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Abstract: In electricity markets, bilateral contracts (BC) are used to hedge against price volatility in
the spot market. Pricing these contracts requires scheduling from either the buyer or the seller aiming
to achieve the highest profit possible. Since this problem includes different players, a Generation
Company (GC) and an Electricity Supplier Company (ESC) are considered. The approaches to solve this
problem include the Nash Bargaining Solution (NBS) equilibrium and the Raiffa–Kalai–Smorodinsky
(RKS) bargaining solution. The innovation of this work is the implementation of an algorithm based
on the RKS equilibrium to find a compromise strategy when determining the concessions to be made
by the parties. The results are promising and show that the RKS approach can obtain better results
compared to the Nash equilibrium method applied to a case study.

Keywords: electricity market; bilateral contracts; Raiffa–Kalai–Smorodinsky bargaining solution;
game theory

1. Notation

Table 1 summarizes the notation for the variables, functions, and numbers used in this paper.

Table 1. Notation.

A. Variables

xt
k amount of electricity delivered under the BC and sold to end consumers at interval t, MWh

xt
s amount of electricity bought by the ESC in the spot market at interval t, MWh

xt
ss amount of electricity received by the ESC under the BC and sold in the spot market at interval t, MWh

xt amount of electricity received by the ESC under the BC at interval t, MWh

xt,N amount of electricity delivered under the BC during the period from interval t till the end of the contract period, MWh

xt
c amount of electricity produced by the generation company (GC) and delivered under the BC at interval t, MWh

xt
gss amount of electricity produced by the GC and sold in the spot market at interval t, MWh

xt
gs amount of electricity bought by the GC in the spot market and delivered under the BC at interval t, MWh

xt
g output of the GC at interval t, MWh

xt
d amount of electricity sold to the end consumers at interval t, MWh

xt
DDi amount of electricity delivered under the BC by the beginning of interval t, MWh
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Table 1. Cont.

A. Variables

pt
s discrete level of the spot market price, $/MWh

ξt
j probability of scenario for the discrete level of the spot market price

R1, R2
revenues obtained by the contract parties from participation in the spot market, managing the BC and supplying

electricity to end consumers, $

S1, S2
profits gained by the contract parties from participation in the spot market, managing the BC and supplying

electricity to the end consumers, $

∆S0
1, ∆S0

2 relative concessions of the contract parties applying the compromise delivery schedule, $

J contract price equal to the total agreed cost of electricity delivered under the BC, $

B. Random Variables

p t
d electricity price for end consumers in the retail market at time interval t, $/MWh

V total amount of electricity received by ESC under the BC during the contract period, MWh

x t
min, x t

max limits for contract deliveries at interval t, MWh

x t
g min,

x t
g max

min and max limits for electricity production of the GC at interval t, MWh

C. Functions

Ct
(
xt

g

)
production cost function of the GC at interval t, $

D. Numbers

N number of time intervals in the contract period

2. Introduction

Bilateral contracts (BC) are arrangements between two parties. In an electricity market,
these contracts are often established by a Generation Company (GC) and an Electricity Supplier
Company (ESC) under a set of terms, including price, duration, and the volume of electricity to be
delivered. The main objective of arranging a BC is to hedge against day-ahead (spot) market price
volatility since this volatility has increased by the deregulation of the electric power industry [1,2].

Prior to BC settlement, both parties forecast prices in the spot market to determine their strategies
under the BC and then, independently, schedule electricity deliveries at time intervals to maximize
their profits. Once a BC is implemented, its parties are liable to follow the delivery schedule stipulated
in it [3,4].

BCs and the spot market are related since one influences the prices and volumes negotiated in the
other [4]. If improperly chosen, a BC can have the opposite effect due to the spot price being too high
or too low at the market-clearing time when compared to the contract price [5].

