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Abstract: The cumulative displacement-time curve is the most common and direct method used
to predict the deformation trends of landslides and divide the deformation stages. A new method
based on the inverse logistic function considering inverse distance weighting (IDW) is proposed to
predict the displacement of landslides, and the quantitative standards of dividing the deformation
stages and determining the critical sliding time are put forward. The proposed method is applied in
some landslide cases according to the displacement monitoring data and shows that the new method
is effective. Moreover, long-term displacement predictions are applied in two landslides. Finally,
summarized with the application in other landslide cases, the value of displacement acceleration,
0.9 mm/day2, is suggested as the first early warning standard of sliding, and the fitting function of
the acceleration rate with the volume or length of landslide can be considered the secondary critical
threshold function of landslide failure.

Keywords: displacement-time curve; the deformation stage division; critical sliding prediction;
inverse logistic curve; inverse distance weighted

1. Introduction

Judging the deformation stages and predicting the critical sliding time of a landslide
is very significant to determine how and when the landslide will fail. The most common
method of dividing the deformation stages and predicting the trend of landslides is gener-
ally based on the cumulative displacement-time curve [1,2]. From the perspective of the
prediction time length, it can be divided into a long-term prediction (1 to 3 years) [3–7],
medium-term prediction (3 to 12 months), short-term prediction (1 to 3 months) and critical
sliding prediction (1 to 10 days) [8].

Saito [1,9] first proposed a landslide prediction model based on the three-stage creep
theory of rock and soil materials and successfully predicted the Gaochangshan landslide in
Japan. Since then, many different landslide prediction models have been developed [10–18].
Over the last decades, Wang and Nie [19] combined nonlinear regression analysis with
the quadratic curve exponential smoothing method to predict the future displacement
value of landslides. Crosta and Agliardi [20] discussed how to set velocity thresholds to
achieve different levels for forecasting landslides. Li et al. [21] presented an application
of a linear combination model with optimal weight in landslide displacement prediction.
Bozzano et al. [22] described four years of continuous slope monitoring using an inte-
grated platform, calibrating the empirical parameters of the Voight function to predict the
landslide failure time. Lian et al. [23] established a set of predictors considering different
environmental factors and proposed a switched method to select the appropriate individual
predictor. Liao et al. [24] proposed and applied a step-like displacement prediction model
based on a kernel extreme learning machine with grey wolf optimization (GWO-KELM).
Krkač et al. [25] presented a methodology for the prediction of landslide movements using
random forests. Meng et al. [26] used a vector autoregressive model to predict periodic
displacement based on time series analysis. Landslide displacement can be divided into
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trend displacement, reflecting the long-term trend of landslides, which is the response of
geologic structures, and periodic displacement, reflecting the volatility of landslides, which
is mainly affected by external factors such as rainfall. Tang et al. [27] studied the evolution
mechanism of the landslide considering the main influencing factors and providing an
opinion for landslide prediction with consideration of the interior geology characteristics
and external dynamic factors.

From the beginning of deformation to the final failure, landslide deformation has some in-
herent patterns. Terzaghi [28] first approached the correlation between the accelerating phase
and landslide movements. Ter-Stepanian [29] and Tavenas and Leroueil [30] identified the
presence of relevant creep deformations before failure. Furthermore, several authors discussed
the possibility of defining alert threshold levels. Cruden and Masoumzadeh [31] proposed
three velocity levels to correspond with three accelerating creep stages. Intrieri et al. [32]
approached the task by studying the most critical periods of the entire dataset of the Torgio-
vannetto landslide. Moreover, according to the characteristics of the cumulative displacement
and time curves of landslides, most scholars generally recognize the three-stage evolution
mode of landslide deformation—the initial deformation stage [10,33–36], the constant velocity
deformation stage, and the accelerated deformation stage. Some other scholars further sub-
divide the third stage according to the characteristics of acceleration variation. Xu et al. [33]
proposed dividing the third stage into the initial acceleration, medium acceleration, and
accelerated acceleration stages as shown in Figure 1.
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Figure 1. The deformation stage division of landslides.

The key to landslide prediction is to accurately estimate the dynamic variation and
development trend of landslide stability. Generally, most scholars have used different types of
functions for fitting, such as the Verhulst logistic function and Verhulst inverse function [37],
which can be used to predict the displacement of landslides with time and divide the defor-
mation stages. Meanwhile, random methods are the second most widely used type, such
as the GM model [38–43], regression model [44], the BP network model [5,45,46], and the
Markov Chain model [47–49]. These methods are applied to predict landslide displacement
in a short time. The ARIMA model [50] and SVR model [51–54] are more suitable for short-
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term prediction. In addition, other scholars applied GIS technology to evaluate landslide
susceptibility [55–57].

The prediction of landslides is mainly based on the relationship between the velocity
change of displacement and time, but the research based on the acceleration and accel-
eration rate is limited. Considering the mechanism of landslide failure, the maximum
acceleration is more consistent with the prediction criteria. At the same time, the landslide
failure is mainly progressive failure, and the main feature of deformation is that the dis-
placement acceleration is greater than zero and growing. However, scholars only deduce
the formula of acceleration and acceleration maximum time for the Verhulst model, and no
scholars have yet deduced and applied the formula of the acceleration and acceleration
maximum time criterion for the inverse logic function curve, but they are not enough in
the quantitative standard division of landslide evolution stage and the threshold of the
critical sliding point.

