NEI’s technical efficiency
is negative with an upward trend from negative to positive during the sample period
(see Figure 6c). From a temporal perspective, technological progress is significantly and
negatively correlated with nationwide NEI’s efficiency during 1998–2007. After 2007, the re-
lationship becomes positive. The effects in Eastern and Central China become positive
after 2005 and 2006, respectively, whereas the effect in Western China is positive only in
2012. This means that R&D investment did not play any role in improving the efficiency in
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the early stages. The NEI is one of the technology- and capital-intensive industries and its
development depends on R&D investment [61]. In the early stages, the development of NEI
was still in its infancy and the initial level of new energy technology was rather low [50].
Due to inadequate R&D funding, many technical problems had not been solved, which se-
riously restricted the rapid expansion of NEI [51]. According to China Statistical Yearbook
on Science and Technology [54], the average annual R&D investment from 1998 to 2005
was 125 billion RMB (1998 = 100). The lack of R&D investment hinders the progress of new
energy technologies. Low technology level cannot reduce production costs, thus hindering
the improvement of the efficiency. With economic growth, the government has paid more
and more attention to the development of NEI. In particular, the implementation of the
Renewable Energy Law in 2006 stimulated significant development of NEI in China at all
levels. China expanded R&D investment in NEI in the later stages. According to China
Statistical Yearbook on Science and Technology [54], the average annual R&D investment
over the period 2006–2013 was 551 billion RMB. The continuous R&D investment in NEI
has promoted basic research in new energy, thus obtaining more advanced technologies.
This not only solves technical problems, but also reduces the cost of new energy products
and increases revenue, resulting in the increase of the efficiency. Therefore, the role of R&D
investment in promoting NEI’s efficiency gradually emerges in the later periods.

From a spatial perspective, the negative effect of technological progress on NEI’s
efficiency in Western China is the largest, and the time for the effect changing from negative
to positive lags behind Eastern and Central China. The difference is mainly caused by the
different R&D investment between regions. Currently, China’s new energy technologies
still lag behind developed countries and most core technologies rely on imports [50].
In general, the more R&D investment, the more advanced technologies can be obtained.
The regional difference of R&D investment leads to the regional difference of technological
progress. Data from China Statistical Yearbook on Science and Technology shows that the
R&D investment intensity during 2006 to 2013 in Eastern, Central and Western China was
1.95%, 1.09% and 1.04%, respectively [54]. Therefore, technological progress in Western
China is relatively lagging.

3.3.4. Economic Development Effect

On the whole, the average effect (0.29) of economic development on NEI’s techni-
cal efficiency is positive and the largest among the five driving factors but decreasing.
The positive relationship between economic development and NEI’s efficiency indicates
that economic growth has a promotion effect on technical efficiency. The result is the
same as other literature [22,62]. However, from a temporal perspective, the coefficients of
economic development are decreasing over time (see Figure 6d), showing that economic
development has not played a long-term role in promoting NEI’s efficiency. This is mainly
because economic growth will not directly lead to the increase in technical efficiency [63].
Provinces with a higher degree of economic development may also lead to a low level of
technical efficiency resulting from not making full use of production resources. Therefore,
the economic growth of a province will not directly lead to the improvement of its efficiency.
With the economic growth, NEI has made great progress, but there is still a huge waste
within the industry due to overcapacity and wind and solar power curtailment, resulting
in a low level of technical efficiency.

There could be several specific reasons for this decreasing relationship between eco-
nomic development and efficiency. In the early stages, China’s economic structure was
irrational and economic growth mainly depended on the energy-intensive industry with
high greenhouse gas emissions [64]. With environmental degradation and energy crisis,
China gradually began to develop clean energy, including new energy. As a strategic
emerging industry, the development of NEI received a lot of policy and financial support
from the Chinese government. However, there were many gaps in new energy technologies
initially. Economic development was just able to provide capital support for the develop-
ment of NEI, thus promoting the progress of new energy technologies. Therefore, in the
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early stages, economic growth plays a greater role in promoting NEI’s efficiency. As time
goes by, technological progress entered a certain bottleneck period and the influence of
capital investment on technological progress became smaller, limiting further improvement
in the efficiency.

