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Abstract: A review on the rotating stall in the vaneless diffuser of centrifugal compressors is presented
showing that different stall modes characterized by different numbers of cells can be detected within
the diffuser even if the operating condition remains unchanged. The interaction between the inlet
perturbation and the stall cells near the diffuser outlet is supposed to be the trigger of the stall mode
transformation. In order to determine if the inlet perturbation will interact with the downstream stall
cells, a characteristic time analysis is proposed to estimate the characteristic time of the perturbation in
radial and tangential directions. An additional theoretical model which focused on the development
of the vaneless diffuser rotating stall is presented to determine the propagation velocity of the cells.
The comparison between the characteristic time in two directions shows that one stall mode is able to
evolve into another stall mode if a critical condition is met, and the stall mode transformation is more
likely to start from a mode with a higher number of cells and is more likely to occur in the diffuser
with a large radius ratio. Experimental results are also employed to validate the proposed critical
condition, and good agreements are obtained.

Keywords: rotating stall; vaneless diffuser; centrifugal compressors; theoretical analysis; characteristic
time analysis

1. Introduction

Turbomachinery is undoubtedly important for modern industrialized society, especially in the
fields of small and medium-sized aero-engines, refrigeration, chemical factory, vehicles, etc. [1–5].
As power machinery, a wide, high-efficiency operating range is required for compressors,
considering not only the efficiency but also the stability and safety [6–8]. However, the behaviors
of compressor operating under off-design conditions are subject to various unstable phenomena
which could have negative effects on their performance and then lead to further increased losses and
energy consumption. Therefore, instabilities in the compressor are an interesting topic for scholars.
For example, Ceyrowsky et al. [9] studied the influence of a volute in the triggering of the instability
phenomenon by means of one dimensional analysis and CFD (Computational Fluid Dynamics).
The volute, designed according to conservation of angular momentum, generates inhomogeneous static
pressure distribution even under nominal conditions. It has been further analyzed how a pressure
distortion propagates from a diffuser outlet to the impeller. Carretta et al. [10] adopted a stability
parameter (SP) to predict the stability limit; the contribution of each component to the compressor
stability was specifically analyzed, and the results showed that the vaned diffuser was responsible for the
compressor instability. Bardelli et al. [11] investigated the flow in the centrifugal stage of a compressor
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by different CFD models; unsteady phenomena captured by steady and unsteady simulations have
been carefully compared with experimental data in the available literature. Among the instabilities in
compressors, one unsteady flow phenomenon, which is known as a rotating stall, has been reported in
both centrifugal [12–14] and axial [15–18] compressors. Moreover, a rotating stall can also be detected
in different components even in the same system [19–21]. The conventional rotating stall occurs when
the incidence angle reaches a critical value; part of the fluid cannot follow the main streamline due to
the pressure gradient and is then shed from the solid surface; consequently, the local passage then stalls.
The stalled region is characterized by reduced or no through flow, which results in the deterioration of
the system performance, and even drives the system to become more unstable (for example, a surge).

The present study is focused on a rotating stall in the wide vaneless diffuser of a centrifugal
compressor. A vaneless diffuser is composed of two parallel walls and is placed downstream of the
centrifugal impeller (as illustrated in Figure 1). It is used to collect the highly distorted flow discharged
from the impeller outlet, and is able to transform part of the initial kinetic energy into static pressure
rise due to the increasing flow area along the radius. A well-designed diffuser decreases the flow
instabilities coming from the impeller outlet, as well as energy losses. However, under off-design
conditions, the flow field within the vaneless diffuser could be stalled due to boundary layer separation
or core flow instability; the mechanisms and characteristics of this type of rotating stall have been
extensively studied, theoretically [22–25], experimentally [26–32], and numerically [33–39].

Figure 1. Sketch of a centrifugal compressor.

