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Abstract: In this paper, the variations in hydropower generation are addressed considering the
seasonality and ENSO (El Niño-Southern Oscillation) episodes. The dynamic hypothesis and the
stock-flow structure of the Colombian electricity market were analyzed. Moreover, its dynamic
behavior was analyzed by using Dynamic Systems tools aimed at providing deep insight into
the system. The MATLAB/Simulink model was used to evaluate the Colombian electricity market.
Since we combine System Dynamics and Dynamic Systems, this methodology provides a novel insight
and a deeper analysis compared with System Dynamics models and can be easily implemented by
policymakers to suggest improvements in regulation or market structures. We also provide a detailed
description of the Colombian electricity market dynamics under a broad range of demand growth
rate scenarios inspired by the bifurcation and control theory of Dynamic Systems.

Keywords: system dynamics; dynamic systems; bifurcations; hydroelectricity variability; ENSO
phenomenon
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1. Introduction

Electricity generation has become one of the most important topics because of not only the
growing demand but also its effects on the environment. Globally, the main source of electricity
generation is derived from fossil fuels [1], a non-renewable resource that gives rise to a large amount
of greenhouse gases that pollute the environment. Thus, renewable energy is currently considered an
alternative source of generation to counteract the undesired effects caused by fossil fuel technologies [2].
In this sense, the deployment of environmentally friendly sources of electricity generation grows in the
short and medium terms [3], which, in turn, may require the adaptation of the electricity markets to
their gradual implementation. On the one hand, any source of generation dependent on intermittent
and seasonal resources can be considered as a variable generation technology [4], which lacks a
consistent source of energy. On the other hand, sources of generation that totally or partially depend
on climatic conditions are cataloged as seasonal. Unlike intermittent technologies, seasonal resources
are characterized by undergoing reductions or increases in their generation due to the climatic seasons,
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but never stop generating electricity. In general terms, the variability in renewable generation and its
effects on the electricity markets have been addressed in several countries using different modeling
approaches [5–7], but System Dynamics (SD) in combination with Dynamic Systems (DS), which can
expand the analysis spectrum, has never been used to evaluate such variability.

In recent years, SD has been used to investigate complex systems [8–11]. SD methodology can
provide modeling or capturing variables that the physics laws fail to perform. Consequently, SD has
become a powerful modeling technique since its foundation in the mid-1950s by Professor Jay Forrester
of the Massachusetts Institute of Technology [12]. This approach can be a useful mathematical modeling
technique for understanding and discussing complex issues and problems in several areas [13].
Nevertheless, the classical SD software restricts the detailed analysis of complex systems since it
only enables the investigation of time series or limited sensitivity studies.

Consequently, investigation trends reveal that SD is complemented with other modeling
techniques to improve the analysis and achieve a higher degree of knowledge of the systems [8,14].
However, a limited number of works complemented SD with the theory of DS [15–20]; for this reason,
and considering that the SD methodology can be applied in practically all research areas, we think
that the combination of SD and DS can offer valuable insight into complex system analysis. Simple SD
models can be easily transformed into a DS model and analytically solved; however, most real systems
are highly complex, making their analytical study challenging. However, by using numerical DS tools,
a hybrid SD/DS approach can be developed as demonstrated in our previous work [20], which is
extended here by desegregating variables, incorporating the ENSO phenomenon, and developing
a more advanced sensitivity analysis by considering the ENSO phenomenon and the chaos theory.
Our proposed methodology can be applied to not only energy systems but also in any SD model by
following the steps explained in Section 3. Indeed, the results discovered by our proposed SD/DS
approach in the Colombian power market may be relevant to international power markets that have a
similar energy matrix and follow the supply and demand laws.

Conversely, although Colombia’s weather reflects a periodic behavioral pattern throughout the
year, the ENSO phenomenon alters such dynamics and disturbs, to some extent, the cyclical behavior of
dry and wet seasons [21,22]. Therefore, the water contributions of the Colombian rivers used to power
the hydroelectricity plants might be highly increased or reduced, according to the presence of La Niña
or El Niño events, respectively. Our model considers the availability factor of the hydroelectricity
generation (a fv) to represent such hydroelectricity climatic dynamics. Thus, we propose to capture,
through a fv, not only the seasonality but also the ENSO phenomenon to incorporate more realistic
characteristics affecting the Colombian electricity supply and demand in our model.

Accordingly, we formulated a deterministic function that can approximate the real characteristics
of the water contributions of the Colombian rivers for modeling the seasonality and ENSO
phenomenon, which has been altering the Colombian seasonality since 1950 [23]. However, in some
cases, the ENSO phenomenon had a stronger influence than others. Colombia has been through several
electricity risks because of the appearance of strong El Niño events, such as 1991–1992, 1997, 2008,
and 2015–2016. Indeed, the worst-case scenario for Colombia was reported in 1991–1992 since there
were several rationing events programmed by the government.

