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Abstract: Unstable flow structures cause inevitable energy losses in all power energy systems,
including turbomachines. In this study, a set of analyses was conducted with the use of spectral
maps on the pressure signals obtained from an industrial centrifugal compressor. The spectral
maps provide one a detailed visualization of the flow conditions present in the machine along the
performance curve and to distinguish the flow phenomena present prior to the surge. The method
accuracy is especially useful in detecting the inlet recirculation. The study was conducted at four
impeller rotational speeds with varying loads imposed by a valve at the outlet. At each speed,
the machine experienced different stages of unstable flow conditions prior to the surge. Five main
frequency peaks that appeared in all cases were identified and discussed. The surge was observed at
all impeller speeds. At lower ones, however, it appeared at higher valve closures. At higher speeds,
the surge was much more intense. The study has also shown that the inlet recirculation appears also
for the closed-type industrial impeller. The phenomenon was present in all conditions. The higher
impeller speed, the faster onset of the inlet recirculation was. This structure has a strong potential for
an early instability warning because it appears in various types of impellers, has a very particular
spectral structure and its positioning is very predictable. This study gives another example of the
inlet recirculation universality and potential for efficient anti-surge protection.
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1. Introduction

Centrifugal compressors are widely used across many industries. Their applications include
heavy industry, automotive, energy sector, home appliances, and many others [1]. In most cases,
the compressor flow stability is crucial for the continuous operation of the compressing system,
connected network, and numerous related machinery. The system working range is, however, limited.
At high mass flow rates, the compressor is affected by the choking phenomenon resulting from the
appearance of the shock wave [2]. At low mass flow rates, the flow becomes less stable resulting
in various local flow instabilities including the rotating stall, inlet recirculation, outlet recirculation.
In most dramatic cases the instability becomes global which is referred to as the surge phenomenon [3].

The surge phenomenon was first described by Emmons et al. [4]. Greitzer formulated
a mathematical surge model [5,6] that continues to be developed until now with different
improvements [3,7]. The surge cycle timescale is typically much longer than the impeller rotation by at
least one order of magnitude [8]. The phenomenon depends on and influences the pipeline behind
the compressor (usually known as the plenum) [9], but also depends on the inlet network [10,11].
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Although there exist different suggestions of classifying different types of the surge, the most widely
known distinction includes two types of the surge. “The deep surge” typically refers to a situation
when pressure oscillation is strong enough to induce periodic backflow. Weaker fluctuations are
usually referred to as “the mild surge” [12].

Local flow instabilities (such as stalls, swirls or recirculation) are often regarded as the surge
predecessors [13,14]. The most common local instability is the rotating stall [15]. This instability
might appear in the impeller, but also in a vaned or vaneless diffuser [16]. The stall does usually
not cause immediate danger to the compressor operation. It causes, however, regular vibrations that
can induce quick bearing failure or blade fatigue [17]. All types of the rotating stall can be easily
detected by spectrum analysis, as the structure has a very periodic character [18]. In certain machines,
inlet instability is also observed prior to the surge [19]. It was also reported that the non-uniform
flow at the inlet can in certain conditions delay surge inception [20]. This is often associated with the
inlet recirculation [21,22]. Unlike the rotating stall, the inlet recirculation usually does not produce
any dominating frequency in the pressure signal. Its spectral signature is often associated with a
broadband noise [16].

Local flow instabilities have been analyzed experimentally in various studies. Liu and Zheng
implemented three different methods (acoustic, pressure, and temperature measurement) to evaluate
the possible positioning of the surge inception points [23]. There are also numerous other studies
devoted to this issue [24,25]. Many researchers have analyzed the spectral structure of the signals at
the surge and prior to it. This kind of analysis was conducted, among others, by Oakes et al. [17,24],
Brown et al. [26], Lawless and Fleeter [27], Kang and Kang [28], Horodko [29] or Liskiewicz et al. [14,30].

The instability inception mechanism also varies with the compressor rotational speed. He and
Zheng presented Fourier spectra of pressure signals gathered at different stages of instability growth:
impeller inlet instability, inducer stall, mild surge, deep surge [8]. Tests were conducted at different
rotational speeds and have shown that in various rotational speeds inception mechanisms are changing.
Sun et al. presented the time-evolution of the instability inception at various rotational speeds and
gauge locations [31]. Galindo et al. investigated the influence of inlet pulsation on the compressor
surge line at different rotational speeds [32]. Kang and Kang investigated different algorithms for
stall warning based on the pressure spectrum change observed at different rotational speeds of the
high-speed centrifugal compressor [28].