Several works have already been published proposing strategies to deal with price risk [6–11],
usually analyzing the interaction between BCs and ESCs applying game theory [12–18]. In [6],
the efficient frontier is used as a tool to identify the preferred portfolio of contracts. In [7] and [8],
methodologies for the development of bidding strategies for electricity producers in a competitive
electricity marketplace are presented. These studies use the fact that market participants react to
competitors’ strategies aiming to maximize their payoffs [7]. Risk is introduced in market generation
bidding in [9] using a mean-variance method and uncertainty, whereas in [10], a binary expansion
approach is applied. In contrast, a dynamic stochastic cooperative exchange based on a bargaining
scheme is used to establish contracts in [11]. In [12], the trading method is based on the non-cooperative
Nash bargaining game in which each transaction and its optimal price are determined to optimize
the interests of individual parties. In [13], the authors use cooperative game theory to simulate the
decision-making process for defining offered prices in a deregulated environment by creating coalitions.
Authors in [14] formulate a prisoner’s dilemma matrix Nash game to show that suppliers have
an incentive to withhold capacity from the market shifting the aggregated supply curve to cause a price
spike. Another Nash equilibrium game is set in [15], analyzing power transactions in a deregulated
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energy marketplace where participants maximize their net profits through optimal bidding strategies.
The same concept is applied in [16] for bilateral electricity markets. Another model presented in [17]
uses a mathematical program with equilibrium constraints (MPEC) for a profit-maximizing problem
for a generator bidding in a competitive electricity market. Finally, a general view of different market
operations, considering forecasting, scheduling, and risk management, is presented in [18].

While many of the aforementioned works focus on finding an optimum solution for only one
of the parties, Palamarchuk proposed a different approach [3]. The proposed approach aimed to
achieve an arrangement equally beneficial for both parties, the BC, and the ESC. Moreover, [3]
implemented the Nash bargaining Solution (NBS) to obtain the relative concession to be made by
both parties. In this work, it is shown that a better outcome than the NBS is possible by applying
the Raiffa–Kalai–Smorodinsky (RKS) bargaining solution. Therefore, the research gap is based on the
fact that the RKS bargaining solution has not yet been applied to BC contracts in electricity markets.
When implementing the RKS bargaining solution, a lower concession is made by both the GC and the
ESC. Moreover, we have considered previous research mainly related to the Nash Bargaining Solution
(NBS). The RKS technique developed can be applied in the energy market, including the Bilateral
Contract (BC) transactions among pairs of Electricity Supplier Companies (ESC) and Generation
Companies (GC).”

This work has the novelty of implementing the RKS approach for a bargaining solution for bilateral
contracts in electricity markets, as already stated. It considers two players, an Electricity Supplier
Company (ESC) and a Generation Company (GC), where they achieve a compromise approach applying
the Raiffa–Kalai–Smorodinsky (RKS) equilibrium having the goal of decreasing the concessions to be
made related to their maximum possible profits. Once the RKS methodology is applied, considering
not only the input data set (spot price scenarios and the demand for the end consumers), but also
the production cost functions, the electricity generation limits, and the deliveries under the Bilateral
Contracts (BC), the applied RKS approach achieves better results than the already applied Nash
Bargaining Solution (NBS).

This paper is structured as follows. Section 3 presents the background for the proposed RKS
bargaining solution problem and introduces the notation and mathematical models used for BCs.
In this section, the RKS compromise approach for BC scheduling is also discussed. Section 4 presents
the numerical results of the proposed RKS approach, and Section 5 states the conclusions.

3. Materials and Methods

In order to implement the proposed model, the RKS bargaining solution, and its compromise
approach, besides the notation used in this research, are presented in the next subsections. The bilateral
contract model considered is also explained.

3.1. Raiffa–Kalai–Smorodinsky Bargaining Solution

In a cooperative game, two or more players look for an agreement that will be mutually beneficial.
A bargaining solution is an equilibrium allocation to satisfy the parties giving them no reason to
bargain further.

