
energies

Article

Analytical Models of Axially Loaded Blind Rivets Used with
Sandwich Beams

Robert Studziński
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Abstract: The paper presents the novel use of analytical models of a beam on an elastic foundation.
The one-parameter model (Winkler model) and the two-parameter models (Filonenko-Borodich and
Pasternak models) were investigated. These models were used to describe the elastic response of
axially loaded blind rivets used with sandwich structures. The elastic response related to the elastic
strain energy is mentioned in the paper as the resilience modulus of the connection. The databases
from laboratory pull-out tests were used to verify these models. One type of blind rivet (aluminum,
with three clamping arms) and one type of sandwich beam were used. The sandwich beams used
in the experiments consisted of two thin-walled and stiff external facings (zinc-coated steel) and
a thick, soft core (polyisocyanurate foam—PIR). In the test the sandwich beams were subjected
to static, axial pull-out loading. The research provides the quantitative comparison between the
laboratory experiment and the analytical solutions from models adopted for this type of connection.
Additionally, the failure mechanisms, the secant stiffness at the ultimate capacity, and the strain
energy capacity of the elastic foundation at failure are considered. To the author’s knowledge, this
approach has not been described in the literature so far.

Keywords: sandwich beam; blind rivet; beam on elastic foundation; laboratory test; axial pull-out test

1. Introduction

The research refers to sandwich panels which are composite structures consisting
of two thin-walled external facings and a thick core [1]. The facings of the considered
sandwich panel are made of high strength material, i.e., zinc-coated steel, while the core is
made of thermal insulation material of a low density, such as polyisocyanurate foam (PIR
foam). From a mechanical point of view, the core ensures the distance between the facing,
which leads to a significant increase of the stiffness of the panel with a negligible increase
in its mass [2,3].

This type of sandwich panel is used in building engineering applications as roof-
and wall-cladding elements. The modern approach to the use of cladding surfaces of
buildings makes it necessary to allow for the installation of advertising signs, solar panels,
and building installations. In that case the typical mounting systems use the through-
drilling fasteners which, due to the large thermal conductivity of the steel (λ = 50 W/mK),
are the source of thermal bridges. The thermal bridges result in an overall reduction in
the thermal resistance of the building and may cause condensation within the building
envelope [4,5], while the additional supporting structure means an increase of the weight
of the structure. Furthermore, this mounting system requires an additional supporting
structure. Considering the above, it is justified to attach external (additional) elements to the
building envelope via the blind rivets. The blind connection is realized only with one facing
(external or internal) thus the core layer and the opposite facing layer remain untouched.
Therefore, the use of the blind rivets eliminates the drawbacks of through-drilling fastener
mounting systems.

In the subject literature, there are very limited references to this type of connection
with sandwich panels used in building engineering applications. The very first references
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concerning the use of blind rivets with sandwich panels can be found in patents documents
from the 1960s [6] and 1980s [7,8]. The load capacity of a one-sided connection subjected
to static and fatigue axial tension is presented in [9,10] and [11] respectively. Recently
the influence of suspended loads using blind rivets on the load capacity of the sandwich
panels was presented in [12], which discusses the results of experimental tests including
several levels of suspended loads and their effect on sandwich beams with a core made
of polyurethane foam, mineral wool and styrofoam. The experimental and numerical
investigation of the use of blind rivets with sandwich panels with PIR foam core is discussed
in [13], underlining the aspect of both the facing material (laminate or steel) and the type
of blind rivet (rivet with three or four folds). Paper [14] continues the research presented
in [13], by considering the load type (axial and eccentric), the load nature (static and
quasi-cyclic), and the material of the core layer (PIR foam, mineral wool and expanded
polystyrene). This paper extends the results of [13,14], providing the analytical models
describing the behavior of a blind connection used with sandwich panels. The validation
of the analytical models is based on new laboratory tests, performed on the same testbed
as the tests in [13,14].

In the subject literature of sandwich and composite structures, strain energy is widely
used. In [15] it was revealed that the strain energy updating technique used in the high-
order zig-zag models provides information about the facing damage with reasonable
accuracy. The strain energy release rate measurement can be also used for the determination
of the fracture of fiber-reinforced polymer laminates. This approach was used to predict the
delamination of laminated composites [16] and to describe the use of the six-lobed shaped
glass fibers [17]. It is worth mentioning that the finite element modeling of multilayered
shell structures can be improved by the strain energy updating techniques (SEUPT), see [18].
Recently, in [19], the problem of the localization and quantification of the debonding failure
in sandwich panels was solved by the means of the modal strain energy method.