Spectral studies allow one to distinguish new pressure oscillation peaks and associate them
with certain flow structures. Bianchini et al. uses the criterion based on the diffuser pressure power
spectrum for the identification of the onset of vaneless diffuser rotating stall [33]. The inlet recirculation
can be also identified based on its characteristic features. Schreiber conducted an extensive study
of this phenomenon and concluded that it “is non-periodic in a time-averaged sense. Furthermore,
it can extend into the passage radially up to 20% of the span” [22]. The numerical studies have shown
that the non-periodic character of this structure comes from the varying thickness of the recirculation
zone [34,35]. Therefore the spectral signature of this phenomenon is the weak but broadband noise [14].
The inlet recirculation zone is also characterized by higher temperature and static pressure [21,22].
All the abovementioned features make the inlet recirculation detection very easy, and hence this
structure could play a good role in the surge early detection systems. It is not clear, however, how the
inlet recirculation onset is related to other unstable flow structures. Semlitsch and Mihaescu connected
the tip leakage recirculations with a distorted swirling flow at the inlet of the compressor, which results
in reduced performance of the impeller [13]. If that is correct, the inlet recirculation appearance time
should be dependent on the impeller rotational speed.

All abovementioned examples have proven the usability of the spectral analysis in detection of the
local flow instabilities appearing prior to the surge, also including the inlet recirculation. Studies have
also shown that the local flow instabilities are changing their behaviour together with the impeller
rotational speed. This study aims to deliver an analysis covering a systematic study of instabilities
appearing at different rotational speeds and different operating points in the low-speed industrial
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centrifugal compressor. The study includes pressure variation plots and spectral maps as a tools
providing clear image of the machine operating condition.

2. Method

2.1. General Design Description

The test object was a single-stage mixed-type impeller (diagonal inlet, radial outlet) obtained
from an industrial three-stage air-compressing unit (VRK-3, VEB Pumpen- und Geblasewerk Leipzig,
Germany). The layout of the rig’s operation is illustrated in Figure 1. The shrouded impeller (3) is
directly coupled (10) to a high-speed water-cooled electric motor with a maximal power output of
50 kW (11). The impeller’s shaft is supported by an assembly of two high-precision roller bearings (9).
The suction duct includes the mass flow measurement cone (1) mounted on the PVC-based 200 mm
diameter suction pipeline (2) designed in agreement with ISO 5167 standard. Downstream from the
impeller, the vaneless diffuser (4), and the overhung scroll (5) are followed by the discharge pipeline (6)
equipped with the differential throttle (7) and an anti-surge plug-valve (8). The crucial parameters of
the rig are presented in Table 1.
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Table 1. Operational and geometric parameters of the tested stage.

Medium Air

Inlet pressure 1 bar
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Impeller eye diameter 123 mm
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Impeller outlet blade height 13 mm
Number of impeller blades 15

Impeller backsweep angle (tangential) 75 deg
VLD inlet diameter 290 mm

VLD outlet diameter 400 mm
VLD channel height 11 mm
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2.2. Instrumentation

The measurements of stationary performance characteristics were carried out based on the
piezoelectric pressure and temperature probes mounted flush in the suction (SPin, STin) and the
discharge pipelines (SPout, STout)–see Figure 1. The pressure transducers used for measuring the
dynamic phenomena in the compressor were located at three characteristic points: inlet upstream
of the impeller (in the recirculation zone), diffuser, and the plenum. The choice of points allowed to
monitor three typical places of instability occurrence: in the interface upstream or downstream the
impeller and in the plenum.

The measurement process was monitored and controlled via NI Compact RIO and LabView
(National Instruments, Austin, TX, USA). The pressure was measured with subminiature XCQ-062-5D
transducers (Kulite, Leonia, NJ, USA) with combined non-linearity, hysteresis, and repeatability errors
not higher than 0.5% of the Full Scale Output. Their position is presented in Figure 2 as Kin (upstream
of the impeller), Kout (volute outlet), K2 (diffuser outer wall). Measurement was conducted for valve
positions separated by 1 degree to assure high precision of selecting the instability inception point.
At each valve position, the measurement was conducted for at least 10 s to provide a sufficiently long
time series assuring high accuracy and precision of the FFT results. The sampling frequency was equal
to 51.2 kHz resulting in the Nyquist frequency 25.6 kHz—over 14 times higher than the blade passing
frequency in the fastest impeller speed analyzed. Hence, the anti-aliasing filter was not necessary.
A combination of long measurement length and high sampling rate allowed to decrease the influence
of noise on measurement, hence the application of low-pass filters was also not needed. The FFT
algorithms were applied directly to the raw data. Measurement series included all valve positions
from 90 deg down to 10 deg. In cases when the pressure oscillations were growing to amplitudes
exceeding 2.5 kPa, the experiment was stopped. Each series was repeated at four rotational velocities
of the engine: 70 Hz, 95 Hz, 110 Hz, 120 Hz. All rotational velocities were below the nominal speed of
this impeller estimated to NP = 0.83 kg/s, π = 1.29, at n = 250 Hz. Lower rotational frequencies were
applied to ensure safe operation at low mass flow rates.
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3. Results and Discussion