In 1950, Nash proposed a framework allowing a unique feasible outcome to be selected as the
solution of a given bargaining problem. It was characterized by four axioms, namely Symmetry (SYM),
Weak Pareto Optimality (WPO), Scale Invariance (SI), and Independence of Irrelevant Alternatives
(IIA) [19].

Kalai and Smorodinsky questioned the IIA axiom proposing a new solution. Their solution
focused on the parties’ ideal payoffs, meaning the highest possible payoff that one side could achieve
individually and introduced the monotonicity axiom as a substitute to the IIA axiom [20,21].

When the solution outcome does not respond to the changes in the bargaining set, that axiom is
coined as the independence axiom. Furthermore, when at least one of the payoff solutions is altered
following a change in the bargaining set, it is known as the monotonicity axiom [19].
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This approach initiated with a critique of the Nash bargaining solution since, even for a larger
feasible set, the new Nash bargaining solution could yield a worse result [20,21]. When observing
Figure 1, a potential bargaining outcome expressed in units of utility can be represented by curve 1.
Moreover, another potential bargaining outcome expressed also in units of utility can be represented
by curve 2. Analyzing Figure 1, even though curve 2 has a larger feasible set than curve 1, the Nash
bargaining equilibrium would give as result point B for curve 2, making player 2 worse off compared
with point A in curve 1. The solution obtained by the RKS approach when the feasible set increases
is point u∗n in curve 2, but is u∗0 in curve 1, making both players better off when applying the RKS
approach (see Figure 1). Therefore, the RKS bargaining solution is a Pareto optimal point from d to the
ideal solution, h [22,23].
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Figure 1. Raiffa-Kalai-Smorodinsky and Nash Bargaining Solution [23].

A larger feasible set with the same ideal solution, point h, in Figure 1, results in a bargaining
solution better (or no worse) for all players when applying the RKS methodology. In summary,
when the feasible set is represented by curve 1, RKS obtains the result given by point u∗0; when the
feasible set is curve 2, RKS obtains the new result, point u∗n, which is better off (or no worse) for both
players. Finally, as already stated, it can then be said that the RKS bargaining solution is a Pareto
optimal point on the line from d to the ideal solution, h [22,23].

Therefore, the RKS bargaining solution is a Pareto optimal point within the line between d and the
ideal solution, h. Then, the players receive an equal fraction of their possible utility gains given by:

u∗n1 − d1

u∗n2 − d2
=

h1 − d1

h2 − d2
(1)

3.2. Bilateral Contract Scheduling

By scheduling, we refer to the amount of electricity to be delivered at each time interval t
throughout the contract duration [3]. Each party, the GC and the ESC forecast the electricity price
in the spot market and schedule the electricity deliveries to maximize their profit. The forecasts of
electricity prices in the spot market at each time interval t are random variables [4].

Two types of BCs are considered:
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Type I: The buyer (ESC) determines the electricity amount to be delivered under the BC at each
time interval t. The supplier (GC) must guarantee electricity delivery in accordance with the buyer’s
requirements. Thus, in a Type I contract, the ESC maximizes its expected profit, S1.

Type II: The supplier (GC) determines the electricity amount to be sold according to the contract
at each time interval t. The buyer (ESC) accepts the delivered electricity according to the supplier
decision, and in that case, the GC maximizes its expected profit, S2.

The following equations were introduced in [3].
For a Type I contract, ESC’s profit (S1) is given by:

max
xt

k,xt
s,xt

ss

S1 = E

 N∑
t=1

[
pt

d(x
t
k + xt

s) − p∼t
s x∼t

s + p∼t
s xt

ss

]
− J

 (2)

where E is the mathematical expectation symbol. Moreover, J is the contract value considered as
a constant since, in this work, the parties agree on a contract price in their BC. The profit maximization
is equivalent to the maximization of the expected sales revenue, R1, in the spot and retail markets:

max
xt

k,xt
s,xt

ss

R1 = E

 N∑
t=1

[
pt

d(x
t
k + xt

s) − p∼t
s x∼t

s + p∼t
s xt

ss

] (3)

subject to:

• the total contract volume:
N∑

t=1

(
xt

k + xt
ss

)
= V (4)

• the sales to end consumers: (
xt

k + xt
s

)
= xt

d, t = 1, . . . , N (5)

• the delivery amount under contract at certain intervals:

xt
min ≤

(
xt

k + xt
ss

)
≤ xt

max, t = 1, . . . , N (6)

• the non-negativity of variables:

xt
k ≥ 0, xt

s ≥ 0 , xt
ss ≥ 0, t = 1, . . . , N (7)

Once the ESC has solved the problem (Equations (3)–(7)) to schedule the electricity deliveries
xt, t = 1,..., N for the contract period, it will bring it to the attention of the GC. In that case, the GC
agrees to supply electricity according to the schedule proposed by the ESC. Suppose that for each time
interval t the GC knows its production cost, Ct

k

(
xt

g

)
, as a function of the electricity generation, xt

g, then,
the production cost function is obtained based on the optimal unit commitment [3].

For a Type II contract, the GC’s goal is to maximize its profit, S2, by simultaneously trading in the
spot market and in the BC market as represented by the following function:

max
xt

c,xt
gs,xt

gss

S2 = E

 N∑
t=1

(
p∼t

s xt
gss − p∼t

s xt
gs −Ct

(
xt

c + xt
gss + J

)) (8)

Since J is constant, Equation (8) is equivalent to:

max
xt

c,xt
gs,xt

gss

R2 = E

 N∑
t=1

(
p∼t

s xt
gss − p∼t

s xt
gs −Ct

(
xt

c + xt
gss

)) (9)
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subject to:

• the electricity generation at each interval:

xt
gmin ≤

(
xt

c + xt
gss

)
≤ xt

gmax, t = 1, . . . , N (10)

• the delivery amount under the contract at individual intervals:(
xt

c + xt
gs

)
= xt, t = 1, . . . , N (11)

• the non-negativity of variables:

xt
c ≥ 0, xt

gs ≥ 0, xt
gss ≥ 0, t = 1, . . . , N (12)

A stochastic dynamic programming approach is applied to solve the problems mentioned above [3].
Moreover, an increase in electricity delivery at an interval results in a decrease at the others. After having
solved Equations (3)–(7) and Equations (9)–(12), a compromise approach can be applied where the
RKS bargaining solution is achieved.

3.3. RKS Compromise Approach for BC Scheduling

A compromise approach for BC scheduling is a way to eliminate the advantage that the party
making the delivery schedule would have over the other. This approach provides an opportunity to
determine electricity deliveries that yield relative equal benefits for the parties. With this method,
both parties can schedule deliveries together or by a neutral third party.

For the compromise approach, both parties must schedule their deliveries independently. If the
ESC schedules deliveries xt, t = 1, . . . , N independently, it solves the problem (Equations (3)–(7)) so it
can obtain the maximum profit. When the GC schedules the deliveries xt, t = 1, . . . , N independently,
it should not follow any delivery schedule suggested by the ESC and, instead of constraint (Equation
(11)) in Equations (9)–(12), it should consider:

N∑
t=1

(
xt

c + xt
gs

)
= V (13)

and the amount deliveries under the BC at the intervals should obey:

xt
min ≤ xt

c + xt
gs ≤ xt

max, t = 1, . . . , N (14)

When applying the RKS bargaining solution approach, the parties intend to maximize
their revenues:

max (R1 + R2) (15)

Or

max

 N∑
t=1

[(
pt

d

(
xt

k + xt
s

)
− p∼t

s xt
s + p∼t

s xt
ss

)
]+

N∑
t=1

[p∼t
s xt

gss − p∼t
s xt

gs −Ct
(
xt

c+xt
gss

)
]

 (16)

Adding the constraint related to the RKS solution:

E
{∑N

t=1

[
(p t

d

(
xt

k + xt
s

)
− p∼t

s xt
s + p∼t

s xt
ss

)
]
}
− J0

E
{∑N

t=1

[
p∼t

s xt
gss − p∼t

s xt
gs −Ct

(
xt

c + xt
gss

)]}
+ J0

=
S∗1
S∗2

(17)
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where J0 is the obtained value of the contract when Type I and II contract problems are solved,
being given by J0 = 1

2

(
R∗1 +

∣∣∣R∗2∣∣∣). The following conditions represented by Equations (17)–(23) must
also be satisfied:

E

 N∑
t=1

[
pt

d

(
xt

k + xt
s

)
− p∼t

s xt
s + p∼t

s xt
ss

] ≥
∣∣∣∣∣∣∣E

 N∑
t=1

[
p∼t

s xt
gss − p∼t

s xt
gs −Ct

(
xt

cx
t
gss

)]
∣∣∣∣∣∣∣ (18)

subject to:

• Total contract volume:
N∑

t=1

(
xt

k + xt
ss

)
= V (19)

• Sales to end consumers: (
xt

k + xt
s

)
= xt

d, t = 1, . . . , N (20)

• Electricity generation at each interval:

xt
gmin ≤

(
xt

c + xt
gss

)
≤ xt

gmax, t = 1, . . . , N (21)

• Amount of deliveries under contract at certain intervals:

xt
k + xt

ss = xt
c + xt

gs, t = 1, . . . , N (22)

xt
min ≤ xt

k + xt
ss ≤ xt

max, t = 1, . . . , N (23)

• Non-negativity of variables:

xt
k ≥ 0, xt

s ≥ 0, xt
ss ≥ 0, xt

c ≥ 0, xt
gs ≥ 0, xt

gss ≥ 0, t = 1, . . . , N (24)

The model applying the RKS bargaining solution is compared with the results applying the NBS
in [3]. It must be said that, when implementing the NBS, the objective function applied minimizes the
concessions of each player in the game, represented by k:

k =

(
S∗1 − E{

∑N
t=1 [p

t
d(x

t
k + xt

s) − p∼t
s xt

s + p∼t
s xt

ss]}+
1
2 (R

∗

1 +
∣∣∣R∗2∣∣∣))

S∗1
(25)

also, k is equal to:

k =

(
S∗2 + |E{

∑N
t=1

[
p∼t

s xt
gss − p∼t

s xt
gs −Ct

(
xt

cxt
gss

)]
}| −

1
2

(
R∗1 +

∣∣∣R∗2∣∣∣))
S∗2

(26)

The concession of each player in the game, ESC and GC, have to be the same for both of them.
The flowchart (i)–(iv) in Figure 2 summarizes the implementation of the RKS bargaining solution.
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4. Numerical Results for the RKS Compromise Approach

For the RKS compromise approach to work, it is necessary to consider that both the ESC and the
GC, have independently scheduled their electricity deliveries in order to maximize their individual
profits. The ESC should determine the electricity delivery scheduling by solving Equations (3)–(7).
The data set used in this work by both the ESC and the GC is given in Tables 2 and 3, respectively [3].
Note that the spot price scenarios are not based on historical data, allowing us to compare the obtained
results with the ones in [3].

It is assumed that the contract periods consist of three equal time intervals. The amount of
electricity to be delivered under the BC is V = 145 MWh, and using the initial data in Table 2,
the results obtained by the ESC are presented in Table 4. With independent scheduling, the ESC obtains
a maximum revenue, R∗1, equal to $ 1807.9.

When the GC is doing the independent scheduling (similarly to contract type II), it must solve
Equations (9)–(12). For a BC volume V = 145 MWh, using the initial data in Table 3, the scheduling
proposed by the GC is shown in Table 5. In that case, the GC has total expenses

∣∣∣R∗2∣∣∣ that amount to
$ 1493.32.
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Table 2. Initial data for Bilateral Contracts (BC) scheduling made by Electricity Supplier Company (ESC).