The topology of rotating stall cells in the vaneless diffuser is shown in Figure 2, the characteristics
of which can be briefly summarized as follows:

1) A vaneless diffuser rotating stall is composed of several rotating cells ; the cells propagate
circumferentially around the diffuser.

2) The circumferential propagation velocity of the stall cells is a fraction of the impeller speed.
3) Each cell is formed by both inward and outward radial velocity components. Therefore, the reverse

flow regions will block the flow passages and result in the deterioration of the diffuser performance.
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Figure 2. Topology of rotating stall cells in the vaneless diffuser.

In Figure 2, a stall pattern with four rotating cells is illustrated as an example. However, in previous
experimental studies [40,41], the authors found that the number of stall cells is variable even if the
operating condition remains unchanged. If a rotating stall with a certain number of cells (n) is defined
as one stall mode, the transformation between several stall modes for a given condition does exist in
the vaneless diffuser; this phenomenon can also be shown by experimental data reported in related
open literature. For example, Abdelhamid and Bertrand [27] experimentally studied a rotating stall
in several diffuser configurations (different diffuser radius ratio R and width ratio W) for a constant
impeller rotational speed of 5000 r/min; the identified stall modes are listed in Table 1.

Table 1. Stall modes reported in Abdelhamid and Bertrand [27].

R W n

1.55 0.063 1, 3, 4
1.55 0.054 1, 2
1.55 0.045 1, 2, 3
1.55 0.038 2, 3
1.83 0.063 2, 3
1.83 0.054 1, 2
1.83 0.045 1, 2, 3

For each configuration, it can be seen that more than one stall mode was identified and the
operating condition remained the same. The experimental results presented by Tsujimoto et al. [42]
showed that two stall modes n = 2 and 3 coexist for diffuser configurations: R = 2.5 operating at
7.5◦ < α < 16◦, R = 2 operating at 7.5◦ < α < 10.5◦, and R = 1.5 operating at 0◦ < α < 6.5◦. Abidogun and
Ahmed [43] found two and three cell stall modes at both the stall onset (φ = 0.141) and at a lower
flow rate condition (φ = 0.037). Heng et al. [41] experimentally found that several stall modes
exist intermittently in a vaneless diffuser under several operating conditions. These results clearly
indicated the presence of multi stall modes in the vaneless diffuser under the same operating condition.
According to the spectrum analysis in reference [41], the amplitude of the pressure fluctuation due to
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the interaction between different stall modes is at a significant level and even stronger than the blade
passing frequency.

Although alternating stall modes have been reported in many studies, there was no consideration
of the mechanism of stall mode transformation. In order to understand how one stall mode evolves
into another, the stall inception was carefully analyzed, and then the mechanism of stall mode
transformation was proposed. A dedicated characteristic time analysis was compared to determine the
critical condition of the mode transformation, and a theoretical model of a vaneless diffuser rotating
stall was developed in order to solve the critical condition. The results have been carefully analyzed
and compared to the experimental data, and some conclusions were drawn.

2. Discussion of Stall Mode Transformation

Figure 3 is the result obtained by Ljevar [34], who proved that a vaneless diffuser rotating stall can
be triggered by the core flow instability due to the interaction between the prescribed inlet jet-wake
flow pattern and the vortices at the diffuser outlet. It can be seen that the velocity field under stable
conditions is characterized by counterclockwise vortices associated with the prescribed jet-wake flow
pattern. With the decrease of the flow angle, the inlet jet-wakes become more circumferential and then
interact with the outlet vortices. Consequently, small vortices disappear and large vortex structures
(i.e. stall cells) are formed; the vaneless diffuser then operates under the stall condition. In this process,
it should be noticed that the number of vortex regions varies from 14 to 7 if the jet-wake flow pattern
acts as the inlet perturbation, and one can still regard the stall cells as the downstream large vortex;
in a similar process, one existing stall mode can evolve into another if the inlet perturbation is able to
interact with the downstream stall cells.