3.1. Stationary Performance Measurements Results

The performance curves of the compressor for all analyzed cases are presented in Figure 3a.
Each line represents the static-to-static flange-to-flange pressure characteristics. Blue lines connect
the optimal working points of the highest measured efficiency. The orange line approximates the
boundary of the machine stable range evaluated based on the overall size of the pressure fluctuations.
The further analysis gives a deeper explanation of where the instability onset appears and how it
evolves with the valve position and impeller rotational speed. Results are divided into 4 subsections
containing different impeller rotational velocities. Figure 3b presents the valve curves measured at the
same impeller rotational speeds. Table 2 presents the relations between the dimensional parameters
used in this study to non-dimensional parameters traditionally used in turbomachinery [5].

Table 2. Comparison between dimensional and dimensionless parameters of the compressor.

Case Analyzed
Valve

Position
(deg)

Mass
Flowrate

(kg/s)

Pressure
Ratio

(-)

Φ

(-)
Ψ

(-)

Mu = 0.168
Valve open 30 0.02 1.021 0.004 1019

Valve closed 90 0.32 1.015 0.064 0.732
Peak preassure 62 0.12 1.024 0.024 1161

Mu = 0.236
Valve open 20 0.04 1.038 0.006 0985

Valve closed 90 0.44 1.029 0.064 0.758
Peak preassure 56 0.15 1.045 0.021 1159

Mu = 0.288
Valve open 40 0.09 1.064 0.010 1014

Valve closed 90 0.54 1.045 0.061 0.726
Peak preassure 56 0.19 1.068 0.021 1074
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rpm (Mu = 0.236), n = 120 Hz (Mu = 0.288). (a) Compressor performance curves, (b) valve characteristics.

3.2. Summary of Observed Pressure Oscillations

Observation of all discussed impeller speeds allowed us to distinguish 4 typical frequencies,
where the pressure peaks were observed: first at 10 Hz–11 Hz, second around 25 Hz, third close to
50 Hz, and two close peaks in the region 82 Hz–86 Hz. Additionally, the broadband noise was observed
in all cases at some valve positions. At each impeller speed, the exact frequency and amplitude of
the peak was different, as well as the valve position at which it was observed. For the sake of further
discussion, all those parameters are summarized in Table 3. The following subsections include a
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discussion of each case separately. Finally, the discussion of global conclusions coming from the
comparison between all cases is presented.

Table 3. Summary of main observations regarding the unstable flow structures appearing at different
rotational speeds (MOA—The moment of appearance).

Rotational Speed 120 Hz 110 Hz 95 Hz 70 Hz

Fi
rs

tP
ea

k

Frequency 10.4 Hz 10.3 Hz 11.5 Hz 11.2 Hz

Amplitude 761 Pa (outlet)
347 Pa (diffuser)

535 Pa (outlet)
276 Pa (diffuser)

45 Pa (outlet)
34 (diffuser)

31 Pa (outlet)
22 Pa (diffuser)

MOA diffuser 47 deg 47 deg 43 deg 41 deg
MOA outlet 49 deg 47 deg 50 deg 46 deg
MOA inlet 49 deg 47 deg 44 deg 46 deg

Se
co

nd
Pe

ak

Frequency ** 25.7 Hz (2.47) 25.5 Hz (2.48) 25.1 Hz (2.18) 25.7 Hz (2.29)

Amplitude 16 Pa (outlet)
12 Pa (diffuser)

27 Pa (outlet)
21 (diffuser) 13 Pa (outlet) 8 Pa (outlet)

MOA diffuser 42 deg 44 deg 36 deg 43 deg
MOA outlet 43 deg 42 deg 47 deg 47 deg
MOA inlet 43 deg 45 deg 36 deg 50 deg

T
hi

rd
Pe

ak

Frequency ** 52.0 Hz (5.00) 49.8 Hz (4.83) 47.7 Hz (4.15) 49.7 Hz (4.44)
Amplitude 6 Pa (outlet) 5 Pa (outlet) 5 Pa (outlet) 3 Pa (outlet)

MOA diffuser - - - -
MOA outlet 37 deg 39 deg 40 deg 37 deg
MOA inlet - - - -

Fo
ur

th
Pe

ak
/

Fi
ft

h
Pe

ak

Frequency ** 84.7 Hz (8.14) 85.8 Hz (8.33) 82.7 Hz (7.19) 85.6 Hz (7.64)
Amplitude 22 Pa (diffuser) 28 (diffuser) 19 Pa (diffuser) 11 Pa (diffuser)

MOA diffuser 43 deg 48 deg 56 deg 50 deg
MOA outlet - - 40 deg * 44 deg *
MOA inlet 52 deg 60 deg 50 deg 50 deg

W
id

e
Sp

ec
tr

um
N

oi
se

Frequency - - - -

Amplitude - - - -
MOA diffuser - - 32 deg 33 deg
MOA outlet - - 32 deg 33 deg
MOA inlet 44 deg 41 deg 39 deg 37 deg

* when the surge appears the peak becomes much weaker, ** value in brackets corresponds to the frequency relative
to the first peak.