To the best of the author’s knowledge, the use of the analytical models of a beam on
an elastic foundation to describe the elastic response of axially loaded blind rivets used
with sandwich structures has not been considered in the literature so far. This research
provides the connection between the beginning of the failure of the connection with the
resilience modulus. The resilience modulus represents the amount of elastic strain energy
stored by the connection.

2. Materials and Methods

In the subject literature, there is a number of analytical models (also called elastic
models) that describe the beam on an elastic foundation. These models assume that the
stress depends only on the strain neglecting the load history and the beam (an infinitely long
Bernoulli-Euler beam) [20]. Therefore, it means that these analytical models do not involve
whole possible engineering cases and their usefulness is limited. The analytical models
can be also characterized as simple mathematically but problematic when determining
the model parameters. Below, the one-parameter model (Winkler model) and the two-
parameter models (Filonenko-Borodich and Pasternak models) are shortly described.

2.1. Winkler Model (1867)

In Winkler’s idealization [21], the foundation layer is represented as a system of iden-
tical but mutually independent, closely spaced, discrete, linear elastic springs. According
to this idealization, the deformation of the foundation layer due to the applied load is
confined to the loaded regions only. Thus, this model essentially suffers from a complete
lack of continuity in the supporting medium. Figure 1 depicts the physical representation
of the Winkler model.
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Figure 1. Beam on elastic foundation—Winkler model.

The differential equation of a beam in Winkler model is given by Equation (1).

EI·w(x)IV + kB·w(x) = q(x), (1)

where

• w(x) represents a deflection of the beam (mm);

• w(x)IV = d4w(x)
dx4 ;

• E represents a Young’s modulus of the beam (N/mm2);
• I represents a second moment of inertia of the cross section of the beam (mm4);
• q(x) represents a vertical load on the beam (N/mm);
• k represents a coefficient of spring layer reaction or spring layer modulus (N/mm3);
• B represents an effective width of the beam and the foundation layer (mm).

The fundamental problem with the use of the Winkler model is to determine the
coefficient of springs k used to replace the elastic foundation layer, which depends not only
on the nature of the supporting medium but also on the dimensions of the loaded area. In
1955 Terzaghi [22] introduced the approximate definition of coefficient k of the supporting
medium, see Equation (2) and Figure 2.

k = ∆q/∆δ (2)

Energies 2021, 14, 579 3 of 13 
 

 

lack of continuity in the supporting medium. Figure 1 depicts the physical representation 
of the Winkler model. 

 
Figure 1. Beam on elastic foundation—Winkler model. 

The differential equation of a beam in Winkler model is given by Equation (1). 𝐸𝐼 ∙ 𝑤(𝑥) + 𝑘𝐵 ∙ 𝑤(𝑥) = 𝑞(𝑥), (1)

where 
• w(x) represents a deflection of the beam (mm); 
• 𝑤(𝑥) = ( ); 
• E represents a Young’s modulus of the beam (N/mm2); 
• I represents a second moment of inertia of the cross section of the beam (mm4); 
• q(x) represents a vertical load on the beam (N/mm); 
• k represents a coefficient of spring layer reaction or spring layer modulus (N/mm3); 
• B represents an effective width of the beam and the foundation layer (mm). 

The fundamental problem with the use of the Winkler model is to determine the co-
efficient of springs k used to replace the elastic foundation layer, which depends not only 
on the nature of the supporting medium but also on the dimensions of the loaded area. In 
1955 Terzaghi [22] introduced the approximate definition of coefficient k of the supporting 
medium, see Equation (2) and Figure 2. 𝑘 = Δ𝑞 Δ⁄ 𝛿 (2)

 
Figure 2. Load–deformation response of the supporting medium. 