Time Intervals t1 t2 t3

Spot Price Forecasts Made by ESC

spot price scenarios, pt
s j US$/MWh 10.0 10.4 10.8 11.0 11.2 11.8 11.0 11.4 11.8

probabilities of scenarios, εt
j 0.1 0.8 0.1 0.3 0.5 0.2 0.2 0.4 0.4

electricity price for end consumers, US$/MWh 16 16 16

Constraints for the Optimization Problem

electricity consumption by end consumers, MWh
x1

d x2
d x3

d

9.8 11.4 14.5

limits on electricity deliveries under BC, MWh
x1

min x1
max x2

min x2
max x3

min x3
max

8 60 5 68 6 62

Table 3. Initial Data for Bilateral Contracts (BC) scheduling made by Generation Company (GC).

Time intervals t1 t2 t3

Spot Price Forecasts Made by GC

spot price scenarios, pt
s j,

US$/MWh
10.8 11.2 11.6 11.0 11.6 12.0 11.0 11.8 12.4

probabilities of
scenarios, εt

j
0.2 0.6 0.2 0.25 0.5 0.25 0.1 0.6 0.3

production cost
functions Ct

k

(
xt

g

)
, $

8.4 + 1.4· x1
g + 0.4·(x1

g)2 10.4 + 1.52·x2
g + 0.44·(x2

g)2 11.2 + 1.4·x3
g + 0.32·(x3

g)2

Constraints for the Optimization Problem

electricity generation
limits, MWh

x1
gmin x1

gmax x2
gmin x2

gmax x3
gmin x3

gmax

14.0 50.0 15.0 60.0 16.0 65.0

electricity deliveries
under BC, MWh 15 68 62

Table 4. Results of Independent BC Scheduling made by ESC.

Time Intervals xt
k xt

s xt
ss Deliveries under BC - xt

k+xt
ss

t1 9.8 0 5.2 15

t2 11.4 0 56.6 68

t3 14.5 0 47.5 62

Table 5. Results of Independent BC Scheduling made by GC.

Time Intervals xt
c xt

gs xt
gss Generation—xt

c+xt
gss

t1 14 46 0 14

t2 0 68 15 15

t3 0 17 16.4 16.4

The results obtained for the variables solving the compromise approach applying the RKS solution
and the NBS are given in Table 6. Note that the sum of the deliveries under the BC has to be equal to
the total contract volume, V = 145 MWh. As already stated, the results for RKS are obtained by solving
Equations (15)–(23), while the results for NBS are obtained by Equations (17)–(25).
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The revenue results obtained for the compromise approach are given in Table 7, both for the RKS
and the NBS equilibria. The results of NBS are replicated here, being the same as the ones obtained
by [3]. Furthermore, the negotiation region is larger when applying RKS instead of NBS.

When applying the RKS equilibrium, the ESC obtains higher revenues than when applying the
NBS equilibrium, and the GC incurs in higher expenses when applying the RKS equilibrium than when
applying NBS. It is quite an important point since the contract value obtained for the BC, J, will be
a little bit higher for the RKS case. The NBS results obtained are worse than the one applying the
RKS approach. The values for the profits and for the relative concessions for ESC and GC are given in
Table 7.

When analyzing Table 7, the profits, both for ESC and GC, are larger for the RKS approach.
Moreover, the relative concessions for the ESC and the GC are lower when applying the RKS bargaining
solution equilibrium. These relative concessions represent how much of the maximum profit any
of the parties must give up to achieve the equilibrium. In particular, when the contract volume is
V = 145 MWh, the relative concession for the RKS bargaining solution is 55.01%, and the relative
concession for the NBS is 56.08%, showing the best result obtained for the RKS approach.

Table 6. Results of the Compromise Approach—Raiffa-Kalai-Smorodinsky (RKS) and Nash Bargaining
Solution (NBS).