3.3. 0.28 Nominal Speed (70 Hz)

Figure 4 presents pressure variation measured in the diffuser at the impeller rotational velocity of
70 Hz in the function of the valve position given in degrees. 90 deg corresponds to the valve almost
fully open, while 10 deg—almost fully closed. The red area in Figure 4a presents the pressure variation
range, while the black line presents its average value. One could see that the pressure average value
reproduced the shape of the compressor performance curve. Its maximum value was attained at
about 50 deg and in this region at 30–60 deg. At lower valve positions a noticeable and gradual fall
was observed. The range of pressure oscillation increased slightly around 50 deg and at lower valve
positions continued to decrease with moderate intensity. Figure 4b presents a spectral map of the
same set of signals. At high valve openings, the spectrum maintained similar shape (valve positions
between 90 deg and 50 deg). The main pressure peaks observed were 70 Hz and its higher harmonics.
At 50 deg and at lower valve positions the new amplifications started to appear. Peaks were observed
at frequencies 11.2 Hz (22 Pa), 25.7 Hz (10 Pa), and 85.6 Hz (11 Pa). Around 33 deg the broadband
noise was observed to rise across all frequencies, but especially at lower than abovementioned peaks.
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rotational speed 70 Hz. (a) The left plot represents the min-to-max plot (red) and the pressure average
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Figure 5 shows the pressure variation depending on the valve position measured at the outlet
at an impeller rotational speed of 70 Hz. The left plot represents the min-to-max plot (red) and the
pressure average value (black). The right plot represents the spectral map with the colormap in the
logarithmic scale. presents the same set of plots registered at 70 Hz at the outlet pressure gauge.
Figure 5a again reproduced the shape of the impeller performance curve in a much more pronounced
way. The maximum pressure rise was observed between 60 deg and 50 deg. Then, at valve positions
below 50 deg, the pressure continued to decrease gradually. The range of pressure fluctuation started
increasing a bit later than in the diffuser (where it was noticeable at 50 deg). The slight increment was
observed around 30 deg and then again around 20 deg. The spectral map is presented in Figure 5b.
One could see that the spectral structure of the signal was indeed most flat in the region of maximum
pressure rise between 60 deg and 50 deg. The new peaks started to appear at valve positions lower
than 50 deg in this region with similar frequencies to the diffuser 11.2 (31 Pa) Hz, 25.7 Hz (8 Pa),
and 49.7 Hz (3 Pa). Around 33 deg the broadband noise was observed to rise across all frequencies,
but especially at lower than abovementioned peaks. The broadband noise was also noticeable at very
high valve openings.
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Figure 6 shows the pressure variation depending on the valve position measured at the inlet at an
impeller rotational speed of 70 Hz. The left plot represents the min-to-max plot (red) and the pressure
average value (black). The right plot represents the spectral map with the colormap in the logarithmic
scale. outlines the inlet pressure characteristics in the 70 Hz impeller speed. Figure 6a shows that
the inlet suction zone was present at valve positions higher than 30 deg. The inlet pressure was,
however, gradually increasing with the valve closure (for decreasing valve positions). At 50 deg the
pressure oscillation range increased drastically, then slightly decreased around 30 deg and maintained
relatively constant with further valve closure (for decreasing valve positions). The pressure spectral
map presented in Figure 6b indicates that this sudden increment was connected mainly with the
frequency of 11.2 Hz (23 Pa) and the broadband noise that appeared slightly earlier in the inlet than in
the diffuser and the outlet. The moment of broadband noise appearance was concurrent with the jump
of the average pressure observed in Figure 6a (37 deg).

Energies 2020, 13, x FOR PEER REVIEW 8 of 19 

 

value (black). (b) The right plot represents the spectral map with the colormap in the logarithmic 
scale. 

Figure 6 shows the pressure variation depending on the valve position measured at the inlet at 
an impeller rotational speed of 70 Hz. The left plot represents the min-to-max plot (red) and the 
pressure average value (black). The right plot represents the spectral map with the colormap in the 
logarithmic scale. outlines the inlet pressure characteristics in the 70 Hz impeller speed. Figure 6a 
shows that the inlet suction zone was present at valve positions higher than 30 deg. The inlet pressure 
was, however, gradually increasing with the valve closure (for decreasing valve positions). At 50 deg 
the pressure oscillation range increased drastically, then slightly decreased around 30 deg and 
maintained relatively constant with further valve closure (for decreasing valve positions). The 
pressure spectral map presented in Figure 6b indicates that this sudden increment was connected 
mainly with the frequency of 11.2 Hz (23 Pa) and the broadband noise that appeared slightly earlier 
in the inlet than in the diffuser and the outlet. The moment of broadband noise appearance was 
concurrent with the jump of the average pressure observed in Figure 6a (37 deg). 

