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Abstract: Piezoelectric actuation is a promising principle for insect-scaled robots. A major concern
while utilizing a piezoelectric actuator is energy loss due to its parasitic capacitance. In this paper,
we propose a new concept to recover the charge stored in the parasitic capacitance; it requires only
three additional lightweight passive components: two diodes and a resistor. The advantages of our
concept are its small additional mass and simple operating procedure compared with existing charge
recovery circuits. We provided a guideline for selecting a resistor using a simplified theoretical model
and found that half of the charge can be recovered by employing a resistor that has a resistance
sufficiently larger than the forward resistance of the additional diode. In addition, we experimentally
demonstrated the concept. With a capacitive load (as a replacement for the piezoelectric actuator),
it was successfully observed that the proposed concept decreased the power consumption to 58%
of that in a circuit without charge recovery. Considering micro aerial vehicle (MAV) applications,
we measured the lift-to-power efficiency of a flapping wing piezoelectric actuator by applying the
proposed concept. The lift force was not affected by charge recovery; however, the power consumption
was reduced. As a result, the efficiency was improved to 30.0%. We expect that the proposed circuit
will contribute to the advancement of energy-saving microrobotics.

Keywords: driver circuit; charge recovery; piezoelectric actuator; power consumption

1. Introduction

Insect-scaled robots have attracted attention owing to their potentially diverse applications:
rescue missions, inspections of building structures, and remote sensing. Various types of insect-scaled
robot have been created, such as micro aerial vehicles (MAVs) [1–3], walking/running robots [4–6],
and swimming robots [7,8]. One of the most important components of the robot is the actuator;
therefore, many actuation mechanisms and principles have been researched. Actuation based on the
piezoelectric effect- is considered to be the most promising in terms of power density and output
power [9]. For example, an insect-inspired MAV called “RoboBee,” which is developed by a group of
Harvard University students, is the lightest and smallest vehicle capable of tethered controlled flight at
present [1,2]. They employed a piezoelectric bimorph actuator to flap wings.

Power efficiency is one of the most important performance aspects of flight robots because lower
efficiency requires larger mass of an on-board battery. During piezoelectric actuation, energy loss in
parasitic capacitance is a crucial concern; it can significantly deteriorate the electrical–mechanical power
conversion efficiency of the system. Note that here we define “parasitic capacitance” as the capacitive
component of a piezoelectric actuator due to its dielectricity. Figure 1a shows a simplified structure of
a flapping wing actuator to explain the loss mechanism. It consists of a piezoelectric bending actuator
and a wing. The piezoelectric actuator comprises a laminated layer of a piezoelectric and elastic plate.
By applying a voltage to the actuator, a strain is induced in the piezoelectric layer by the piezoelectric
effect, and this strain bends the actuator, which in turn causes the wing to flap. By applying an
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alternating current (AC) voltage with a frequency that matches with the actuator’s resonance, large
flapping motion can be produced. Figure 1b shows a simple circuit composed of a DC voltage source
and a switch. By switching the connection between the direct current (DC) voltage source and the
ground repeatedly, we can apply a square voltage wave to the actuator. The piezoelectric actuator can
be equivalently represented by a parallel circuit of a parasitic capacitance C and an impedance Zm; the
circuit expresses the mechanical system in a simplistic form [10]. The electrical power consumed by
Zm is identical to the mechanical output power. The focus of this study is on parasitic capacitance.
When the switch is connected to the DC voltage source V, energy of (1/2)CV2 is dissipated through
the parasitic resistances, i.e., the switch’s on-resistance. In contrast, when the switch is connected to the
ground, the stored energy in C, which is (1/2)CV2, is released; therefore, electric power of CV2 is lost
in a cycle. In summary, the stored charge in the parasitic capacitance is fully dissipated using a simple
switching driver circuit (a detailed explanation is provided in Section 2). If the charge can be reused,
efficiency will be improved. Therefore, many studies have been carried out on charge recovery [11–16].
They can be categorized into two methods: one using an inductor and the other with a capacitor. Using
the back electromotive force of the inductor, the energy in the parasitic capacitance can be reused to
actuate a piezoelectric device [11,12]. Ideally, by employing an inductor with large inductance and low
resistance, all the energy in the parasitic capacitance is recovered. The drawback of this method is
the inductor’s huge mass, which generally makes the inductor bulky and heavy; therefore, it is not
suitable for mobile robot applications.
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Figure 1. Piezoelectric flapping-wing actuator and its basic driver circuit: (a) principle of piezoelectric
actuation; (b) a driver circuit with simple switch.