In brief, although scholars divide the cumulative displacement time history curve of
landslides into three, four, or five stages, a unified understanding is formed on its typical
characteristics. Based on this unified understanding, this paper intends to adopt a new
method, which is based on the inverse logistic function with a consideration of inverse
distance weight, to predict landslide displacements, divide the landslide deformation
stages, and realize the prediction of the critical sliding time. Lastly, four failed landslides
are taken as examples to check the proposed method, and two landslides in deformation
are predicted.

2. Displacement Prediction Model of Landslides
2.1. The Inverse Logistic Function Model of the Displacement-Time Curve

As shown in Figure 1, the cumulative displacement-time curve of a landslide is a
typical inverse logistic function. The general expression of the logistic curve function can
be written as follows:

y =
α

1 + e−β(x−x0)
+ γ (1)

where x0, α (α > 0), β (β > 0), and γ are the unknown parameters to be determined. If x and
y are replaced by the cumulative displacement of a landslide, S(t) and t, respectively; then
the inverse function of the logistic function can be obtained based on Equation (1),

S(t) =
1
β

ln
(

t− γ

α + γ− t

)
+ x0 (2)

where t denotes the time length of monitoring or prediction, day, and S(t) denote the
cumulative displacements of the landslide, mm. Equation (2) is the general expression of
the cumulative displacement-time curve.

The displacement monitoring work of a landslide could start at any time. Therefore,
displacement occurring before monitoring could not be considered. However, the initial
displacement value of the cumulative displacement-time function is usually set to zero at
the monitoring start time, t = 0.

S(0) = 0 (3)

Then, Equation (3) can be derived from Equation (2),

x0 =
1
β

ln
α + γ

−γ
(4)

Then, Equation (2) can be transformed as follows:

S(t) =
1
β

ln
α+γ
−γ t + α + γ

α + γ− t
(5)
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In order to simplify the above formula, we can assume k = 1
β , a = α+γ

−γ , b = α + γ,
then Equation (5) is simplified to as follows:

S(t) = kln
at + b
b− t

(6)

where k (k > 0), a, and b are all unknown parameters to be determined. Equation (6) is the
general inverse logistic function expression of the cumulative displacement-time curve of
a landslide. According to Equation (6), we know that the time, t, tends to the value of b
when the displacement value of the landslide tends toward positive infinity. That is, the
right trend line of Equation (6) is t = b > 0.

In nature, it is a common rule that the smaller the distance is, the closer the attribute.
Accordingly, when the unknown value of some attribute of one objective needs to be
predicted, the measured value near the predicted time has a greater impact on the predicted
value than that far from the predicted time. That is, the point nearer to the predicted
position has a larger weight than the farther point, so this method is called inverse distance
weighting (IDW). The simplest form of the IDW method is the reciprocal of the distance,
which makes the weight sometimes very large or even infinite and then causes an error
prediction result. For this reason, a constant is added to the distance when using the
reciprocal mode,

ωi =
1

di + const
(7)

where wi denotes the weight and di denotes the distance of the point to the right.
Equation (7) assigns a large weight to the nearer points, and the weight decays quickly

at a slightly farther distance. Although this is what we want, it makes the algorithm more
sensitive to noise. The Gauss function is complex, but it overcomes the above shortcomings.
Its form is as follows [58]:

ω(t) = ω0e−
(t−b)2

2c2 (8)

where w(t) is the weight value at time t, w0 is the basic weight, and c denotes a constant to
be determined. For the cumulative displacement-time curve of a landslide, b denotes the

time of the right trend line. Therefore, the weight range of the function is (ω0e−
(b)2

2c2 , ω0).
Here, let ω0 = 1 and c = b√

2
. Then the Gauss inverse distance weight function is simplified

as follows:
ω(t) = e−(1−t/b)2

(9)

Equation (8) is the suggested formula to calculate the weight, which is in the range of
[e−1, 1). Furthermore, the optimal parameters of the objective function, Equation (5), can
be obtained according to the least square method of IDW, which is expressed as follows:

min∆ =
n

∑
i=1

{
ω(ti)

[
S′(ti)− S(ti)

]}2 (10)

where S′(ti) and S(ti) are the fit and monitoring displacements at time ti, respectively.

2.2. The Division Standard of Landslide Deformation Stages

Equation (6) can be obtained from the landslide cumulative displacement-time moni-
toring curve, and then the function expressions of velocity, acceleration, acceleration rate
with time can be obtained by the first derivative, second derivative and third derivative of
Equation (5). Their formulas are expressed as follows,

V(t) = kb(a+1)
(at+b)(b−t)

ac(t) =
−kb(a+1)(ab−b−2at)

(at+b)2(b−t)2

a′c(t) =
2kb(a+1)

(at+b)3(b−t)3

[
3a2t2−3ab(a− 1)t +

(
a2 − a + 1

)
b2] (11)
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where V(t), ac(t) and ac
′(t) are in mm/day, mm/day2 and mm/day3, respectively.

In mathematics, curvature is the rate of change in the direction of a curve with respect
to the distance along the curve, and its value equals the reciprocal of the radius of the circle
that most closely conforms to the curve at a given point. Therefore, the larger the curvature
is, the greater the change in direction of the curve. In a general curve function, y = f (x), the
curvature, K, can be calculated by the following formula:

K =
|y′′ |(

1 + y′2
)3/2 (12)

where y′ and y′′ are the first and second derivatives, respectively, of y with respect to x.