Figure 3. Velocity vectors in the vaneless diffuser under stable and stalled conditions (extracted from
Ljevar [34]): (a) Stable condition; (b) Stalled condition.

In Figure 4, the temporal 2D numerical results presented by Dazin et al. [30] further demonstrated
the possibility of the interaction. One can notice that the vortex/perturbation created near the
diffuser inlet is able to be transported to the diffuser outlet. Since rotating stall cells in the vaneless
diffuser are generally located near the outlet and propagate in the circumferential direction, this inlet
vortex/perturbation can interact with the downstream stall cells, which is a similar process to the one
reported by Lejvar [34]. Therefore, the interaction between the inlet perturbation and propagating stall
cells is supposed to be the trigger of the stall mode transformation, and a dedicated characteristics
time analysis which was used to determine the critical condition of this interaction is proposed in the
next section.



Energies 2020, 13, 6067 5 of 14

Figure 4. Transportation of the inlet vortex (extracted from Dazin et al. [30]): (a) t/tref = 65.7; (b) t/tref = 66.9;
(c) t/tref = 68.1.

3. Characteristic Time Analysis

Table 2 shows the propagation velocity of rotating cells extracted from relevant literature: it can
be seen that the propagation velocity of the stall cell Vp is a fraction of the circumferential velocity of
the core flow Vθ2. If the perturbation is assumed to be transported by the core flow with Vθ2, then the
slower downstream stall cells are able to interact with the faster inlet perturbation if the time needed
for this perturbation to catch the stall cells in the circumferential direction is shorter than the time
needed for this perturbation to flow out of the vaneless diffuser in the radial direction.

Table 2. Propagation velocity of rotating stall cells (extracted from available literature).

Literatures R n Vp/Vθ2

Abdelhamid and Bertrand [27] 1.55 1 0.31–0.34
2 0.32–0.35
3 0.27–0.33
4 0.25

1.83 1 0.26
2 0.25–0.27
3 0.22–0.23

Tsujimoto et al. [42] 1.6 2 0.28–0.30
3 0.30–0.32

2.0 2 0.19–0.24
3 0.21–0.26

2.5 2 0.17–0.21
3 0.18–0.25

Dazin et al. [30] 1.5 2 0.41
3 0.37
4 0.29

Heng et al. [41] 1.5 1 0.33–0.38
2 0.36–0.43
3 0.30–0.37
4 0.26–0.29

The inlet perturbation and stall cell are illustrated in Figure 5 where important variables are
defined. Although Vr decreases with increasing radius, the order of the magnitude will not change too
much. Consequently, the characteristic time needed for this perturbation to flow out of the vaneless
diffuser is estimated as follows:

tr ≈
r4 − r3

Vr
(1)
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Figure 5. Illustration of the inlet perturbation and stall cell in the vaneless diffuser (Vr: radial velocity;
Vθ2: tangential velocity; r1 and r2: impeller inlet and outlet radii; r3 and r4: diffuser inlet and
outlet radii).

In the tangential direction, the order of the magnitude of the characteristic time needed for this
perturbation to interact with the downstream stall cells is:

tθ ≈
2π
n

r3

Vθ2 −VP
(2)

Since the propagation velocity of the stall cells is proportional to the tangential velocity of the core
flow, one can define the propagation velocity coefficient as:

k =
VP

Vθ2
(3)

then Equation (2) becomes:

tθ ∼
2π
n

r3

Vθ2(1− k)
(4)

As mentioned, the interaction will occur if tθ < tr, which leads to the following critical condition:

tanα <
n

2π
(R− 1)(1− k) (5)

where α is the flow angle in the vaneless diffuser, tan α = Vr/Vθ2; R is the diffuser radius ratio, R = r4/r3.
In order to solve the critical condition, additional theoretical analysis is presented in the next section to
estimate the velocity coefficient k.