Several researchers proposed charge recovery circuits that transfer the charge in the parasitic
capacitance to another capacitor (or piezoelectric actuator) and reuses it [13–16]. Their circuits utilizing
capacitors are lighter than those with inductors because they are composed of switches. The switching
devices must be insulated because the voltage at both ends varies. Such insulated switching devices
are still large and heavy, which makes them impractical. There is another approach, which supplies a
smoothly varying voltage signal. Karpelson et al. discovered a circuit and control scheme, where a high
voltage quasi-sinusoidal wave is output by controlling a DC–DC converter circuit [17]. Theoretically,
this is not affected by energy loss due to parasitic capacitance. We concluded that their approach is
effective for robots with a few actuators but not suitable for robots with several legs/wings. This is
because a robot requires DC–DC converters and feedback controls for each independent actuator.

Therefore, we propose a charge recovery circuit concept, which requires only lightweight passive
components. Here, we control a current flow by a resister and diodes but not switching devices. To our
knowledge, this is the first report of a passive charge recovery approach. In this study, a guideline
for the selection of components based on a simplified theoretical model is provided. In addition,
we conduct a demonstration of the proposed concept.



Energies 2020, 13, 2866 3 of 15

2. Proposed Concept

To clarify the advantages of our new concept, we start by reviewing basic, previously reported
driving circuits. Because our concept is based on charge recovery between capacitors, we do not
review recovery methods using inductors here. If the energy stored in the parasitic capacitance can be
transferred to another capacitor or capacitive component and can be reused, the power efficiency of
the system can be improved as stated in the previous section. Campolo et al. created a charge recovery
method with two piezoelectric actuators [14]. Edamana et al. also proposed a similar circuit, which
included optimal control schemes for precise positioning [15,16]. Figure 2 illustrates a simplified circuit
of these concepts. Note that the actuator is regarded as a capacitor because we are focusing on the
influence of parasitic capacitance. First, the left actuator AL is charged with a charge of CV, which is
stored, as shown in Figure 2a. Then, by changing the statuses of both the left and right switches, SL

and SR, to open (high impedance), the center switch SC1 is turned on. Thus, the stored charge moves to
the right actuator (Figure 2b).
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Figure 2. Conventional charge recovery circuit: (a) left actuator is charged by the direct current (DC)
source; (b) charge is transferred to the right actuator through the charge recovery circuit; (c) right
actuator is charged by the DC source.

The ratio of the recovered charge to CV, α depends on the impedance Zc near SC1 and SC2.
Campolo et. al. reported that 92% and 75% of the charges were successfully recovered by employing
an inductor for Zc with the loads of a capacitor and a bimorph piezoelectric actuator, respectively [14].
Finally, SR is turned to the DC voltage source VD and AR is charged to a potential of V (Figure 2c).
A disadvantage of this design is the increase in mass due to the additional switches (SC1 and SC2)
used for charge recovery. The voltage at both ends of SC1 and SC2 varies from ground to V. Common
switching devices, such as metal-oxide-semiconductor field-effect transistors (MOSFETs) and bipolar
transistors, can not to be used. Due to the high voltage involved, insulated switches like photo-MOS
relays are needed. However, such devices are generally much heavier than common transistors. For
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insect-scaled robots, especially MAVs, their weight is the most important specification since the mass
directly determines the required output power. Thus, the weight increase caused by the insulated
switches will cancel the efficiency improvement brought about by charge recovery.

Based on previous studies, we sought another approach, which employed only lightweight
components and did not use insulated switch devices. Figure 3 shows the concept of the proposed
circuit. Similar to Figure 2, we also use a paired piezoelectric circuit and intend to recover the charge
between the capacitors. The key components are a resistor in between the actuators, the ground wire
Rg, and diodes Dg1 and Dg2, which are connected to the high side of the actuators and colored in blue
in the figure. First, AL is charged via SL and a charge of CV is stored (Figure 3a). At this step, AR is
set to ground and stores no charge. Next, SL is connected to ground and SR is set to high-impedance
status (Figure 3b). If the impedance from AL to AR is smaller than Rg, the charge stored in AL flows to
AR instead of to the ground. A partial amount of the charge, αCV, (0 < α < 1) will be recovered. The
unrecovered energy (1− α)CV is consumed by Rg and other resistivity through the current path. Dg2