(1) The curvature function of the cumulative displacement-time curve is

K1 =
|ac(t)|

(1 + V2(t))3/2 (13)

There are two maximum curvature extreme points in the complete ideal displacement-
time curve of landslides. The corresponding time of the first maximum curvature
extreme point (Kmax1

1 ) is the cut-off point of the initial deformation stage and the
uniform deformation stage, and the second (Kmax2

1 ) corresponds to the cut-off point
of the uniform deformation stage and the accelerated deformation stage. However, in
reality, the monitoring work may begin at any moment, which causes the monitored
cumulative displacement-time curve to miss the first maximum curvature extreme
point. If so, in most cases, the start moment of the monitor is in the uniform deforma-
tion stage of the landslide; then, only the second maximum curvature is encountered.
Sometimes, the curve even misses two maximum curvature extreme points, which
means the landslide has reached the acceleration deformation stage.

(2) The curvature function of the velocity-time curve is

K2 =
|a′c(t)|

(1 + a2
c (t))

3/2 (14)

Generally, there is only one maximum curvature extreme point (Kmax2
1 ) for the velocity-

time curve of Equation (13), which corresponds to the cut-off point of the accelerated
deformation stage and the critical sliding stage.

A whole cumulative displacement-time curve of landslides could be divided into
four different stages: the initial deformation stage (the time before the time of Kmax1

1 ),
the uniform deformation stage (the time between Kmax1

1 and Kmax2
1 ), the acceleration

deformation stage (the time between Kmax2
1 and Kmax

2 ), and the critical sliding stage (the
time after Kmax

2 ), as shown in Figure 2.
The above proposed method needs to be verified to determine whether it is available

and accurate when used to predict the displacement of landslides. Here, four famous failed
landslides in China, including the Xintan landslide, Wolongsi New landslide, Huangci
landslide, and Saleshan landslide, are taken as typical examples for prediction by our
proposed method. Finally, two ongoing landslides are predicted.
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Figure 2. The typical deformation stages of landslides based on the inverse logistic function.

3. Verification with Typical Landslides

In order to certify the accuracy of the proposed method in this paper, four cases,
Xintan Landslide, Wolongsi landslide, Huangci landslide and Saleshan’s new landslide,
were applied to divide the deformation stages and predict the sliding time. Furthermore,
the prediction results were compared with other methods. Six other landslide cases were
applied, and two ongoing landslides were predicted. Figure 3 shows the specific location
of all the landslide cases.

3.1. Case 1: Xintan Landslide

The Xintan landslide is an accumulation landslide that failed on 12 June 1985. The area
of the landslide is approximately 0.68 × 106 m2, and its volume reaches 30.0 × 106 m3, most
of which slid into the Yangtze River. The landslide is approximately 2000 m in length from
north to south and 450 m in width. The longitudinal average gradient of the landslide
is 23 degrees. The height difference of the landslide is approximately 800 m. Permian
limestone and Devonian quartz sandstone are exposed in the area of Guangjiaya at the
back of Xintan landslide, while the landslide is located above the Silurian sandstone and
sand shale, which are easily weathered, broken, and impermeable. Xintan landslide is the
revival of ancient landslide deposits. The main reason is that there are often-produced
collapse deposits from the Guangjiaya, which push the ancient landslide deposits moving
forward. Furthermore, the surface land reclamation is digging and planting in disorder,
and the surface drainage is not smooth.

Since 1978, the upper area of the Xintan landslide has experienced obvious deforma-
tion, and two displacement monitoring points (No. A3 and B3) were set up on the landslide
in January 1978. The cumulative displacement data of point No. B3 on the Xintan landslide
is shown in Table 1, which is used to predict through our proposed method, as shown in
Figures 4 and 5.
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Table 1. The measured displacements of the Xintan landslide at point B3 (mm) [59].

Month

Year Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

1978 13.3 16.7 20.5 24.8 28.8 43.4 60.5 66.5 75.0 77.6 77.8 87.8

1979 89.4 93.3 98.2 99.7 104.4 115.5 126.4 149.9 302.0 367.0 404.5 412.7

1980 427.9 437.8 442.4 451.4 456.4 471.4 520.4 588.4 688.4 690.1 721.8 723.9

1981 731.4 739.1 747.5 762.7 762.7 784.0 788.2 791.1 817.1 819.1 824.1 832.1

1982 837.1 840.6 848.1 926.1 926.1 1096.3 1117.8 1254.0 1504.8 1747.8 1823.6 1895.1

1983 1995.8 2024.5 2056.4 2087.6 2087.6 2148.5 2277.9 2430.0 2582.1 2734.2 2886.3 3038.1

1984 3190.5 3342.6 3494.7 3646.8 3646.8 3951.0 4188.7 4521.7 4673.5 5195.6 5467.3 5705.0

1985 5863.3 6012.7 6177.2 6304.5 6304.5 - - - - - - -

It is found that the annual cumulative displacement from 1978 to 1981 is hundreds
of millimeters. However, from 1982 to 1985, cumulative displacement increased sharply
to thousands of millimeters. The Xintan landslide continued to deform several years at
an annual displacement of 1000 mm. Sun [60] considered that the Xintan landslide was
in the initial creep stage before 1979, in the constant creep stage from August 1979 to July
1982, in the accelerated creep stage from July 1982 to 15 May 1985, entered the stage of
catastrophic failure between 15 May 1985 and 12 June 1985, and then arrived in the critical
sliding stage. The Rockfall and Landslide Research Institute of Hubei Province [61] thought
that the Xintan landslide was in the potential deformation and creep stage before 1982, the
revival stage from March 1982 to May 1983, the rapid deformation stage from June 1983
to June 1985, and the sliding stage from 9 to 12 June 1985. Furthermore, Table 2 lists the
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deformation stage division and prediction results of the Xintan landslide by the proposed
method using the monitoring data during different durations of time.
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Figure 4. Prediction results of the Xintan landslide based on displacement monitoring data. (a) cumulative displacement-
time curves; (b) velocity-time curves; (c) acceleration-time curves; (d) curvature K1-time curves.