From a spatial perspective, the mean of the absolute coefficients of economic develop-
ment on the efficiency in Western China (0.68) is higher than that in Central China (0.31)
and Eastern China (0.29). This is mainly because of the uneven development between
regions. The economic development of Western China lags behind that of Eastern and
Central China, as does the NEI. In the national supply chain of NEI, Eastern China is more
likely to form R&D and high value-added parts manufacturing because of capital and labor
intensity, while Western China performs as a resource supply area and its high-tech indus-
try is not well developed due to lower degree of economic development and less human
resources [40]. Therefore, in Eastern China, due to a higher degree of industrial develop-
ment and limited room for improvement in efficiency, the effect of economic development
on NEI’s efficiency is much less than that in Western China.

3.3.5. New Energy Resources Effect

The average elasticity (−0.01) of new energy resources is negative and small, showing
that the relationship between new energy resources and NEI’s technical efficiency is gen-
erally weak during the whole period (see Figure 6e). This result is different from that of
Zhao et al. (2019) [22], which shows that the technical efficiency of wind power enterprises,
located in three northern areas with abundant wind energy resources, are more efficient.
The difference is mainly because our research focuses on the entire NEI, including both new
energy power and manufacturing industries, while the research of Zhan et al. (2019) only
focuses on wind power industry. From a temporal perspective, the influence of new energy
resources on nationwide NEI’s efficiency is negative during 1998–2010 with the negative
effect decreasing. From 2011, the relationship becomes positive. In addition, the effects in
Eastern and Central China change from negative to positive in 2008 and 2010, respectively,
while the effect in Western China is negative during the whole period. This indicates
that new energy resources did not promote the development of NEI in the early stages.
There may be two reasons for this. Firstly, new energy is mainly introduced into the supply
mix of electricity generation [11]. However, the overall supply of China’s power industry
exceeds demand, resulting in significant wind and solar power curtailment. According
to China Electric Power Yearbook [57], China’s cumulative installed new energy capacity
surged from 2.3 GW in 1998 to 107.2 GW by 2013, with an average annual growth rate of
29%. However, the average annual growth rate of China’s electricity consumption was
only 12% during the same period. This was partly the reason for wind and solar power
curtailment, resulting in energy waste and contributing to the low efficiency of NEI. Sec-
ondly, with the continuous expansion of new energy, China’s new energy manufacturing
industry also achieved rapid development. New energy manufacturing accounts for a
large proportion of NEI. Based on our calculations, in 2013, 73% of new energy enterprises
belonged to the manufacturing industry while new energy power generation industry
accounted for 26%. Since the manufacturing industry accounts for a larger proportion of
NEI than the power generation industry, the relationship between new energy resources
and the development of NEI is weak.

From a spatial perspective, the trend of the relationship between new energy resources
and the efficiency in Eastern and Central China is the same, with a gradual change from
negative to positive. However, the effect of new energy resources in Western China presents
a “U” shape, indicating the negative effect first increases and then gradually decreases
over time. The possible reason for the different effects in different regions is mainly the
different utilization rates of new energy resources. There are abundant wind and solar
energy resources in Northern China [58,59] but its grid infrastructure is inadequate in
some areas and power transmission is also limited due to insufficient load, making wind
and solar power curtailment most significant in the northwest region. This can cause
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great economic loss and energy waste, hindering rapid and effective development of NEI.
Based on data from the National Energy Administration, the average wind curtailment
rate of China was 11% in 2013. Two western provinces (Inner Mongolia and Gansu) had
the most significant wind curtailment, accounting for 58.5% of the total. On the contrary,
wind and solar power curtailment is relatively minor in the central and eastern regions
because of the large demand for electricity. However, with the optimization of the power
system, the curtailment gradually eased. By 2019, the average rate of wind and solar power
curtailment in the whole country was only 4% and 2%, respectively.

3.4. Policy Implications

The overall technical efficiency of China’s NEI is at a low level, meaning that there is
great potential to improve the economic performance of NEI. Based on the above analysis,
we put forward the following recommendations to improve the technical efficiency of
China’s NEI.