2.2. Filonenko-Borodich Model (1940) 
The Filonenko-Borodich model is a two-parameter model [23,24]. This model assures 

continuity between the individual springs in the Winkler model by connecting them to 
thin elastic membranes which are under the constant tension T. The differential equation 
of a beam in the Filonenko-Borodich model is expressed by Equation (3), 𝐸𝐼 ∙ 𝑤(𝑥) − 𝑇𝐵 ∙ 𝑤(𝑥) + 𝑘𝐵 ∙ 𝑤(𝑥) = 𝑞(𝑥) (3)

where 
• w(x), 𝑤(𝑥) , E, I, B, q(x), and k are the parameters described under the Equation (2); 

Figure 2. Load–deformation response of the supporting medium.

2.2. Filonenko-Borodich Model (1940)

The Filonenko-Borodich model is a two-parameter model [23,24]. This model assures
continuity between the individual springs in the Winkler model by connecting them to
thin elastic membranes which are under the constant tension T. The differential equation
of a beam in the Filonenko-Borodich model is expressed by Equation (3),

EI·w(x)IV − TB·w(x)I I + kB·w(x) = q(x) (3)
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where

• w(x), w(x)IV , E, I, B, q(x), and k are the parameters described under the Equation (2);

• w(x)I I = d2w(x)
dx2 ;

• T represents a tensile force in a thin elastic membrane (N).

In Figure 3, the physical representation of the Filonenko-Borodich model is depicted.
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2.3. Pasternak Model (1954)

In this model, the existence of shear interaction among the springs is assumed by
connecting the ends of the springs to a beam that only undergoes transverse shear defor-
mation [24,25]. The load–deflection relationship is obtained by considering the vertical
equilibrium of the shear layer. The differential equation of a beam in the Pasternak model
is expressed by Equation (4),

EI·w(x)IV − GB·w(x)I I + kB·w(x) = q(x) (4)

where

• w(x), w(x)IV , E, I, B, q(x), and k are the parameters described under Equation (2);

• w(x)I I = d2w(x)
dx2 ;

• G represents a shear modulus of the introduced shear layer (N/mm2).

In Figure 4, the physical representation of the Pasternak model is presented.
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It can be noticed that the second parameter in the two-parameter models is introduced
to provide the continuity of the springs, thus the two-parameter models remedy the
shortcoming involving the discontinuity of the spring deformation of the Winkler model.
In the paper the accuracy of the use of the one-parameter model (Winkler—1867) and
two-parameter models (Filonenko-Borodich—1940, Pasternak—1954) will be investigated
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for the case of a pull-out of a blind rivet from a sandwich beam facing, see Figure 5. It is
assumed that the external upper thin-walled facing is the beam and the core is the elastic
foundation. The origin is set at the loading point in the center of the external facing, the
abscissa is the distance x and the ordinate is the deflection z. The considered cases are
symmetrical about the z–z axis.
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2.4. Experimental Approach

To assess the accuracy of the analytical models for the pull-out of a blind rivet from
the sandwich beam facings the laboratory experiments were carried out. The statistical
sample size was 5. In the tests rectangular sandwich beams of 350 mm in length (L) and
60 mm in width (B) were used. The sandwich beams consisted of a PIR foam core layer
(ρC = 40 kg/m3) of the nominal thickness dC = 60 mm and two external facings made of
grade S 280GD steel of the nominal thickness tF = 0.51 mm. In the experiment both ends of
the sandwich beam were fixed. The mechanical properties of the sandwich beam layers
were obtained from subject literature (*) and from the standardized tests according to EN
ISO 6892-1 [26] and EN 14509 [27]:

• EF = 186.0 × 103 ± 2.5 × 103 N/mm2 represents Young’s modulus of facings;
• νF* = 0.30 represents Poisson’s ratio of facings;
• EC = 5.7 ± 0.12 N/mm2 represents Young’s modulus of core;
• NC* = 0.05 Poisson’s ratio of core’
• GC = EC/2 × (1 + νC) = 2.71 N/mm2 represents Kirchhoff’s modulus.

In the experiment a threefold aluminum rivet, which consists of a hat 4.76 mm (3/16′’)
in diameter, a neoprene washer and mandrel was used, see Figure 6. The blind rivet was
installed in the middle of the upper facing of the sandwich beam.
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Figure 6. Geometrical parameters of the aluminum blind rivet with three clamping arms.