Table 2. The prediction results of the Xintan landslide based on different monitoring data.

Parameters

Deformation Stages

The Start Point of the
Acceleration

Deformation Stage

The Start Point of the Critical
Sliding Stage

~1 April 1985 time 12 December 1980 18 June 1985

k = 2935 V(t) 1.07 53.3

a = −0.51 a(t) 8.75 × 10−4 1.01

b = 2810 a′(t) 1.24 × 10−6 0.110
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Figure 5. The critical sliding prediction of the Xintan landslide.

According to the inverse logic curve, the prediction time of the landslide is 18 June
1985, while the actual landslide is 12 June 1985. The prediction results of the landslide are
compared with those of other different methods as shown in Table 3. It shows that the
prediction accuracy of our method is much better than any other one.

Table 3. Prediction results of Xintan landslide.

Model Prediction Physical Parameter Prediction Time ∆/d *

Inverse Logic Function Model Displacement acceleration 18 June 1985 6

Original synergetic model [59] Displacement acceleration 16 October 1987 856

Improved synergetic model [59] Displacement acceleration 14 March 1985 −90

Displacement GM (1,1) Model [62] Displacement velocity 13 December 1981 −1277

Velocity GM (1,1) Model [62] Displacement velocity 1 July 1982 −1077

Original Verhulst model [63] Displacement velocity 24 July 1987 772

Improved Verhulst model [63] Displacement acceleration 3 February 1986 236

Improved Verhulst model [63] Displacement accelerated acceleration 7 February 1985 125

* where ∆ is the absolute error, which refers to the difference between the predicted landslide occurrence time ty and the actual landslide
occurrence time ts, namely, ∆ is ty minus ts, and ∆ unit is day. When the actual occurrence time of landslide is earlier than the prediction
time, ∆ > 0. When the actual occurrence time of landslide is later than the prediction time, ∆ < 0.

3.2. Case 2: New Wolongsi Landslide

The New Wolongsi landslide is a loess landslide. The thickness of the landslide mass
is more than 50 m to as much as 90 m, it is 645 m long and 650 m wide, and the volume
scale is more than 20.0 × 106 m3. It is a super-deep and super-large landslide. Damaged
several times in the past, the failure range of each time is basically the same. It is the fourth
terrace of the Weihe River at the back edge of the landslide. The upper part of the terrace
is the loess of 97 m thickness, the lower part is river alluvium of 54 m thickness, and the
lower part is Neogene mild clay and gravel. The gravel usually contains water. The rear
sliding surface is arc-shaped with a steep slope, the middle front part is nearly horizontal,
and the front edge is a reverse slope that overlaps the floodplain terrace. Since the crack
was first discovered in March 1971, the No. 5 fissure on the New Wolongsi landslide was
monitored with manual measurement for 66 days, and slip damage occurred on 5 May.
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Taking the cumulative displacement-time monitoring data, which are shown in
Table 4, of the No. 5 fracture as an example, the proposed method is used for predic-
tion, and the results are shown in Figures 6 and 7 and Table 5.

Table 4. The measured displacements of the New Wolongsi landslide [59].

Month March

Date 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

displacement (mm) 1.0 1.5 1.7 2.5 3.2 4.0 4.4 5.1 5.9 6.3 7.0 7.3 7.8 8.2 8.4 8.7 9.0

Month April

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

displacement (mm) 9.2 9.4 10.0 10.1 10.3 10.4 10.5 10.8 11.1 12.0 13.0 13.6 14.0 15.0 16.1 16.4 17.2

Month April May

Date 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5

displacement (mm) 17.0 18.0 19.0 19.0 20.0 23.0 24.0 25.2 26.0 27.0 28.2 30.0 31.0 32.0 33.0 42.0 47.0 61.0
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Figure 6. Prediction results of the New Wolongsi landslide based on displacement monitoring data. (a) cumulative
displacement-time curves; (b) velocity-time curves; (c) acceleration-time curves; (d) curvature of K1-time curves.
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Figure 7. Deformation stage division and prediction of the New Wolongsi landslide.

Table 5. The prediction results of the New Wolongsi landslide based on different monitoring data.

Parameters

Deformation Stages

The Start Point of the
Acceleration

Deformation Stage

The Start Point of the Critical
Sliding Stage

~3 May 1971 time 27 April 1971 3 May 1971

k = 16.00 V(t) 1.42 4.03

a = 0.10 a(t) 0.109 1.00

b = 54.0 a′(t) 0.017 0.507

The prediction time of the landslide by the inverse logic curve is on 3 May 1971, which
is basically consistent with the actual landslide time on 5 May 1971. The comparison with
other methods is as shown in Table 6. It shows that most of the methods, including our
proposed method, have good prediction accuracy.

Table 6. Prediction results of Wolongsi’s new landslide.