(a) (b) 

Figure 6. Pressure variation depending on the valve position measured at the inlet at impeller 
rotational speed 70 Hz. (a) The left plot represents the min-to-max plot (red) and the pressure average 
value (black). (b) The right plot represents the spectral map with the colormap in the logarithmic 
scale. 

3.4. 0.38 Nominal Speed (95 Hz) 

Figure 7 presents the pressure variation measured in the diffuser at the impeller rotational 
velocity of 95 Hz in function of the valve position given in degrees. One can see that the pressure 
average value reproduced the shape of the compressor performance curve (Figure 7a). Its maximum 
value was attained at about 50 deg and stayed in its vicinity int the region 30–60 deg. At lower valve 
positions a noticeable and gradual fall was observed. The range of pressure oscillation increased 
slightly around 50 deg and then slowly continued to increase for lower valve positions. Figure 7b 
presents a spectral map of the same set of signals. At high valve openings, the spectrum maintained 
similar shape (valve positions between 90 deg and 50 deg). The main pressure peaks observed were 
95 Hz and its higher harmonics. Around 50 deg and for lower valve positions the new amplifications 
started to appear. The dominating frequencies were 11.5 Hz (34 Pa), 25.1 Hz (8 Pa), and 82.7 Hz (19 
Pa). Around 33 deg the broadband noise was observed to rise across all frequencies, but especially at 
lower than the abovementioned peaks. 

Figure 6. Pressure variation depending on the valve position measured at the inlet at impeller rotational
speed 70 Hz. (a) The left plot represents the min-to-max plot (red) and the pressure average value
(black). (b) The right plot represents the spectral map with the colormap in the logarithmic scale.

3.4. 0.38 Nominal Speed (95 Hz)

Figure 7 presents the pressure variation measured in the diffuser at the impeller rotational velocity
of 95 Hz in function of the valve position given in degrees. One can see that the pressure average
value reproduced the shape of the compressor performance curve (Figure 7a). Its maximum value was
attained at about 50 deg and stayed in its vicinity int the region 30–60 deg. At lower valve positions a
noticeable and gradual fall was observed. The range of pressure oscillation increased slightly around
50 deg and then slowly continued to increase for lower valve positions. Figure 7b presents a spectral
map of the same set of signals. At high valve openings, the spectrum maintained similar shape (valve
positions between 90 deg and 50 deg). The main pressure peaks observed were 95 Hz and its higher
harmonics. Around 50 deg and for lower valve positions the new amplifications started to appear.
The dominating frequencies were 11.5 Hz (34 Pa), 25.1 Hz (8 Pa), and 82.7 Hz (19 Pa). Around 33 deg
the broadband noise was observed to rise across all frequencies, but especially at lower than the
abovementioned peaks.
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Figure 8 presents the same set of plots registered at 95 Hz at the outlet pressure gauge. Figure 8a
again reproduces the shape of the impeller performance curve in a much more pronounced way.
The maximum pressure rise was observed between 60 deg and 50 deg. Then, at lower valve positions
the pressure continued to decrease. The range of pressure fluctuation was increasing a bit later than
in the diffuser. The slight inclement was observed around 30–40 deg and then again around 20 deg.
The spectral map is presented in Figure 8b. One could see that the spectral structure of the signal was
indeed most flat in the region of maximum pressure rise between 65 deg and 50 deg. The new peaks
started to appear at valve positions lower than 50 deg with similar frequencies to the diffuser 11.5 Hz
(45 Pa), 25.1 Hz (13 Pa), and 47.7 Hz (5 Pa). Around 32 deg the broadband noise was observed across
all frequencies, but especially at lower than abovementioned peaks. The broadband noise was also
noticeable at very high valve openings.
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Figure 8. Pressure variation depending on the valve position measured at the outlet at impeller
rotational speed 95 Hz. (a) The left plot represents the min-to-max plot (red) and the pressure average
value (black). (b) The right plot represents the spectral map with the colormap in the logarithmic scale.