The uplift static load was applied to the blind rivet by the loading cell without
eccentrics with a speed of 2 mm/min. During the test, the load and the displacement of
both the unit cell and the bottom facing of the sandwich beam were measured. Figure 7
includes the scheme of the test bed and a photo from the laboratory test.
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3. Results

In Figure 8, the load–displacement curves of the pull-out of the blind rivet from the ex-
ternal facing are depicted. The continuous grey lines represent the particular pull-out tests
while the thick black line represents the average of all pull-out test trials. The intersection
point (black dot at the graphs at an ordinate of ~100 N) represents the divergence point of
the load–displacement lines. Additionally, at this load level (Fi = ~100 N) during the tests,
sounds of cracking PIR foam could be heard. It means that the facing and the core layer
started separating. The area under the curve (up to the Fi load level) can be considered
as elastic strain energy, i.e., if we unload the test sample, the facing will return to the
original shape by releasing stored strain energy. This ability is referred to as resilience. The
resilience is expressed as the modulus of resilience, which is the amount of strain energy
the material can store per unit of volume without causing permanent deformation. The
resilience can be obtained by calculating the area under the stress–strain curve, up to the
elastic limit.
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Figure 8. Load–displacement curves of the pull-out of a blind rivet from the sandwich beam facing.

At the horizontal axis, the resultant displacement—meant as the difference between
the displacement of the loading cell and the deflection of the bottom of the sandwich
beam—is measured. The ultimate capacity varies from about 240 N (sample PIR-60-2 and
PIR-60-5) to about 300 N (sample PIR-60-1, PIR-60-3, and PIR-60-4). The failure mechanisms
observed during the tests were the same for all samples. The failure was manifested by
the delamination of the loaded facing in the vicinity of the blind rivet and by the fracture
failure of the core layer and the free edges, see Figure 8.

In Table 1, detailed results from the laboratory tests are presented:

• Fi (N) and Fult (N) represent the force at the intersection point and for the ultimate
capacity, respectively;

• ui (mm) and uult (mm) represent the displacement at the intersection point and for the
ultimate capacity, respectively;

• ki (N/mm) and kult (N/mm) represent the stiffness at the intersection point and at the
ultimate point (secant stiffness), respectively;

• ASE (J) is the area under the load–displacement lines, which can be interpreted as the
strain energy capacity of the elastic foundation at failure.

Table 1. Results from laboratory tests.

Parameter Fi ui ki Fult uult kult ASE

Units (N) (mm) (N/mm) (N) (mm) (N/mm) (J)

PIR-60-1 100.8 0.478 211.2 301.1 1.616 186.3 250
PIR-60-2 100.8 0.475 212.0 240.7 1.486 161.9 200
PIR-60-3 100.2 0.470 213.0 310.3 2.011 154.3 340
PIR-60-4 99.7 0.480 207.6 304.5 1.793 169.8 290
PIR-60-5 100.0 0.463 215.9 244.3 1.248 195.7 160

mean value 100.3 0.473 211.9 − − − 240
s.d. 0.5 0.007 3.0 − − − 71

4. Discussion

The correctness of the analytical models (one- and two-parameter models) will be
verified for the maximum load level common for all tests (Fi = 100.3 N and ul = 0.473 mm,
see Table 1 and Figure 7). The static scheme of the considered beam (the facing of the
sandwich beam with the attached blind rivet) on an elastic foundation (the core layer of the
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sandwich beam) is depicted in Figure 9. From the experiments, the following parameters
for one- and two-parameter models have to be obtained, see Sections 4.1–4.3, respectively.
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4.1. Coefficient of Spring Layer Reaction

The one- and two-parameter models require the coefficient of spring layer reac-
tion k, see Equations (1), (3) and (4). The parameter k can be obtained according to the
Equation (2) [12], thus the concentrated force has to be transformed into uniformly dis-
tributed load q = Fi/AF, where AF is direct loading surface which refers to the size of the
failure zone, see Equation (5).

k =
q
ui

=

Fi
AF

ui
=

100.3
2400

0.473
= 0.09

N
mm3 . (5)

Having the k parameter, we can solve the differential equation of the Winkler model—
Equation (1), by simple rearrangements and by introducing the auxiliary parameter α

given by Equation (6).