Model Prediction Physical Parameter Prediction Time ∆/d

Inverse Logic Function Model Displacement acceleration 3 May 1971 −2

Original synergetic model [59] Displacement acceleration 26 May 1971 21

Improved synergetic model [59] Displacement acceleration 5 May 1971 0

Improved Verhulst model [63] Displacement acceleration 9 May 1971 4

Improved Verhulst model [63] Displacement accelerated acceleration 28 April 1971 −7

Original Verhulst model [63] Displacement velocity 24 April 1971 19
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3.3. Case 3: Huangci Landslide

The Huangci landslide is not entirely a new landslide; it has been damaged several
times in its history. The landslide is close to the edge of the fourth terrace, and the settlement
cracks, which evolved to the back-edge cracks of Huangci landslide caused by irrigation,
have appeared for more than ten years. The sliding surface of the west bedding plane
has also existed for several years. Huangci landslide is nearly 500 m wide at the rear and
300 m wide on the front; it is 370 m long in the north and south directions, and the volume
of landslide is nearly 6.0 × 104 m3. The thickness of the loess layer at Huangci landslide
is 42.67 m, the thickness of light-yellow loess (Q3) at the upper part is 36.40 m, and the
thickness of brown-red/brown-yellow loess (Q2) at the lower part is 6.27 m. The soft plastic
layer with a thickness of 9 m is 31.73–40.90 m below the ground, and the plastic layer is
40.90–42.67 m below the ground. The lower part of the loess layer is an 8 m-thick gravel
layer. Below the gravel is Cretaceous mudstone with argillaceous sandstone. The bedrock
belongs to monoclinic structure; it inclines to Huangci village in front of the landslide.

A large amount of irrigation water is the main inducing factor of the Huangci landslide.
The initial monitoring time of the Huangci landslide was on 1 August 1994, and the
monitoring time interval was 15 days. The ground displacement monitoring data of No.
A6 by GPS are shown in Table 7. At 2:30 a.m. on 30 January, 1995, the Huangci landslide
slipped for 90 min before it completely stopped. The leading edge of the landslide went
straight to Huangci Village. Our proposed method is also used on the Huangci landslide,
and the results are shown in Figures 8 and 9 and Table 8.

Table 7. The measured displacements of the Huangci landslide at point A6 [59].

Date
Year/Month 1994/8 1994/9 1994/10 1994/11 1994/12 1995/1

Date 1 16 31 15 30 15 30 14 29 14 29 13 28

displacement (mm) 1.0 3.3 6.1 8.3 10.5 15.3 18.1 21.6 27.5 33.6 39.0 48.7 64.3

Table 8. The prediction results of the Huangci landslide based on different monitoring data.

Parameters

Deformation Stages

The Start Point of the
Acceleration

Deformation Stage

The Start Point of the Critical
Sliding Stage

~28 January 1995 time 29 January 1995 11 February 1995

k = 25.9 V(t) 1.44 5.19

a = 0.05 a(t) 0.080 1.04

b = 216 a′(t) 8.92 × 10−3 0.416

According to the inverse logic curve, the prediction time of the landslide is February
11, 1995, and the actual landslide time is January 30, 1995. The comparison with other
methods is shown in Table 9. It shows that the improved synergetic model has the best
prediction accuracy, followed by our proposed method, and the other four methods have a
larger prediction error.
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Figure 8. Prediction curves of the Huangci landslide based on displacement monitoring data. (a) cumulative displacement-
time curves; (b) velocity-time curves; (c) acceleration-time curves; (d) curvature of K1-time curves.

Energies 2021, 14, x FOR PEER REVIEW 14 of 24 

 

 

 
Figure 9. Deformation stage division and prediction of the Huangci landslide. 

Table 8. The prediction results of the Huangci landslide based on different monitoring data. 

Parameters 
Deformation Stages 

The Start Point of the Acceleration De-
formation Stage 

The Start Point Of The Critical Sliding 
Stage 

~28 January, 1995 time 29 January, 1995 11 February, 1995 
k = 25.9 V(t) 1.44 5.19 
a = 0.05 a(t) 0.080 1.04 
b = 216 a′(t) 8.92 × 10−3 0.416 

According to the inverse logic curve, the prediction time of the landslide is February 
11, 1995, and the actual landslide time is January 30, 1995. The comparison with other 
methods is shown in Table 9. It shows that the improved synergetic model has the best 
prediction accuracy, followed by our proposed method, and the other four methods have 
a larger prediction error. 

Table 9. Prediction results of Huangci landslide. 

Model Prediction Physical Parameter Prediction Time △/d 
Inverse Logic Function Model Displacement acceleration 11 February, 1995 −13 
Original synergetic model [59] Displacement acceleration 26 March, 1995 55 

Improved synergetic model [59] Displacement acceleration 29 January, 1995 −1 
Verhulst Model [62] Displacement acceleration 25 December, 1994 −66 

Displacement GM (1,1) Model [62] Displacement velocity 17 December, 1994 −74 
Velocity GM (1,1) Model [62] Displacement velocity 25 December, 1994 −66 

3.4. Case 4: Saleshan Landslide 
The Saleshan landslide occurred in Dongxiang County, Gansu Province. Its failure 

first happened on 7 March, 1983. The Saleshan landslide is mainly composed of red-lay-
ered clay rock of the Linxia Formation. The red layer of the Linxia Formation is covered 

1994-07-15 1994-08-15 1994-09-15 1994-10-15 1994-11-15 1994-12-15 1995-01-15 1995-02-15
0

20

40

60

80

100

120

140

160

di
sp

la
ce

m
en

t (
m

m
)

k 2k 1

 monitor displacement data (mm)
 prediction displacement (mm)
 curvature K1

 curvature K2

           the cut-off point of adjacent stages

time (yyyy-MM-dd)

0.0

3.0x10-3

6.0x10-3

9.0x10-3

1.2x10-2

1.5x10-2

 

0.0

2.0x10-2

4.0x10-2

6.0x10-2

8.0x10-2

1.0x10-1

1.2x10-1

1.4x10-1

 

Figure 9. Deformation stage division and prediction of the Huangci landslide.