Firstly, enterprise scale has a positive effect on NEI’s technical efficiency, and the
positive effect increases over time, indicating that enterprise scale will drive the increase
of NEI’s efficiency in the future. Therefore, the government should encourage enterprise
integration and mergers in NEI. Rational enterprise integration and mergers can not only
improve the economies of scale, but also optimize the allocation of resources and reduce
new energy resources waste [22]. In addition, state-owned enterprises occupy an important
position in the NEI, but their technical efficiency is generally low. Therefore, the reform of
state-owned power enterprises should be accelerated to improve management efficiency.
At the same time, the government should reduce the entry barriers of NEI and encourage
private- and foreign-owned capital to enter the industry.

Secondly, the government should implement policies such as technology subsidies and
tax reductions to encourage large-scale and state-owned enterprises to innovate technolog-
ically. As small businesses lack technology and competitive advantages, the government
should also provide technical support for them to protect their development. In addi-
tion, the government should encourage capable small- and medium-sized enterprises
to innovate technologically and produce high value-added products, leaving room for
low value-added products to less capable enterprises, to further optimize the new energy
industry market.

Thirdly, regression results show that the promotion effect of technological progress
on the improvement of NEI’s efficiency emerges in the later stages and gradually in-
creases. The promotion of technology level plays a significant role in improving NEI’s
efficiency. Therefore, the government should increase R&D investment in NEI at all levels,
especially in less developed Western China. Advanced technologies can promote the
development of NEI, as well as the improvement of technical efficiency. In the early stages,
the level of China’s new energy technologies is low mainly due to insufficient R&D invest-
ment. Therefore, the government and enterprises should expand R&D investment and
increase the intensity of R&D investment to facilitate the development of NEI. Moreover,
local governments, especially those in areas with low level of efficiency, should strengthen
cooperation between provinces in the field of new energy and introduce advanced new
energy technologies.

Finally, significant wind and solar power curtailment is found during the devel-
opment of NEI, resulting in waste of new energy resources and low level of technical
efficiency. One of the main reasons is overcapacity of new energy generation [65]. There-
fore, the government should further optimize the layout and development of new energy
power generation. In provinces where wind and solar power curtailment is significant,
the government should promote local consumption of new energy power and increase the
power transmission capacity to deliver power to high consumption areas. The government
should also improve the level of new energy dispatch across the country, promote cross-
regional power delivery and optimize the energy structure. At the same time, according to
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local capacity of new energy power, government intervention should be designed properly
to guide enterprises to invest and construct new energy generation projects.

4. Conclusions

Developing NEI is the most important measure for China during the path to low-
carbon development. However, due to the poor economic performance, China’s NEI is
highly dependent on financial support from the government. Faced with the dual pressure
of subsidy shortage and grid parity, China’s NEI should improve their own economic
performance by improving technical efficiency.

Based on a large enterprise level dataset from 1998 to 2013, this paper uses super-
efficiency SBM model combined with DEA window analysis to measure the technical
efficiency of China’s NEI at a provincial level. The results show that the efficiency of
China’s NEI is relatively low, which means that the development of NEI is mainly driven
by increases in resources and investment, not by an increase in efficiency. Moreover,
significant spatial differences in efficiency were found. Eastern China has the highest
efficiency level with the gap between regions narrowing over time. Meanwhile, this paper
applies the GTWR model to explore the spatiotemporal heterogeneity of the main driving
factors of NEI’s efficiency. The results show that the effects of driving factors on efficiency
vary across regions and time. Enterprise scale and technological progress are the main
driving factors for NEI’s increasing efficiency. However, the role of economic development
for increasing the efficiency gradually disappears. In addition, state-owned enterprises are
not effective for the improvement of efficiency and the negative effect of the proportion
of state-owned enterprises is increasing at the end of sample period. Due to the large
proportion of manufacturing enterprises in NEI, the effect of new energy resources on
efficiency is small. Moreover, different utilization rates of new energy resources in different
regions lead to a U-shaped effect in Western China and a gradually increasing effect in
Eastern and Central China.

Here, we point out some limitations of this study and further research directions. First,
given the data available at the time of our study, this paper can only assess the period from
1998 to 2013. When the database used is updated in the future, it is necessary to re-assess
the development of China’s NEI using more recent data. Second, this study does not divide
the NEI into sub-industries. It could be useful to assess the efficiency of sub-industries
within the NEI such as equipment manufacturing and power generation. Third, this study
does not account for the carbon emissions when measuring the efficiency. Future research
needs to take carbon emissions into account to evaluate the efficiency of NEI in the context
of reducing carbon emissions.
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