α = 4

√
kB

4EF IF
= 0.0575 mm−1. (6)

where EF = 186.0 × 103 (N/mm2) represents the Young’s modulus of the external facing

and IF =
Bt3

F
12 = 60·0.513

12 = 0.6633 (mm4) represents the second moment of inertia of the
external facing. In the subject literature, the parameter α is also called a characteristic value
of the Bernoulli-Euler beam on the Winkler model. Equation (1) takes the following form:

w(x)IV + 4α4w(x) =
q(x)
EF IF

. (7)

The solution of Equation (7) consists of the special integral of the non-homogeneous
equation, ws(x) and the general integral of the homogeneous equation, wg(x), see Equation (8).

w(x) = ws(x) + wg(x). (8)

The special solution of the non-homogeneous equation depends on the load. For
the case of concentrated load ws(x) = 0, thus Equation (8) takes the following form
w(x) = wg(x). Please note that this is valid also for the Filonenko-Borodich and the
Pasternak models. The general solution of the homogeneous differential equation of the
form wg(x) = erx gives the following characteristic equation, Equation (9).

r4erx + 4α4erx = 0. (9)

The general solution of the homogeneous Equation (9) is expressed by Equation (10).

wg(x) = w(x) = eαx(A1 sin αx + A2 cos αx) + e−αx(A3 sin αx + A4 cos αx). (10)
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The determination of integration constants (A1–A4) requires the introduction of ap-
propriate boundary conditions. Due to the symmetry of the task (Figure 9), the boundary
conditions will be determined for x = 0.0 mm (center of the beam) and x = 115.0 mm (right
end of the beam), see Table 2.

Table 2. The boundary conditions of the facing of the sandwich beam on the elastic foundation (core
layer) subjected to the pull-out of the blind rivet test—analytical model.

Boundary Conditions (BC) 1 2 3 4

BC’s position x = 0.0 mm x = 0.0 mm x = 115.0 mm x = 115.0 mm
BC’s definition w′′′ (x) = Fel

2EF IF
w′(x) = 0.0 w(x) = 0.0 w′(x) = 0.0

BC’s description value of the shear force measured
in the center of the beam zero rotation zero

deflection zero rotation

Taking into account the boundary conditions given in Table 2, the following integration
constants of Equation (10) have been determined: A1 = 1.34 × 10−6, A2 = −1.75 × 10−6,
A3 = 0.5325, A4 = 0.5325.

4.2. Tensile Force T—Second Parameter in Filolenko-Borodich Model

Two-parameter models require a second parameter. In the case of the Filonenko-
Borodich model, this is the tensile force T. This force can be obtained from the numerical
experiment. The shell numerical model of a facing on the elastic foundation (surface sup-
port stiffness Kz = k = 0.09 N/mm3) was created in the AxisVM program. Figure 10 presents
the distribution of both the tensile force (Nx = T) along the facing and its deformation. The
tensile force T = 99.0 N will be assigned in the Filonenko-Borodich model. Note that there
is a good agreement between the measured displacement of the pull-out blind rivet in the
laboratory experiment with the numerical one, the difference is 3.2%, i.e., δFEM = 0.488 mm
vs. δLAB = 0.473 mm.

Energies 2021, 14, 579 9 of 13 
 

 

conditions will be determined for x = 0.0 mm (center of the beam) and x = 115.0 mm (right 
end of the beam), see Table 2. 

Table 2. The boundary conditions of the facing of the sandwich beam on the elastic foundation 
(core layer) subjected to the pull-out of the blind rivet test—analytical model. 

Boundary Condi-
tions (BC)  1 2 3 4 

BC’s position x = 0.0 mm x = 0.0 mm x = 115.0 mm x = 115.0 mm 

BC’s definition 𝑤 (𝑥) = 𝐹2𝐸 𝐼  𝑤 (𝑥) = 0.0 𝑤(𝑥) = 0.0 𝑤 (𝑥) = 0.0 

BC’s description 
value of the shear force measured 

in the center of the beam 
zero rotation zero deflection zero rotation 

Taking into account the boundary conditions given in Table 2, the following integra-
tion constants of Equation (10) have been determined: A1 = 1.34 × 10−6, A2 = −1.75 × 10−6, A3 
= 0.5325, A4 = 0.5325.  