Energies 2021, 14, 1091 14 of 24

Table 9. Prediction results of Huangci landslide.

Model Prediction Physical Parameter Prediction Time ∆/d

Inverse Logic Function Model Displacement acceleration 11 February, 1995 −13

Original synergetic model [59] Displacement acceleration 26 March, 1995 55

Improved synergetic model [59] Displacement acceleration 29 January, 1995 −1

Verhulst Model [62] Displacement acceleration 25 December, 1994 −66

Displacement GM (1,1) Model [62] Displacement velocity 17 December, 1994 −74

Velocity GM (1,1) Model [62] Displacement velocity 25 December, 1994 −66

3.4. Case 4: Saleshan Landslide

The Saleshan landslide occurred in Dongxiang County, Gansu Province. Its failure first
happened on 7 March 1983. The Saleshan landslide is mainly composed of red-layered clay
rock of the Linxia Formation. The red layer of the Linxia Formation is covered with loess,
in which some vertical discontinuities were developed. The sliding bed of the Saleshan
landslide is mainly composed of mudstone.

On 25 March 1986, the Saleshan landslide failed again. Its volume was approximately
2.40× 106 m3, and the sliding distance was approximately 250 m. Displacement monitoring
was carried out after it occurred the first time, and the displacement monitoring data are
shown in Table 10. The prediction results using our proposed method are shown in
Figures 10 and 11 and Table 11.

Table 10. The measured displacements of the Saleshan landslide [59].

Year 1984 1985 1986

Month 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2

Displacement (mm) 4 10 0 1.5 2.5 5.5 7.2 5.2 5.2 4.8 2.5 4.8 7 12 15 17 27 30 41 50 75

Table 11. Prediction results of the Saleshan landslide based on different monitoring data.

Parameters

Deformation Stages

The Start Point of the
Acceleration

Deformation Stage

The Start Point of the Critical
Sliding Stage

~15 February 1986 time 10 February 1986 23 February 1986

k = 25.4 V(t) 1.36 5.02

a = −0.60 a(t) 0.078 1.02

b = 654 a′(t) 0.042 2.15

The prediction time of the landslide by the inverse logic curve is 23 February 1986,
while the actual time of the landslide is 25 March 1986. The comparison with other methods
is shown in Table 12. It shows that the improved synergetic and Verhulst models have the
best prediction accuracies, followed by our proposed method, and the other three methods
have larger prediction errors.
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Table 12. Prediction results of Saleshan’s new landslide.

Model Prediction Physical Parameter Prediction Time ∆/d

Inverse Logic Function Model Displacement acceleration 23 February 1986 −30

Original synergetic model [58] Displacement acceleration 22 May 1986 58

Improved synergetic model [58] Displacement acceleration 5 March 1986 −20

Original Verhulst model [62] Displacement velocity 4 July 1986 101

Improved Verhulst model [62] Displacement acceleration 15 April 1986 21

Improved Verhulst model [62] Displacement accelerated acceleration 16 February 1986 −37
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Figure 10. Prediction results of the Saleshan landslide based on displacement monitoring data. (a) cumulative displacement-
time curves; (b) velocity-time curves; (c) acceleration-time curves; (d) curvature of K1-time curves.

The factors affecting the prediction accuracy are as follows: (1) The more monitoring
data that is accumulated, the higher the prediction accuracy will be. (2) The monitoring
points could be representative. The deformation of different parts of the landslide is not
synchronous. Therefore, the choice of the monitoring points applied to predict should be
able to reflect the overall deformation trend of the landslide. For example, for the pull-type
landslide, it is more appropriate to set monitoring points at the front edge of the landslide.
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For the thrust-type landslide, it is more appropriate to set monitoring points at the back
edge of landslide.
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Figure 11. Deformation stage division and prediction of the Saleshan landslide.

4. Landslide Predictions

The long-term displacement predictions of the Liangshuijing landslide and Gapa
landslide were carried out by the proposed method, and the deformation evolution stage
of each landslide was studied and divided; then, the critical sliding time and the change of
each parameter were predicted.

4.1. Case 1: Long Displacement Prediction of Liangshuijing Landslide

Liangshuijing landslide is located on the right bank of the Yangtze River with a slope
angle of 30 to 35 degree. The height of the leading edge of the landslide is approximately
100 m, the height of the trailing edge is approximately 319.5 m, the relative height difference
is approximately 219.5 m, the plane longitudinal length is approximately 434 m, the lateral
width is 358 m, the area is approximately 11.82 × 104 m2, the average thickness of the
slide body is approximately 34.5 m, and the total volume is approximately 4.08 × 106 m3.
The professional monitoring was just carried out after the landslide experienced a large
deformation in March 2009.

Manual horizontal displacement monitoring began on 5 April 2009 and stopped on 22
April 2009. Automatic horizontal displacement monitoring began on 20 April 2009, and
the surface displacement monitoring point ZJC22 on the right side of the central part of
the landslide was selected for prediction, as shown in Table 13. The monitoring data were
maintained until October 2009.