4. Analysis of the Propagation Velocity Coefficient k

Since the present study focused on a rotating stall in the “wide” vaneless diffuser, which is
considered to be caused by a so-called two dimensional core flow instability instead of the boundary
layer separation, more details of the mechanism of this stall inception can be seen in Lejvar [34].
Therefore, the first assumption of the two-dimensional flow in the vaneless diffuser is proposed.
Additionally, the fluid is assumed to be incompressible and inviscid, and uniform pressure distribution
at the diffuser outlet and prescribed velocity distribution at the diffuser inlet are adopted as the
boundary conditions.

Based on the above assumptions, the non-dimensional governing equations, including the
continuity equation, Euler equations and vorticity equations for the two-dimensional vaneless diffuser
flow are:

∂(rVr)

∂r
+
∂Vθ
∂θ

= 0 (6)
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∂Vr

∂t
+ Vr

∂Vr

∂r
+

Vθ
r
∂Vr

∂θ
−

V2
θ

r
= −

∂P
∂r

(7)

∂Vθ
∂t

+ Vr
∂Vθ
∂r

+
Vθ
r
∂Vθ
∂θ

+
VrVθ

r
= −

1
r
∂P
∂θ

(8)

∂ζ
∂t

+ Vr
∂ζ
∂r

+
Vθ
r
∂ζ
∂θ

= 0 (9)

ζ =
1
r
∂(rVθ)
∂r

−
1
r
∂Vr

∂θ
(10)

where ζ = ∇×V is the swirl which used to represent the vorticity in the present model.
One can notice that the steady solutions for the above equations are:

Vr = 1/r, Vθ = (1/r)(Γ/Q), ζB = 0 and PB = −0.5
(
1 + Γ2/Q2

)(
1/r2

− 1/R2
)

where Γ is the circulation of the upstream impeller and defines µ = Γ/Q, which is also equal to 1/tan α;
notice r = 1 represents the diffuser inlet, and r = R denotes the diffuser outlet.

Since the rotating stall is associated with the two-dimensional core flow instability in the wide
vaneless diffuser, and the classical stability analysis assumes that the unsteady flow field can be treated
as the superposition of the steady flow and a small unsteady flow, then the unsteady flow is added to
the steady solutions as follows:

Vr =
1
r
+ εur(r,θ, t), Vθ =

µ

r
+ εuθ(r,θ, t), ζ = 0 + εζ(r,θ, t), P = PB + εp(r,θ, t) (11)

where ε is a very small constant, ε << 1.
The unsteady variables in the normal mode can be written as follows:{

ur, uθ, ζ, p
}
(r,θ, t) =

{
ũr, ũθ, ζ̃, p̃

}
(r)eiωt−inθ (12)

where n could represent the number of stall cells in the present case; ω = ωreal − iσ , the real and
imaginary parts represent the angular frequency and growth rate of the instability, respectively.
By substituting Equation (11) and Equation (12) into Equations (6–10), the governing equations of the
unsteady flow field are as follows:

∂(rũr)

∂r
− inũθ = 0 (13)

iωũr −
1
r2 ũr +

1
r
∂ũr

∂r
−

inµ
r2 ũr −

2µ
r2 ũθ = −

∂p̃
∂r

(14)

iωũθ +
1
r
∂ũθ
∂r

+
1
r2 ũθ − in

µ

r2 ũθ =
1
r

inp̃ (15)

iωζ̃+
1
r
∂ζ̃
∂r
− in

µ

r2 ζ̃ = 0 (16)

ζ̃ =
1
r
∂(rũθ)
∂r

+
in
r

ũr (17)

Equation set (13–17) is solvable with the following boundary conditions:

ũr = ũθ = 0 at the diffuser inlet r = 1

p̃ = 0 at the diffuser outlet r = R

Equation (15) can be simplified by Equation (17) if r = R; then the dispersion equation is obtained,

iωũθ(R) + (1/R)ζ̃(R) − (in/R2)[ũr(R) + µũθ(R)] = 0 (18)