4.2. Tensile Force T—Second Parameter in Filolenko-Borodich Model 
Two-parameter models require a second parameter. In the case of the Filonenko-Bo-

rodich model, this is the tensile force T. This force can be obtained from the numerical 
experiment. The shell numerical model of a facing on the elastic foundation (surface sup-
port stiffness Kz = k = 0.09 N/mm3) was created in the AxisVM program. Figure 10 presents 
the distribution of both the tensile force (Nx = T) along the facing and its deformation. The 
tensile force T = 99.0 N will be assigned in the Filonenko-Borodich model. Note that there 
is a good agreement between the measured displacement of the pull-out blind rivet in the 
laboratory experiment with the numerical one, the difference is 3.2%, i.e., δFEM = 0.488 mm 
vs. δLAB = 0.473 mm. 

 
(a) 

Figure 10. Cont.



Energies 2021, 14, 579 10 of 13Energies 2021, 14, 579 10 of 13 
 

 

 
(b) 

Figure 10. Numerical results of a shell FE model in the AxisVM program. Distribution of: (a) the tensile force Nx, (b) the 
deformation ez. 

Having both parameters of Filonenko-Borodich model (k and T) the general integral 
of the ordered differential equation takes the following form. 𝑤(𝑥) − 4𝛼 𝜂  𝑤(𝑥) + 4𝛼 𝑤(𝑥) = 0, (11)

where 
• 𝛼 = 0.0575 (mm−1) is the characteristic value of the Bernoulli-Euler beam on the Win-

kler model, see Equation (6); 

• 𝛽 = = 0.2335  (mm−1) is the characteristic value of the Filolenko-Borodich 

model; 

• 𝜂 = = 0.0606. 

The general solution of the homogeneous differential equation of a form 𝑤 (𝑥) = 𝑒  
gives the following characteristic equation of the Filonenko-Borodich model, Equation 
(12). Note that due to the type of loading (concentrated force) the special solution of the 
non-homogeneous equation is 𝑤 (𝑥) = 0: 𝑟 𝑒 − 4𝛼 𝜂 𝑟 𝑒 + 4𝛼 𝑒 = 0. (12)

The roots of the Equation (12) are 𝑟 , , , = ± 2 𝜂 ± 𝜂 − 1 . (13)

Therefore, there are three possible solutions of Equation (11): 
• (𝜂 − 1) < 0: r consists of two pairs of the conjugated complex numbers; 𝑟 , = (𝜓 ± 𝑖𝜓 ) and 𝑟 , = −(𝜓 ± 𝑖𝜓 ); 
• (𝜂 − 1) = 0: r consists of one pair of real numbers 𝑟 , = ±√2𝛼; 
• (𝜂 − 1) > 0: r consists of two pairs of real numbers; 𝑟 , = (𝜓 ± 𝜓 ) and 𝑟 , = −(𝜓 ± 𝜓 ); 

where 𝜓 = 𝛼 1 + 𝜂  and 𝜓 = 𝛼 1 − 𝜂 . 
In our case (𝜂 − 1) = −0.9394, which leads to the following general solution of 

Equation (14). 𝑤 (𝑥) = 𝑤(𝑥) = cos(𝜓 𝑥) 𝐵 𝑒 + 𝐵 𝑒 + sin(𝜓 𝑥) 𝐵 𝑒 + 𝐵 𝑒 , (14)

where 𝜓 = 0.0592 (mm−1) and 𝜓 = 0.0557 (mm−1). 

Figure 10. Numerical results of a shell FE model in the AxisVM program. Distribution of: (a) the tensile force Nx, (b) the
deformation ez.

Having both parameters of Filonenko-Borodich model (k and T) the general integral
of the ordered differential equation takes the following form.

w(x)IV − 4α2ηT w(x)′′ + 4α4w(x) = 0, (11)

where

• α = 0.0575 (mm−1) is the characteristic value of the Bernoulli-Euler beam on the
Winkler model, see Equation (6);

• βT =
√

kB
TB = 0.2335 (mm−1) is the characteristic value of the Filolenko-Borodich model;

• ηT =
(

α
βT

)2
= 0.0606.