The cumulative variation curve of horizontal displacement at the monitoring points is
shown in Figure 12, and the monitoring results are shown in Table 14.



Energies 2021, 14, 1091 17 of 24

Table 13. The measured displacements of Liangshuijing landslide.

Time
yy/mm/dd

Displacement
/mm

Time
yy/mm/dd

Displacement
/mm

Time
yy/mm/dd

Displacement
/mm

2009/04/05 0.00 2009/06/14 215.90 2009/08/23 269.87

2009/04/10 18.83 2009/06/19 229.71 2009/08/28 266.11

2009/04/15 59.00 2009/06/24 242.26 2009/09/02 273.64

2009/04/20 96.65 2009/06/29 241.00 2009/09/07 273.64

2009/04/25 105.44 2009/07/04 243.52 2009/09/12 266.11

2009/04/30 112.97 2009/07/09 243.52 2009/09/17 269.87

2009/05/05 115.48 2009/07/14 252.30 2009/09/22 273.64

2009/05/10 133.05 2009/07/19 251.05 2009/09/27 272.39

2009/05/15 134.31 2009/07/24 259.83 2009/10/02 278.66

2009/05/20 156.90 2009/07/29 259.83 2009/10/07 273.64

2009/05/25 166.95 2009/08/03 254.81 2009/10/12 278.66

2009/05/30 184.52 2009/08/08 258.58 2009/10/17 277.41

2009/06/04 197.07 2009/08/13 264.85 2009/10/22 281.17

2009/06/09 207.11 2009/08/18 264.85 2009/10/27 287.45
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Figure 12. Deformation stage division and prediction of the Liangshuijing landslide.
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Table 14. The prediction results of the Liangshuijing landslide based on different monitoring data.

Parameters

Deformation Stages

The Start Point of
the Uniform

Deformation Stage

The Start Point of
the Acceleration

Deformation Stage

The Start Point of the
Critical Sliding Stage

~15 November 2009 time 30 May 2009 3 September 2086 26 October 2086

k = 89.51 V(t) 1.42 1.43 9.14

a = 3520.0 a(t) −0.023 0.023 0.932

b = 28,337.8 a′(t) 7.14 × 10−4 2.17 × 10−3 0.571

4.2. Case 2: Long-Term Displacement Prediction of the Gapa Landslide

The Gapa landslide is located on the right bank of the Yalong River. This area is
approximately 11 km upstream of the Jinping first-class hydropower station, and the
volume of the Gapa landslide is approximately 13.0 × 106 m3, The landslide has a length
of 980 m, a width of 320 to 400 m, an area of 0.28 km2.

There are seven surface displacement monitoring points, denoted as GNSS1–GNSS6,
and GNSS9 near the landslide area. GNSS1 and GNSS2 are located in the number one
sliding body, which is the most likely failure area (see Figure 13). Therefore, GNSS1 and
GNSS2 displacement monitoring data are selected for prediction, and the monitoring
results are shown in Table 15.
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Figure 13. Deformation stage division and prediction of the Gapa landslide.

The prediction results show that the deformation is not synchronized in different
parts of the Gapa landslide. In the number one sliding body, the former part of the Gapa
landslide is destroyed before the trailing part, which illustrates that the Gapa landslide is a
retrogressive type of landslide. Furthermore, the Gapa landslide will not fail in the next
10 years.
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Table 15. The prediction results of the Gapa landslide based on different monitoring data.

Parameters

Deformation Stages

The Start Point of
The Uniform

Deformation Stage

The Start Point of
the Acceleration

Deformation Stage

The Start Point of the
Critical Sliding Stage

GNSS1 time 10 February 2017 25 September 2034 26 July 2037

k = 1877 V(t) 1.98 1.98 40.20

a = 11.41 a(t) −1.57 × 10−3 1.57×10−3 0.85

b = 7907 a′(t) 2.99 × 10−6 8.56×10−6 0.10

GNSS2 time 6 June 2016 19 May 2029 16 October 2031

k = 1706 V(t) 2.15 2.15 42.9

a = 7.40 a(t) −1.95 × 10−3 1.96 × 10−3 1.07

b = 5793 a′(t) 4.37 × 10−6 1.20 × 10−5 0.14

5. Warning Threshold of Critical Sliding

In order to find out one or some parameters as an effective tool to predict the critical
sliding point of landslides, the accumulated displacements, velocities and accelerations of
above four landslides and some other landslide cases from references at the moment of the
critical sliding are listed in Table 16.

Table 16. Velocity and acceleration characters at the critical sliding moment of different landslides.