Figure 9 gives the inlet pressure characteristics in the 95 Hz impeller speed. Figure 9a shows that
the inlet suction zone was present at valve positions higher than 35 deg. The inlet pressure gradually
increased with the valve closure (for decreasing valve positions). At 50 deg the pressure oscillation



Energies 2020, 13, 4146 10 of 18

range increased drastically, then slightly decreased around 30 deg and maintained relatively constant
with further valve closure (for decreasing valve positions). The pressure spectral map presented in
Figure 9b indicates that this sudden increment was connected mainly with the frequency of 11.2 Hz
(15 Pa) and the broadband noise. The noise appeared slightly earlier in the inlet than in the diffuser
and the outlet. The moment of broadband noise appearance was also concurrent with the jump of the
average pressure observed in Figure 9a (39 deg).
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3.5. 0.44 Nominal Speed (110 Hz)

Figure 10 presents pressure variation measured in the diffuser at the impeller rotational velocity
of 110 Hz as a function of the valve position given in degrees. The influence of the compressor
performance curve is also visible in this case in Figure 10a.
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This time the experiment was stopped much earlier, at 35 deg due to large pressure oscillations
and danger for further operation of the machine. The maximum pressure rise was attained around
50 deg. The range of pressure oscillation increased slightly around 65–75 deg and then returned to
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normal size. The second increment was observed around 43 deg. Plot 10.b presents a spectral map of
the same set of signals. At high valve openings, the spectrum maintained a similar shape. The only
exception was observed around 65–75 deg, where the broadband noise was noticeable. The appearance
of this structure was concurrent with an increment of the pressure oscillation range discussed in
Figure 10a. Around 50 deg and at lower valve positions the new amplifications started to appear.
The main dominating frequency was 10.3 Hz (276 Pa). Weaker, but also noticeable peaks were observed
at 25.5 Hz (21 Pa) and 85.8 Hz (28 Pa). It is not clear whether the broadband noise was present in this
case, but small amplification was observed at all frequencies just before stopping the experiment.

Figure 11 presents the same set of plots registered at 110 Hz at the outlet pressure gauge. Figure 11a
again reproduced the shape of the impeller performance curve in a very clear manner. The maximum
pressure rise was observed between 60 deg and 50 deg. Then, at lower valve positions the pressure
continued to decrease. The range of pressure fluctuation was increasing at a much bigger rate than in
all previous cases. Instability started to rise around 45 deg and the experiment was stopped when it
approached 2.5 kPa. The spectral map is presented in Figure 11b. The pressure peaks started to appear
at valve positions smaller than 50 deg with similar frequencies to the diffuser. The main peak had a
frequency of 10.3 Hz (535 Pa). Smaller peaks were also observed at frequencies 25.5 Hz (27 Pa) and
49.8 Hz (5 Pa).
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Figure 12 gives the inlet pressure characteristics at the 110 Hz impeller speed. Figure 12a shows
that the inlet suction zone was present at all analyzed valve positions. The inlet pressure gradually
increased with the valve closure (for decreasing valve position). At 45 deg the pressure oscillation
range increased. At 41 deg the average pressure started rising at a higher pace. The pressure spectral
map presented in Figure 12b indicates that at low valve positions all frequencies mentioned before
are visible with moderate amplitudes. The broadband noise had a noticeable onset at 41 deg. The
moment of broadband noise appearance was concurrent with the jump of the average pressure
observed in Figure 12a.
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3.6. 0.48 Nominal Speed (120 Hz)

Figure 13 presents pressure variation measured in the diffuser at the impeller rotational velocity of
120 Hz in function of the valve position given in degrees. The influence of the compressor performance
curve is present. This time the experiment was stopped at 40 deg due to large pressure oscillations and
danger for further operation of the machine. The maximum pressure rise was attained around 50 deg.
The range of pressure oscillation increased slightly around 65–75 deg and then returned to normal size.
The second increment was observed around 49 deg. The plot 13.b presents a spectral map of the same
set of signals. At high valve openings, the spectrum maintained a similar shape. The only exception
was observed around 65–75 deg, where the broadband noise was noticeable. The appearance of this
structure was concurrent with an increment of the pressure oscillation range discussed in Figure 13a.
Around 50 deg and for smaller valve positions the new amplifications started to appear. The main
dominating frequency was 10.4 Hz (347 Pa). Weaker, but also noticeable peaks were observed at
25.7 Hz (13 Pa) and 84.7 Hz (22 Pa).
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Figure 14 presents the same set of plots registered at 120 Hz at the outlet pressure gauge. Figure 14a
again reproduced the shape of the impeller performance curve in a very clear manner. The maximum
pressure rise was observed around 55 deg. Then, at lower valve positions the pressure continued to
decrease. The range of pressure fluctuation was increasing at a much bigger scale than in all previous
cases. Instability started to rise around 45 deg and the experiment was stopped when it approached
2.5 kPa. The spectral map is presented in Figure 14b. The pressure peaks started to appear at valve
positions lower than 50 deg with similar frequencies to the diffuser. The main peak had a frequency of
10.4 Hz (761 Pa). Smaller peaks were also observed at frequencies 25.7 Hz (16 Pa) and 52.0 Hz (6 Pa).
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Figure 15 gives the inlet pressure characteristics in the 120 Hz impeller speed. Figure 15a shows
that the inlet suction zone was present at all analyzed valve positions.
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The inlet pressure gradually increased with the valve closure (for decreasing valve positions).
At 46 deg the pressure oscillation range increased. At 43 deg the average pressure started rising at a
higher peace. The pressure spectral map presented in Figure 15b indicates that at low valve positions
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all frequencies mentioned before are visible with moderate amplitudes. The broadband noise has a
noticeable onset at 44 deg. The moment of broadband noise appearance was concurrent with the jump
of the average pressure observed in Figure 15a.