The general solution of the homogeneous differential equation of a form wg(x) = erx

gives the following characteristic equation of the Filonenko-Borodich model, Equation (12).
Note that due to the type of loading (concentrated force) the special solution of the non-
homogeneous equation is ws(x) = 0:

r4erx − 4α2ηTr2erx + 4α4erx = 0. (12)

The roots of the Equation (12) are

r1, 2,3,4 = ±

√
2
(

ηT ±
√

η2
T − 1

)
. (13)

Therefore, there are three possible solutions of Equation (11):

• (ηT − 1) < 0: r consists of two pairs of the conjugated complex numbers;
r1,2 = (ψ1 ± iψ2) and r3,4 = −(ψ1 ± iψ2);

• (ηT − 1) = 0: r consists of one pair of real numbers r1,2 = ±
√

2α;
• (ηT − 1) > 0: r consists of two pairs of real numbers; r1,2 = (ψ1 ± ψ2) and

r3,4 = −(ψ1 ± ψ2); where ψ1 = α
√

1 + ηT and ψ2 = α
√

1− ηT .

In our case (ηT − 1) = −0.9394, which leads to the following general solution of
Equation (14).

wg(x) = w(x) = cos(ψ2x)
(

B1e−ψ1x + B2eψ1x)+ sin(ψ2x)
(

B3e−ψ1x + B4eψ1x), (14)

where ψ1 = 0.0592 (mm−1) and ψ2 = 0.0557 (mm−1).
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Considering the same boundary conditions as for the Winkler model we obtained
the following integration constants: B1 = 0.5171, B2 = −8.2 × 10−7, B3 = 0.5495, and
B4 = 8.3 × 10−7.

4.3. Modulus of Shear Layer GC—Second Parameter in Pasternak Model

The third analytical model, i.e., the Pasternak model, is mathematically the same as
the Filonenko-Borodich by simply replacing the BT by BGC. It was assumed that the shear
modulus of the core layer will define the shear modulus of the introduced shear layer in the
Pasternak model. Having both parameters of the Pasternak model (k and GC) the general
integral of the ordered differential Equation takes the following form:

w(x)IV − 4α2ηG w(x)′′ + 4α4w(x) = 0, (15)

where:

• α = 0.0575 (mm−1) is the characteristic value of the Bernoulli-Euler beam on the
Winkler model, see Equation (6);

• βG =
√

kB
GC B = 0.1822 (mm−1) is the characteristic value of the Pasternak model;

• ηG =
(

α
βG

)2
= 0.0996.

In our case (ηG − 1) = −0.9004, which leads to the following general solution of
Equation (15).

wg(x) = w(x) = cos(ψ2x)
(
C1e−ψ1x + C2eψ1x)+ sin(ψ2x)

(
C3e−ψ1x + C4eψ1x), (16)

where ψ1 = 0.0603 (mm−1) and ψ2 = 0.0546 (mm−1).
Considering the same boundary conditions as for the Winkler model we obtained

the following integration constants: C1 = 0.5079, C2 = −4.7 × 10−7, C3 = 0.5612, and
C4 = 5.2 × 10−7.

The deflection lines of a facing on the elastic foundation of Winkler model, Pasternak
model and Filonenko-Borodich model are depicted in Figure 11. The continuous line
represents the Winkler model, the dotted line represents the Filolenko-Borodich model and
the dashed line represents the Pasternak model. The results from the laboratory experiment
were also added.
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5. Conclusions

The paper presents the use of the analytical models to describe the elastic range of the
mechanical response of the pull-out of the blind rivet from a sandwich beam facing. The
one- and the two-parameter models were investigated and verified with the laboratory
tests. The following detailed conclusions can be distinguished:

• From the practical point of view, the use of the blind rivets with sandwich panels
should be limited to the elastic response of the connection, which is related to the
resilience modulus (i.e., the amount of strain energy the connection can store without
causing permanent deformation);

• All presented analytical models allow for the description of the elastic range of me-
chanical response of the pull-out test of the blind rivet from the sandwich panels;

• The considered analytical models slightly overestimate the displacement of the facing
subjected to pull-out loading with respect to laboratory results, i.e., the size of the over-
estimation of the displacements for Winkler model equals 12.6% (δW = 0.532 mm vs.
δLAB = 0.473 mm), for the Filonenko-Borodich model equals 9.3% (δF = 0.517 mm
vs. δAB = 0.473 mm) and for Pasternak model equals 7.4% (δP = 0.508 mm vs.
δLAB = 0.473 mm);

• The presented study can be easily extended to the 2D model to describe the mechanical
response of the pull-out test of the blind rivet from the sandwich panel facing.
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