blocks the charge to be released. Finally, SR is connected to the DC voltage source VD and AR is charged
to a potential of V (Figure 3c). This approach is realized using only three passive components and their
weight increase is smaller than the conventional charge recovery circuits. In addition, utilizing MOSFET
for the low-side switches, the two diodes can be omitted because the general commercial MOSFET
includes a parasitic body diode. Therefore, this approach can be realized with an additional resistor.
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Figure 3. Proposed charge recovery circuit: (a) the left actuator is charged by the DC source; (b) when
the left actuator is switched to ground (GND), a portion of the charge is transferred to the right actuator;
(c) the right actuator is charged by the DC source.

Here, we examined the amount of recovered charge expected from this concept based on a
simplified theoretical model. Figure 4 shows the extracted, simplified circuit of the concept. We only
consider the charge transition behavior at the switching moment. Before switching, AL and AR have
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stored a charge of CVin and 0, respectively. When t = 0, the high side of AL is connected to the ground.
The equations express the system and initial conditions are as below:

q1
C + Rg jg = 0

q2
C + Ron

.
q2 + Rg jg = 0

.
q1 +

.
q2 = jg

, (1)

q1(0) = q10 (= CVin), q2(0) = 0, (2)

where C, q1, q2, and jg are capacitance of the capacitors (AL and AR), the charge stored in AL, charge
stored in AR, and the current flowing through Rg, respectively. Ron represents the forward resistance

of the diode Dg2. Defining a = (CRon)
−1 and b =

(
CRg

)−1
, Equation (1) can be transformed as:

d
dt

[
q1

q2

]
=

[
−a− b a

a −a

][
q1

q2

]
. (3)
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With the initial condition (Equation (2)), this can be solved as:

q1(t) =
q10
2d e−ht

[
b
(
1− edt

)
+ d

(
1 + edt

)]
q2(t) = −

q10
d a e−ht

[
1− edt

] , (4)

where d =
√

4a2 + b2 and h = (2a + b + d)/2. The diode prohibits q2 to flow to the ground; q2 is kept
at a local maximum value. This is derived by solving

.
q2 = 0

.
q2(t) =

q10

d
a e−ht

[
h + (−h + d)edt

]
. (5)

Because (q10/d)a e−ht > 0,
.

q2 = 0 equal to h + (−h + d)edt = 0. Solving this equation, the time at
the local maximum q2, tpeak is obtained as:

tpeak = 1
d ln h

h−d

= C√
4R−2

on+R−2
g

ln
[

1
2

(
2 + Ron

Rg
+ 4

Rg
Ron

+
√

4R−2
on + R−2

g

(
Ron + 2Rg

))]
. (6)

As the result of the switching operation, q2 finally becomes:

q2
(
tpeak

)
=

q10a
h− d

[
h

h− d

]− h
d

. (7)
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Thus, the ratio of the recoverable charge, α, is expressed as:

α =
q2(tpeak)

q10
= a

h−d

[
h

h−d

]− h
d

=
2Rg

Ron+2Rg+RonRg

√
4R−2

on+R−2
g

− Ron+2Rg+RonRg

√
4R−2

on+R−2
g

−Ron−2Rg+RonRg

√
4R−2

on+R−2
g


1
2−

Ron+2Rg

2RonRg
√

4R−2
on−R−2

g
.

(8)

Here, assuming Ron � Rg and defining γ = Rg/Ron, α and tpeak can be approximated as:

tpeak '
CRon

2
ln

(
2 +

5
2
γ
)
, (9)

α ' 2γ(1 + 4γ)−1− 1
4γ, (10)

Figure 5 shows the relationship between α and ˆtpeak (= tpeak/(CRon)) to γ. This graph suggests
that a larger γ results in a higher α; α asymptotically approaches the maximum value of 50%. In
addition, it was also found that a larger γ led to an increase in tpeak. To obtain both small tpeak and
large α, we considered 101

≤ γ ≤ 103 as the preferred range. Given that Ron is generally around 1 Ω,
we employed resistances less than 1 kΩ for Rg in the experiment.
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3. Method

In this study, we fabricated an evaluation circuit and measured its output voltage waveforms
and consumed power to validate our concept. We used two types of load: a capacitor and an actual
flapping-wing piezoelectric actuator. The charge recovery phenomenon can be more clearly evaluated
with the capacitor because it does not contain an electro-mechanical coupling effect. We used the
capacitor to valid the basic concept. The actual piezoelectric actuator is used to demonstrate the net
efficiency (lift-to-power efficiency).