Compromise Approach—Raiffa–Kalai–Smorodinsky (RKS) Approach

Values Obtained for the ESC Values Obtained for the GC

Intervals xt
k xt

k xt
k Deliveries under the BC xt

c xt
gs xt

gss Generation

t1 8.23 1.57 6.77 15 10.54 4.46 3.46 14

t2 2.54 8.86 65.46 68 13.57 54.43 1.43 15

t3 8.97 5.53 53.03 62 4.33 57.67 12.08 16.41

Compromise Approach—Nash Approach

Values Obtained for the ESC Values Obtained for the GC

Intervals xt
k xt

k xt
k Deliveries under the BC xt

c xt
gs xt

gss Generation

t1 9.80 0 22.90 32.70 9.50 23.20 4.50 14

t2 11.90 0 56.60 68.00 15.00 53.00 0 15

t3 14.50 0 29.80 44.30 5.12 39.18 11.25 16.37

Table 7. Compromise Solution Applying Raiffa-Kalai-Smorodinsky and Nash Bargaining Solution,
V = 145 MWh.

ESC GC
(Expenses) Negotiation Region

Contract Type I US $ 1807.90 US $ 1524.80 US $ 283.10

Contract Type II US $ 1750.40 US $ 1493.30 US $ 266.10

Compromise Approach (RKS equilibrium) US $ 1807.90 US $ 1524.82 US $ 283.08

Compromise Approach (NBS equilibrium) US $ 1788.80 US $ 1512.40 US $ 276.40

RKS Equilibrium NBS Equilibrium

Contract value (J) US $ 1666.36 US $ 1650.60

ESC Profit US $ 141.54 US $ 138.18

ESC Concession 55.01% 56.08%

GC profit US $ 141.54 US $ 138.18

GC concession 55.01% 56.08%
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Finally, we have considered different values for the contract volume, where the contract volume
varies, as shown in Table 8. Moreover, Figure 3 presents the same results for the varying profits when
the contract volume is increased from V = 130 to V = 170. This research has considered increments of
5 MW in the contract volume, in order to show that even with these different contract volume values,
the RKS bargaining solution approach obtains better results than the NBS equilibrium one.

As can be seen, the values obtained for the RKS equilibrium when varying the contract volume
are always better than the results obtained for the Nash bargaining equilibrium. Quite interestingly,
when the contract volume is above V = 165 MWh, the results obtained show the relative concessions to
both parties to be lower than 50%. The lowest improvement when applying RKS and NBS is when
V = 145 MWh.

Table 8. Compromise Approach, RKS, and Nash Bargaining equilibria, when varying the contract volume.

Contract Volume

V = 130 V = 135 V = 140

Contract Type I-ESC independent

Maximum Profit-ESC 1654 1701.3 1755.9

Revenue GC 1354 1411.8 1468.8

Contract Type II-GC independent

Maximum Profit-GC 1587.6 1644.2 1714.8

Revenue ESC 1316.2 1374.3 1451.3

Negotiation Region 337.80 327.0 304.6

RKS NBS RKS NBS RKS NBS

Contract Value (J) 1497.24 1485.10 1555.69 1537.8 1612.36 1603.60

Compromise Approach

Profit ESC 146.02 143.43 144.97 141.15 143.54 141.67

Profit GC 146.02 143.43 144.97 141.15 143.54 141.67

Concession ESC 56.77% 57.54% 55.67% 56.83% 52.88% 53.49%

Concession GC 56.77% 57.54% 55.67% 56.83% 52.88% 53.49%

Contract Volume

V = 145 V = 150 V = 155

Contract Type I-ESC independent

Maximum Profit-ESC 1807.90 1859.90 1951.90

Revenue GC 1524.80 1580.80 1636.80

Contract Type II-GC independent

Maximum Profit-GC 1759.40 1817.00 1874.60

Revenue ESC 1493.30 1552.80 1612.30

Negotiation Region 314.60 307.10 299.60

RKS NBS RKS NBS RKS NBS

Contract Value (J) 1666.36 1650.60 1720.36 1706.35 1774.35 1762.10

Compromise Approach

Profit ESC 141.54 138.18 139.54 136.55 137.54 134.92

Profit GC 141.54 138.18 139.54 136.55 137.54 134.92

Concession ESC 55.01% 56.08% 54.56% 55.54% 54.09% 54.97%

Concession GC 55.01% 56.08% 54.56% 55.54% 54.09% 54.97%
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Table 8. Cont.