Landslides
Parameters

Degree of
Slope

Surface (◦)

Degree of
Sliding

Surface (◦)

Depth
(m)

Different
Elevator

(m)

Width
(m)

Length
(m)

Volume
(106 ×m3)

V
(mm/day)

a
(mm/day2)

a′
(mm/day3)

Xintan landslide 25–28 25–28 40–50 800 270–700 2000 30 53.3 1.01 0.110

Wolongsi
landslide 0–25 0–45 50–90 200 645 650 20 4.65 1.00 0.507

Huangci landslide 15–35 15–20 40 100 300–500 370 6 5.19 1.04 0.416

Saleshan landslide 15–45 25–35 30–40 425 275 250 2.4 5.02 1.02 2.150

Liangshuijing
landslide 30–35 25–50 34.5 221.5 358 434 4.08 9.14 0.93 0.571

Baishi Landslide
[64] 40 38 25 270 260 300 2.0 4.00 1.07 0.569

Tianhuangping
[65] 35–50 40.3 40 70 60 100 0.062 6.45 1.02 0.329

Xikou Landslide
[47] 65 37 24 108 80–90 80 0.168 8.89 0.99 0.220

Jianshanbeibang
landslide [66] / / 5–15 240 240 105 0.252 15.26 1.02 0.710

Jimingshi
Landslide [67] 45 30 15 230 150 250–300 0.6 4.04 1.00 1.49

Shuiwenzhan
Landslide

28–33
20–21 28–33 64–120

(80) 500 570 1000 15 28.75 0.85 0.138

Gapa landslide 30–34 23–34 60 470 360 980 13 42.90 1.07 0.140

According to Table 16, Figure 14 is obtained. Obviously, it is found that the values of
acceleration at the critical sliding moment are very close to all landslides; their values are
at a range of between 0.85 and 1.07 mm/day2. Therefore, the acceleration can be thought
as a key index to predict the critical sliding point, and the threshold of displacement
acceleration judging that the critical sliding point is 0.90 mm/day2.
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Figure 14. The acceleration and its rate of landslides at the critical sliding moment. (a) the relationship of acceleration and
its rate with the volume of landslides; (b) the relationship of acceleration and its rate with the length of landslides

Furthermore, the relationship of the acceleration rate with the geometric parameters
of landslides has skewed distribution characteristics, as shown in Figure 14, while Gamma
function is one of the commonly used skewed distribution functions. Gamma function is
shown as the following formula:{

f (x, α, β) = 1
βαΓ(α) xα−1e−

x
β , x > 0

Γ(α) =
∫ +∞

0 e−ttα−1dt
(15)

where α and β are shape parameter and scale parameter. Then, we can obtain the shape
and scale parameters of Gamma function, which fits the relationship of the acceleration rate
(mm/day3), ac’, with the volume of landslide (× 106 m3), Vol, and the length of landslide
(m), L. Based on the data in Table 16, the critical threshold function can be fitted as shown in
Equation (15).  a′c(L) = 900 f (L, 5, 8) + 1−e−L

10(1+e−L)

a′c(Vol) = 8 f (Vol, 3, 1) + 1−e−Vol

10(1+e−Vol)

(16)

In the above formula, the function, f, is Gamma function as Equation (15), and the
second part on the right side is an additive term, which is for improving fitting precision.

Sometimes, the geometric parameters are evaluated; they are not so accurate, and will
reduce the prediction, effect shown in Equation (16). The displacement acceleration is almost
a constant when a landslide enters a sliding state. Therefore, the value of displacement
acceleration, 0.9 mm/day2, is suggested as the first early warning standard of sliding, and
Equation (16) can be used as the secondary critical threshold function of landslide failure.

6. Conclusions

The prediction model and early warning criteria are the key to landslide prediction,
most of which are judged by the characteristics of the cumulative displacement. However,
due to the different sizes of landslides and the complexity, nonhomogeneity, and uncer-
tainty of their attributes, the cumulative displacement before failure is different by a few
centimeters to dozens of meters, and the deformation velocity of landslides at the moment
of critical sliding can also vary from a few millimeters per day to dozens of centimeters per
day. Therefore, the general threshold values of displacement and velocity are difficult to
predict for different landslides. Moreover, there is no quantitative standard for dividing
the landslide deformation stages.

Based on the analysis and study of the variations in the cumulative displacement,
deformation rate, displacement-time curvature, and velocity-time curvature of typical
landslides, a suitable method is built to predict the displacement of landslides that can
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calculate the critical sliding time of landslides. This proposed method can predict the
landslide displacement, divide the landslide deformation stages, and gain the threshold
values of the critical sliding point by displacement acceleration and acceleration rate. Some
meaningful conclusions and understandings are obtained:

(1) The cumulative displacement-time curves of landslides are in good agreement with
the inverse logistic function. A general expression of the cumulative displacement-
time function of landslides based on the logistic inverse function is proposed. Further-
more, the least squares formula of the inverse logistic function prediction with the
IDW method is suggested to fit the inverse logistic function based on the displacement
monitoring data of landslides.

(2) Based on the prediction model of the inverse logistic function with the IDW method,
a new standard to divide the landslide deformation stages is proposed. This method
was applied in some typical landslides and verified as effective and accurate. Lastly,
this method was also used to predict deformation in two landslides—the Gapa and
Liangshuijing landslides—and the critical sliding times were calculated. It should
be noted that these two landslides remain in the initial deformation stage or just
enter into the uniform deformation stage according to the monitoring displacement
data. The prediction results are suggested to be continuously renewed when more
monitoring displacement data are obtained.

(3) The prediction accuracy is mainly decided by the cumulative monitoring time and
the distance far from the critical sliding time, and the critical sliding prediction time
will be more accurate when the monitoring data are closer to the failure times of the
landslides; otherwise, the prediction time may be farther from the real failure time.
Therefore, we should predict the critical sliding time continually with the increase in
monitoring data, which will improve the prediction accuracy.

(4) The displacement acceleration is recommended as a key index to predict the critical
sliding of landslide, and its threshold value is suggested as 0.90 mm/day2. Further-
more, the supplementary index of the critical sliding moment is the displacement
acceleration rate, and the critical threshold function is suggested as Equation (15).
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