3.1. Circuit Design

Figure 6 shows the schematic of the fabricated circuit. The high-side switches are composed
of bipolar transistors (TrH1, TrH2), whose bias current is controlled by n-type MOSFETS (Trb1, Trb2).
The low-side switches are realized by n-type MOSFETS (TrL1, TrL2). When a high-level signal is input
to a control port VCH1, Trb1 changes to close state. Then, a current determined by Rb1 flows through
the base of TrH1, and TrH1 is turned on (close state). As the result, the high voltage Vin is applied
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to the actuator. When a high-level signal is input to VCL1, TrL1 shifts to close state. Therefore, the
actuator is connected to ground. As stated above, we utilized the body diodes of TrL1 and TrL2 for
Dg1 and Dg2, respectively. The components used are summarized in Table 1. In this experiment, the
high voltage level Vin was supplied by a DC voltage source (PMX350-0.2A, Kikusui Electronics Corp.)
and we set Vin = 90 V in this experiment. Control signals for the switches, VCH1, VCL1, VCH2, and
VCL2, were produced using function generators (Wave Factory 1942, NF Corporation). The frequency
was configured as 119 Hz, which is the resonant frequency of the flapping wing actuator that was
previously measured (see Appendix A).
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Figure 6. Design of fabricated circuit.

Table 1. Electrical component list.

Part Symbol Part Number Manufacturer

TrH1, TrH2 PMSTA92 Nexperia
Trb1, Trb2 SiB452DK Vishay
TrL1, TrL2 SiB452DK Vishay
Rb1, Rb2 RK73H1ETTP1R00F KOA

Next, we explain the control signals; Table 2 summarizes the connection status of the actuator and
the signals. When VCHx and VCLx (x = 1 or 2) are set high and low, respectively, the actuator’s electrode
is connected to the voltage source. When VCHx and VCLx are set low and high, respectively, the actuator’s
electrode is connected to ground. When both VCHx and VCLx are low, the actuator’s electrode changes
to the open state (high impedance). Figure 7 shows the control waveform utilized in the experiment.
At the start of a period, AL is charged by the DC voltage source ([VCH1, VCL1, VCH2, VCL2] =

[High, Low, Low, High]), whereby VCH1 and VCL2 are flipped to low. As a result, the connection
statuses of both actuators become open. We define this moment as t = t0 Then, VCL1 and VCH2 are
flipped to high at t = 0.01T + t0 where T is the period of the flapping frequency. At this moment, the
potential of AL falls to ground, and the charge recovery occurs. At the same time, AR is being charged
via the DC voltage source. After t = 0.5T + t0 the same procedure is repeated by reversing the left and
right signals.

Table 2. Relationship between actuator’s connection status and control signals.

Connection Status VCHx* VCLx*

Vin High Low
GND Low High

Open (high impedance) Low Low

* x = 1 or 2.
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3.2. Measurement

The load capacitor was ceramic with capacitance of 50 nF (GRM55DR73A104KW01L, Murata).
Figure 8a is a photograph of the flapping wing driver, whose structure is same as that shown
in Figure 1b. This actuator is a trapezoidal-shaped piezoelectric unimorph. We employed
Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) as the piezoelectric material owing to
its high piezoelectric coefficient (d32 = −1156 pm/V [18]). We used titanium for the elastic layer.
The thicknesses of the PIN-PMN-PT plate and titanium shim are 100 µm and 130 µm, respectively.
This unimorph has a parasitic capacitance of about 25 nF. The wing is composed of a carbon
fiber-reinforced plastic leading-edge bar, polyimide/titanium laminated veins, and a polyester film.
The wingspan length and chord width are 32 mm and 8.3 mm, respectively.Energies 2020, 13, x FOR PEER REVIEW 9 of 15 
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Figure 8. Samples and setup: (a) flapping-wing actuator; (b) schematic and (c) photograph of
measurement setup.
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Figure 8b,c shows the schematic and photograph of the measurement setup, respectively. We
measured the voltage waveforms and the consumed power using an oscilloscope (DPO4034B, Tektronix,
Beaverton, OR, USA) and a power analyzer (PA1000, Tektronix, Beaverton, OR, USA), respectively. The
average lift force was measured with a precision electric balance (HR-100A, A&D Company Limited,
Tokyo, Japan). Two actuators were rigidly fixed on a bracket and placed on the electric balance.