Contract Volume

V = 160 V = 165 V = 170

Contract Type I-ESC independent

Maximum Profit-ESC 1963.90 1988.90 2046.30

Revenue GC 1692.80 1731.30 1790.80

Contract Type II-GC independent

Maximum Profit-GC 1940.00 1996.30 2052.60

Revenue ESC 1682.30 1740.10 1797.80

Negotiation Region 281.60 248.80 248.50

RKS NBS RKS NBS RKS NBS

Contract Value (J) 1828.36 1823.10 1882.36 1864.50 1936.60 1922.05

Compromise Approach

Profit ESC 135.34 134.42 133.54 129.73 131.54 128.49

Profit GC 135.34 134.42 133.54 129.73 131.54 128.49

Concession ESC 51.94% 52.27% 46.33% 47.86% 47.07% 48.29%

Concession GC 51.94% 52.27% 46,33% 47.86% 47.07% 48.29%
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Still analyzing Table 8, there is a steady decrease in the concessions when increasing the contract
volume from V = 145 MWh. The best solution takes place when V = 165 MWh; here, the solution of
the RKS approach yields a total concession of 46.33% of its total profit, while, for the NBS, there is
a total concession of 47.86% of its total profit. Furthermore, the largest difference when comparing
RKS and NBS is 1.53% for V = 165 MWh, whilst the lowest difference between the concessions for the
two solutions, 0.33%, is for V = 160 MWh. Finally, the profits for the parties, GC and ESC, are always
higher applying the RKS approach when compared with NBS.
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All the results presented have been obtained running the data set on a PC with one processor
Intel Core i7 at 2.59 MHz with 16 Gb of RAM. The computations were done in Matlab, and the running
time has been under one minute for each one of the cases presented.

5. Conclusions

This paper has proposed an RKS methodology to obtain the equilibrium of a BC used to hedge
price volatility in the spot market and shortage risks. The results show that the RKS approach obtains
better results than the NBS one. Also, when varying the value of the total contract volume from
V = 130 MWh to V = 170 MWh, the RKS bargaining solutions obtained are better than the NBS ones
being independent of the contract volumes.

For this particular problem, the worst results regarding the profit concessions are obtained when
the contract volume is valued at 130 (V = 130), being equal to 56.77% and 57.54% when applying the
RKS and the NBS approaches, respectively. Moreover, the best results are obtained when V = 165,
is equal to 46.33% and 47.86% for the RKS and the NBS approaches, respectively. These results are
quite important since, depending on the contract volume, a compromise approach can be achieved
among the players without having to concede more than 50% of their maximum profits. The obtained
results are also consistent with the fact that the RKS method provides lower concessions, providing
better results in terms of profits for all. This is also supported by the findings of Figure 3, where the
RKS solution is always better than the NBS one.

In the future, improvements to the models, such as trying to analyze if the methods have just
one equilibrium point, a special treatment for weekend data (calendar effect), and the inclusion of
exogenous variables (water storage, weather, etc.) will be addressed. Furthermore, another possible
extension will be to apply spot price forecasting models for the input spot price scenarios for the
Electricity Supplier Company (ESC) and for the Generation Company (GC), making the model a more
realistic one. Further research is required to better figure out how to apply the RKS equilibrium to
problems where there is more than one player, including more than one ESC and more than one GC.
Finally, we will consider the implications of the implemented RKS model in relation to the matching of
producers and users taking part in the electricity market [24].
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