3.7. Discussion of Key Findings

In this subsection, the key findings regarding each identified structure are presented.
The paragraphs are discussing the structures one by one following the division presented in Table 3.
The first peak was appearing at frequencies between 10.3 Hz and 11.5 Hz. One could conclude that this
was the surge phenomenon described by numerous researchers. This is confirmed by a global character
of the instability, highest amplitude in the plenum (outlet), and low peak frequency [23,24]. The peak
appeared in two different scenarios. At lower speeds (70 Hz and 95 Hz) the peak had a slightly higher
frequency in the range 11.2–11.5 Hz. Its amplitude was quite small in the range 31–45 Pa. Then at
higher impeller speeds the peak has shifted slightly towards lower frequency and stayed in the range
10.3–10.4 Hz. The amplitude was much higher and attained 535 Pa in 110 Hz and 761 Pa in 120 Hz.
This value would be much higher at lower valve positions, but the experiments needed to be stopped
for safety reasons. It was already observed that the surge might have a different character at different
rotational speeds [31]. It is typically observed that the deep surge is preceded by a mild surge at high
impeller rotational speeds which is not the case in lower ones [36]. The mild surge has, however,
much different frequency than the deep surge. In this case, the difference in frequency is much smaller,
about 10%. Hence it should be expected that this is the same type of surge. Hence, the frequency
creeping with rotational speed was observed in this case, similarly to observations made in a different
type of the compressor [37]. At lower rotational velocities the amount of energy generated in the
impeller was not sufficient to feed the outer volume to start the surge oscillations. This explains why
the amplitude was different and the experiment could be conducted down to the lowest valve position
of 10 deg.

Second and the third peaks are characterized by a much higher frequency and cannot be directly
associated with the surge phenomenon or its harmonic frequencies. The second peak frequency varied
between 2.18 and 2.48 of the surge frequency. The third peak frequency varied between 4.15 and 5.0
of the surge frequency. In all cases its amplitude was very low, hence this phenomenon should not
be considered as significant. The amplitude was even not amplified in the 120 Hz case, where the
third peak was precisely the 5th harmonic of the surge frequency. Both peaks attained the highest
amplitudes in the outlet. This suggests that those oscillations might be associated with the pipeline
dynamics that were confirmed to be responsible for the addition of higher frequency terms to the
main surge oscillations [7,38]. Frequencies are amplified if they are close to the resonant frequency
of the sections of the piping system. This effect is also known to influence the position of the surge
margin [39].

The fourth and fifth peaks are very close to each other, hence distinguishing them was sometimes
not possible and they are treated as a single structure in this analysis. In certain positions, however, two
peaks were distinguishable in very close positions. The first of them was around 82 Hz, second around
85 Hz. In each case, the highest peak amplitude was observed in the diffuser which suggests that
this instability is originating in this region. The peak was also observed in the inlet and two cases in
the outlet. In the outlet, its amplitude was much decreasing after the surge onset. The location and
frequency of this instability are in line with the typical behaviour of the rotating stall [16]. Bianchini et al.
observed that the surge was preceded by the vaneless diffuser rotating stall. As the flow rate was
decreasing the rotating stall pattern was first replaced by a new and more intense rotating phenomenon,
coupled with the onset of multiple frequencies typical of the surge conditions. Then the transverse
diffuser instability became dominated by the surge [40].

If that is also the case in this machine, the changing relation of this frequency to the impeller speed
should be discussed. The frequency of this structure is not changing much with the impeller rotational
speed. Kang and Kang noted that the impeller frequency participates in the stalling process [28].
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It is also possible for the number of stall cells to vary with change in rotational speed [16]. At two
lower rotational speeds, one could observe an interesting behaviour of this peak (Figures 4 and 7).
First, it appears much before the surge peak (around 50 deg). At 35 deg the peak bifurcates and tends
to move towards lower frequencies as the valve continues to close. This was especially observed in
Figure 4. Such behavior might be associated with changes in the rotating stall cell size, speed, or even
change in the number of cells [41]. This phenomenon was less pronounced at 95 Hz and could not be
observed at higher frequencies as the experiment had to be stopped before entering the bifurcation
region. It has to be outlined that the root of the abovementioned observations regarding the peak
82–85 Hz is not confirmed. This instability presents very interesting features and should be analyzed
with different numerical experimental methods to provide a better understanding. The experiment
should include at least two signals positioned at an angular spacing between 0◦ and 60◦, or more pairs
of points to assure correct stall recognition with larger number of lobes [42].