4. Results and Discussion

4.1. Capacitive Load

First, we verified results of evaluation using capacitors as load to check whether our charge
recovery concept works. Figure 9 shows the voltage waveforms with different Rg at VO1 and VO2; in
this experiment, we attached Rg of 0 Ω, 10 Ω, 100 Ω, and 1 kΩ, and their characteristics were measured.
When Rg = 0 Ω, the voltage linearly increased; this is due to regulation by bipolar transistors. In
contrast, with Rg = 10 Ω and 100 Ω, two-step voltage rising was observed; the first rapid rising is an
evidence of charge recovery. A large Rg resulted in a smooth voltage transition. This is due to increase
in the time-constant of the circuit.
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Figure 9. Voltage waveform with load of capacitors with different Rg.

We compared these results through circuit simulation, utilizing HSPICE (Synopsys) in this study.
The result is shown in Figure 10. In the case of Rg > 100 Ω, the experimental and simulated results
are similar. When Rg decreased, relatively large discrepancies between the experimental values and
the simulated values were observed; for example, the rapidly rising voltage that was simulated with
Rg = 10 Ω was smaller than the measured one. This seems to be due to inconsistent resistances among
the switching devices. Overall, the recorded behaviors were well reproduced by the simulation. This
suggests that the fabricated circuit realized the proposed concept.
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We also measured the average consumed power with different Rg. The measured and Simulation
program with integrated circuit emphasis (SPICE) simulation results are summarized in Figure 11. The
energy saving effect was clearly observed. When Rg = 1 kΩ, the power consumption decreased to 58%,
unlike when Rg = 0 Ω. This result was well agreed with the SPICE simulation; the simulated power
consumption with Rg = 1 kΩ was 55% of that with Rg = 0 Ω. As described in Section 2, half of the
electrical power will ideally be recovered by the concept. We expect that the difference between the
ideal and experiment was caused by loss in the switching driver. Although the theoretical consideration
does not include any loss in the switches, actual switches do experience some energy loss in operation.
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Figure 11. Power consumption with different Rg.

4.2. Piezoelectric Actuator Load

In Figure 12, the measured voltage waveforms at VO1 and VO2 are shown. In this experiment, we
measured the characteristics with Rg being 0 Ω, 200 Ω, and 1 kΩ. Compared to the case with Rg = 0
Ω, the voltage rise increased with increase in Rg. Although the waveforms were unclear relative to the
capacitor, the initial steep region seemed to indicate the charge recovery phenomenon. The ambiguous
waveform was due to the piezoelectric effect; mechanical vibration affected the voltage level of the
output port of the circuit.
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Similar to Figure 10, we also compared the measurement with the SPICE simulation. The result is
shown in Figure 13. The mechanical impedance Zm, of the piezoelectric actuator was simply modelled
as a series made of an inductor, capacitor, and resistor with L = 1.10 × 103 H, C = 1.63 nF, and
R = 112 kΩ, respectively [19]. These parameters were derived by monitoring the frequency response
characteristic of the actuator (see Appendix A). The difference between Rg = 0 Ω and Rg ≥ 200 Ω was
well reproduced by the simulation. The voltage with Rg ≥ 200 Ω rose faster than that with Rg = 0 Ω.
This evidence indicated that charge recovery was realized. However, the simulated trend between
Rg = 200 Ω and 1 kΩ did not match the measurement. Because the LCR-series model did not include
higher-order vibration modes, fast vibration and impulsive response were inaccurate. This possibly
caused the inconsistency between Rg = 200 Ω and 1 kΩ.
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Figure 13. Comparison of experimental and SPICE simulated voltage waveform with load of a flapping
wing piezoelectric actuator.