Energies 2020, 13, 6067 8 of 14

If the two parameters R and n are specified, the angular frequency ωreal is solvable, and then the
needed non-dimensional propagation velocity coefficient k is:

k =
VP

Vθ2
=

ωreal/n
Vθ(r = 1)

(19)

5. Results Analysis

5.1. Analysis of Theoretical Results

Based on the above theoretical analysis, one can easily verify the critical condition proposed in
Equation (5) when the parameters (n, R) are specified. More generally, the critical condition actually
indicated that the inlet perturbation can interact with the downstream stall cells if the flow angle is
lower than a critical value associated with the diffuser radius ratio R, number of stall cells n, and the
propagation velocity coefficient k; the number of stall cells could be changed, i.e. another stall mode
can be expected if the critical condition is satisfied. In addition, one can imagine that stall mode
transformation is more likely to happen when the flow angle is small due to two reasons:

1) A smaller radial velocity increases the time needed for the perturbation to flow out of the
vaneless diffuser; then, the perturbation has sufficient time to interact with the stall cells in
a circumferential direction;

2) On the other hand, the interaction is more likely to happen when the inlet perturbation propagates
with faster circumferential velocity.

With the given parameters (n, R), the calculated left- and right-hand sides of Equation (5)
are compared in Figure 6, and the following conclusions can be drawn:

1) If the number of stall cells is fixed, one can notice that the difference between the left- and
right-hand sides increases with the increase in the diffuser radius ratio, which indicates that the
stall mode transformation is more likely to happen when the diffuser radius ratio is large because
the inlet perturbation will take more time to flow out of the vaneless diffuser.

2) For a given diffuser radius ratio, the difference is larger for the stall mode with more cells,
which implies that the stall mode transformation is more likely to start from the stall mode
with more cells because the circumferential distance between the perturbation and cells is closer,
and then the time needed for the inlet perturbation to interact with the cells becomes shorter.

Figure 6. Theoretical comparison of the left- and right-hand sides of Equation (5).
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5.2. Experimental Validation

In order to identify the stall modes in a real vaneless diffuser, the experiments were carried out
on a centrifugal impeller which was coupled with a vaneless diffuser (R = 1.5), as shown in Figure 7.
The main geometrical parameters are listed in Table 3. Since the uniform outlet pressure was assumed
in the previous theoretical analysis, the downstream of the vaneless diffuser was connected directly to
the atmosphere instead of a volute. The experiment was done in air, the rotating stall was triggered
by decreasing the flow rate. Two condenser microphones were installed on the vaneless diffuser at
the same radius but with an angular difference of ∆θ = 75◦, and then the number of stall cells was
obtained based on this angular difference and the measured frequencies of stall modes; more details of
the experimental set-up and data manipulation can be seen in Heng et al. [41]. All the detected stall
modes for each flow condition are listed in Table 4.

Figure 7. Experimental testing system.

Table 3. Geometrical parameters of the centrifugal impeller and vaneless diffuser.

Centrifugal Impeller

r1
r2
Z
β2

Inlet radius
Outlet radius

Number of impeller blades
Outlet blade angle

282.2
513.2

7
22.5

(mm)
(mm)

(-)
(◦)

Vaneless Diffuser
r3
r4
B3

Inlet radius
Outlet radius

Diffuser width

514.2
768.0
38.5

(mm)
(mm)
(mm)

Table 4. Identified stall modes in the experiments.

Q/Qd N (rpm) n

0.26 1200, 1800 2, 3
0.36 1200, 1800 2, 3
0.47 1200, 1800 2, 3, 4
0.56 1200, 1800 4
0.58 1200, 1800 4

In Figure 8, experimental data were applied to validate the critical condition proposed in the
present study; the black line represents the left side of Equation (5).
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Figure 8. Experimental validation of the critical condition.