At all impeller rotational velocities, the broadband noise was also observed. A similar situation
was present in a study conducted with spectral maps on different centrifugal compressors [14]. The inlet
recirculation for the described impeller was also obtained in the numerical study [34]. The numerical
analysis explained the pressure signature of the rotating stall. The average pressure increases due
to recirculating flow coming from the impeller blades. The radial thickness of this structure is,
however, varying in time in a not periodic manner [35]. Therefore, the spectral map reveals it as a
broadband noise. Those two features were also observed in this study on the inlet recirculation onset
(Figures 6, 9, 12 and 15):

• Increased average static pressure and temperature recorded upstream of the impeller inlet [21,22];
• Broadband noise observed in the spectral structure of the static pressure recorded upstream of the

impeller inlet [14,34,35];

The inlet recirculation was gaining increasing attention in recent years. Originally this phenomenon
was believed to appear mainly in the pumps and low specific speed machines [43]. Recent studies also
reveal that this structure is present in turbochargers [21,22]. The inlet zone is then a good point for early
instability detection as it is likely for the global instability to be initiated in this region [12,13,19,24,31].

There are also many studies where the inlet recirculation device or casing treatment is introduced
to extend the machine working range [44,45]. Such a construction provides the channel for recirculating
flow reducing the disturbance to the core flow. This kind of solution shifts the surge margin by the cost
of lower efficiency at optimum working conditions [46]. The certain cases the efficiency can be also
higher due to better impeller-diffuser synergy [47]. The casing treatment reduces the impeller exit
blockage and increases the incidence at the diffuser inlet, and thus leads to a more positive slope in the
case of a vaned diffuser performance curve [20]. Casing treatment allows also to easily measure the
amount of recirculating flow [48] or even to design the anti-surge system induced by the appearance
of the inlet recirculation [49]. In geometries without casing treatment, direct measurement of the
recirculating flow is not easy to be performed, and also not error-free. Therefore, the detection of
broadband noise and increased static pressure in the recirculation zone is the most efficient approach.

This study shows that the inlet instability occurs also in the closed-type industrial impellers.
Another finding of this study is that the inlet recirculation onset time depends on the impeller rotational
speed. It appeared at the valve position of 44 deg in the case of 120 Hz impeller speed, while 41 deg in
the case of 110 Hz, 39 deg in the case of 95 Hz, 37 in the case of 70 Hz. The phenomenon is therefore
a good indicator of the incoming instability growth because: it appears at the early stages of the
instability growth, is easy to distinguish, is being reported in an increasing number of impeller types.

4. Concluding Remarks

In this study, a set of measurements was conducted on the industrial impeller working at four
different rotational speeds lower than the design speed (70, 95, 110 and 120 Hz). The study was
conducted at three measurement points and a full set of valve positions from fully open to unstable
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working conditions where the machine operation was still safe. The results revealed changes in
unstable flow structures across impeller rotational speeds.

• The surge peak was observed in all cases, while in the lowest rotational speeds it appeared much
later (75 Hz and 90 Hz). In higher speeds, the amount of energy accumulated in the plenum was
sufficient to start the surge oscillations much earlier (110 Hz, 120 Hz). The effect of frequency
creeping with impeller rotational speed was observed and the surge frequency changed by about
10% from 120 Hz to 70 Hz.

• Higher frequency peaks appeared in all impeller rotational speeds with much smaller amplitudes
than the surge peak. The second peak was observed in the outlet and diffuser between 25.1 Hz
and 25.7 Hz with amplitude growing with the impeller rotational speed. The third peak was
observed in the outlet between 47.7 Hz and 52.0 Hz. The frequency was growing with the impeller
rotational speed, but the amplitude was very weak in all cases. The source of this instability was
in the outlet region.

• The fourth and fifth peaks were observed around 82–86 Hz. Distinguishing them was sometimes
not possible and they were treated as a single structure in this analysis. The source of this peak
was located in the diffuser. This peak was appearing much before the surge and presented an
interesting feature of bifurcating with the valve position. The structure presented features typical
of the rotating stall, but there is no proof that it represents this structure.

• In all cases, inlet recirculation was observed. This phenomenon is gaining increasing attention
recently for different kinds of centrifugal compressors and turbochargers. This study shows that
it is possible to observe it in the closed-type impellers. The phenomenon was also shown to
appear earlier in higher impeller rotational speeds. This phenomenon has important features that
make it very useful for early instability detection systems: it always appears before the surge, it is
relatively clear to distinguish from other flow phenomena, its presence has been noted in various
impeller types.

This study allowed to analyse the behaviour of the surge and another unstable flow structures
observed in centrifugal compressor with changing rotational speeds. Further research would be
required to understand the physics behind observations included herein. Particularly, the behaviour
of 82 Hz and 86 Hz peak needs further attention, as well as the inlet recirculation. This could be
addressed by the numerical simulation or another experimental studies. Similar studies conducted on
different impeller geometries would be also very valuable as a reference.
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