Finally, we measured the average consumed power and average output lift force and calculated the
lift-to-power efficiency. The lift force was almost constant with the different Rg as shown in Figure 14a.
This was a reasonable result. The charge recovery phenomenon was faster than the time period of
whole square wave in the range of the measured Rg; therefore, the output voltage waveform was not
affected. In contrast, the consumed power decreased as Rg increased, as shown in Figure 14b. The
power used with Rg = 1 kΩ was 21.8% smaller than that with Rg = 0 Ω. In addition, the trend of the
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measured power saving matched the simulation’s trend. With respect to efficiency, 30.0% improvement
was demonstrated, as shown in Figure 14c. From these results, we concluded that the proposed concept
was effective.
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Figure 14. Performance of proposed circuit: (a) lift force, (b) power consumption, and (c)
lift-to-power efficiency.

5. Conclusions

In this study, we proposed a new charge recovery circuit concept, which required only three
lightweight passive components, a resistor, and two diodes. In addition, using general MOSFET for the
switching devices, the diodes can be omitted; the proposed concept in practice needs only an additional
resistor. We presented a guideline that can be used to select the resistance based on a simplified
theoretical model. In addition, we successfully demonstrated that power efficiency improved when
the concept was employed in the circuit.

This concept is limited to a paired-actuator system because the charge stored in an actuator should
be recovered by another actuator. Since this applies not only to two independent actuators but also
a bimorph actuator, which consists of two laminated piezoelectric plates, we consider the possible
application field to be wide. Another expected limitation is the switching frequency. The addition of
Rg makes switching time slower. High-frequency applications, such as ultrasonic transducers, are not
suitable for this concept. In contrast, most micro, insect-scaled robots require relatively low frequency.
Therefore, our concept will be applicable to them. For example, the flapping frequency of FWMAV is
in the range of 10–100 Hz. In addition, we expect this concept is suitable for piezoelectric actuators
with small capacitance. Because the time taken to recover the charge is proportional to the capacitance,
larger capacitance results in slower charge recovery. This limits the operating frequency of the actuator.
In future, we will attempt to develop a robot equipped with this circuit to realize a power-efficient and
lightweight robot.

Author Contributions: Conceptualization, T.O. and N.O.; formal analysis, actuator design/evaluation and
writing, T.O.; circuit design and evaluation, N.O. All authors have read and agreed to the published version of
the manuscript.
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Appendix A. Frequency Response and Parameter Extraction from a Flapping Wing Actuator

The resonant frequency and the equivalent circuit parameters were identified based on frequency
responses of the actuator. The resonant frequency was determined by the peak frequency of the



Energies 2020, 13, 2866 13 of 15

average generated lift force. Figure A1a shows the frequency-lift force curve with the applied voltage
amplitude of 30 V. In this measurement, we swept the input frequency with 1 Hz steps. From the graph,
it was found that the lift force was maximum when the frequency was 119 Hz. The equivalent circuit
parameters were extracted from the frequency–power curve. They were derived by fitting a theoretical
response to the measured curve. A square wave with amplitude of V, frequency of ω frequency–power
response of the circuit model, and a parallel circuit of Cp and an LCR-series is expressed based on the
Fourier series expansion as follows:

P(ω) = CpV2 ω
2π +

∑
k=0

Pavg((2k + 1)ω, V)

Pavg(ω, V) = 1
2k+1

√
2
π V Rω2

R2ω2+L2
(
ω2−(LC)−1

)2

. (A1)

By fitting this function to the experimental data, we obtained L = 1.10 × 103 H, C = 1.63 nF,
R = 112 kΩ, and Cp = 30.8 nF. Figure A1b shows the measured data (blue circle) and fitted curves
(orange dotted line).
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Figure A1. Frequency response of flapping wing actuator: (a) frequency-lift curve, (b) frequency–power
curve with fitted line.

In addition, to validate the measured resonant frequency, we calculated the resonant mode shapes
and frequencies by finite element analysis (FEA) using COMSOL Multiphysics. Figure A2 shows the
result. The first mode indicates flapping motion and its frequency is 119.8 Hz, which is close to the
measured frequency. We summarize the material properties used in this analysis in Table A1.

Table A1. Material properties used in finite element analysis (FEA) analysis.

Material Young’s Modulus (GPa) Density (kg/m3)

PIN-PMN-PT 14.3 * 8000
Titanium 100 4500

Carbon fiber-reinforcing plastic 150 1500
Polyimide 9.0 1500
Polyester 5.0 1500

* Value was calculated as the reciprocal of the elastic compliance sE
22.
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