Due to the blockage generated by downstream rotating stall cells, the radial velocity component
has been appropriately corrected based on the topology of stall cells shown in the previous PIV results
presented by Dazin et al. [31]. The Stodola slip coefficient σS was applied in order to calibrate the
circumferential velocity Vθ2,

σS = 1−
π
Z

sin β2 (20)

By doing that, the circumferential velocity Vθ2 is:

Vθ2 = σSU2 −
Vr2

tan β2
(21)

For the right-hand side of Equation (5), the number and propagation velocity of cells (n, k) and the
diffuser radius ratio R are now consistent with the experimental data. According to the comparison in
Figure 8, one can notice that:

1) At flow condition Q/Qd = 0.56 and 0.58, the left side “tan α” of Equation (5) is higher than
the right side, which means the critical condition is not met for these two flow conditions.
In correspondance, only a stall mode n = 4 was detected in experiments ; the stall mode
transformation was not observed in the vaneless diffuser.

2) At Q/Qd = 0.47, 0.36 and 0.26, the critical condition is always met for one or more stall modes.
For such a condition, the stall mode is not stable anymore, and stall transformation is possible.
As a consequence, more than one stall mode would be detected. According to Table 4, it can
be seen that the identified stall modes in experiments obviously show good agreement with
this prediction.

6. Conclusions

Through an investigation of the vaneless diffuser rotating stall, it has been found that the stall
mode alternates even if the operating condition remains the same. Data in the literature have been
extracted and it has been shown that the propagation velocity of stall cells is a fraction of the core
flow. Therefore, the inlet perturbation, which is transported with the core flow, can interact with the
downstream cells, resulting in stall mode transformation.

The characteristic time analysis, which focused on the characteristic time in radial and tangential
directions, is then proposed to determine the critical condition of this interaction. The radial
characteristic time is the time needed for the perturbation to flow out of the vaneless diffuser, and the
tangential one is the time needed for the perturbation to interact with the cells. The critical condition
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of the interaction is obtained by comparing the characteristic time in two directions. In order to solve
the critical condition, an additional theoretical model has been presented to estimate the propagation
velocity of cells. The calculated results have shown that the stall mode transformation is more likely to
happen under the following conditions:

1) The flow angle is small,
2) The diffuser radius ratio is large,
3) Stall mode with more cells.

Experimental results have also been applied to validate the proposed critical condition; it has
been found that:

1) When the critical condition is not met, only one stall mode was identified in the experiments,
and no transformation of the stall mode can be observed.

2) When the critical condition is met, several stall modes were identified in the experiments, and the
transformation of stall modes was confirmed.

The above comparison shows good agreement between experimental results and the prediction
made by the proposed critical condition.
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Nomenclature

r radius (m)
b diffuser width (m)
t time (s)
u, V velocity (m/s)
U impeller tip speed (m/s)
p, P pressure (Pa)
k dimensionless propagation velocity (-)
i imaginary unit (-)
n number of stall cells (-)
N rotational speed (rpm)
Z number of blades
Greek symbols
ζ curl (-)
ε minimal value (-)
α flow angle in the vaneless diffuser (◦)
ω angular frequency (-)
σ growth rate of mode (-)
σS Stodola slip coefficient (-)

φ
flow coefficient, (-)
φ = Vr/Vimp

ψ
pressure coefficient,(-)
ψ = P/(0.5ρr2

2ωimp
2)
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R
diffuser radius ratio, (-)
R = r4/r3

W
diffuser width ratio, (-)
W = b/r3

Q, Qd flow rate and design flow rate (m3/s)
Γ circulation from impeller outlet (-)
Subscripts
1 impeller inlet
2 impeller outlet
3 diffuser inlet
4 diffuser outlet
r radial
θ tangential
P propagation
B basic solution
imp impeller
Superscripts
~ perturbed quantities
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