Thus, we obtained the historical mean water contributions from 2000 to 2016 to observe the general
hydroelectricity climatic dynamics of the Colombian rivers. In this work, we obtained the complete
historical synthetic series to show how seasonality and the past ENSO phenomenon have affected
water resources in Colombia over a time span of 17-years and validated the renewable generation
dynamics of 2017, 2018, and 2019, as explained in Section 5.1. Technically, we first extracted the real
data from the XM’s (company that manages the Colombian electricity market) records [24] in terms of
energy inputs and then computed the corresponding a fv (in percentage), as shown in Figure 6 by the
red line. Note that over the past years, the a fv has experienced situations both with great potential and
water scarcity. In some cases, very low levels were seen because of strong El Niño events.
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2. The Colombian Electricity Market

2.1. Real System Overview

Colombia has abundant natural resources, reflected in its electricity sources mostly dominated
by hydropower generation with a nearly 70% (≈11611.1 MW) of its capacity, followed by fossil fuel
plants (29%, ≈4833 MW) and non-conventional renewable sources (1%, ≈151 MW); hence, Colombia
is mainly driven by hydroelectric and thermal power plants. For our model, we assumed that the
electricity demand (ed) of the Colombian electricity market could be met with hydroelectric and
thermal power plants.

Since the liberalization of the energy market in 1990 to promote private investment, Colombia has
achieved a clear legal framework, fair competition conditions, stability for investors, and improvements
to the security of supply [25]. Inspired by the British model, the Colombian electricity sector has been
reformed over the years, and it is more efficient and reliable today because of the well-developed laws
that promote a good market competition.

In general terms, the dispatch process to meet the ed is based on the lowest price offers. It means
that the sources of generation that can produce power at the lowest price possible are placed at the top
level of the electricity matrix to supply the ed. If the ed is not fully met, the next source of generation in
the electricity matrix is called to supply more electricity. This process continues until the ed is covered.
Once the total ed is met, the system sets the market price according to the price offer established by the
last source of generation used. In other words, the dynamics of the Colombian electricity market are
governed by the well-known supply and demand forces.

Furthermore, the operation of the hydroelectricity plants is highly dependent on the level of their
reservoirs, whereas thermal plants rely on fuel availability. In fact, thermal plants in Colombia are
much more reliable and considered as a support for hydroelectricity generation since fuel availability
is not a problem. On the contrary, hydroelectric plants can be strongly affected by weather conditions
considering that dry periods have been observed nowadays.

Although Colombia has prioritized clean energy production, a 70% installed capacity of variable
generation (hydroelectric plants) can indirectly cause other issues. In fact, this hydroelectricity
variability can be more pronounced when other market variables are altered, such as the growth rate of
demand (GRD). Thus, we aimed to address how changes in the GRD can affect the performance of the
Colombian electricity market, which is highly dependent on variable and permanent generation plants.

2.2. Simulation Overview

The results described in the present paper were obtained by combining the SD and DS perspectives;
accordingly, two computer programs were developed. First, under the SD approach, the dynamic
hypothesis of the Colombian electricity sector was identified. Second, the corresponding stock-flow
diagram was derived from the causal loop one to perform a more detailed quantitative analysis.
Finally, the stock-flow structure was transformed into a Simulink block diagram to analyze the system
from a DS perspective.

Hence, to investigate our system in detail, it is necessary to follow one of these two steps once the
stock-flow structure has been constructed:

• Obtain the dynamic equations, and perform an analytical study if possible. Then, program the
equations in any programming language (determined by the modeler depending on system
requirements, simplicity, interface, user friendliness, performance, and accuracy, among others),
and finally, develop any strategy of analysis on the basis of the existing DS tools.

• Inspired by the control theory, transform the stock-flow structure (obtained with the SD approach)
into an analogous block diagram using Simulink. Then, develop any strategy of analysis in a
normal script of MATLAB on the basis of the existing DS tools.
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In this paper, we followed the second step for simplicity, because (i) an analytical study is very
hard or impossible to apply since the solution of the dynamic equations can only be approximated
using numerical methods, and (ii) for creating a friendly simulation environment, such that the
SD community finds practical, broadly applicable, more accurate and intuitive than existing ones.
Accordingly, we created the analogous block diagram in Simulink and then implemented different
tools of analysis in a single script of MATLAB, which has a simple design that is easy to modify
and extend.

3. SD/DS Modeling

3.1. Dynamic Hypothesis

Our electricity market model seeks to show the causalities among the different Colombian market
variables, GRD scenarios, and the imminent effects of seasonality and ENSO phenomenon in the
generation process. As shown in Figure 1, the dynamic hypothesis [26] comprises three balance
loops. B1 represents the dynamic interaction of the demand side variables, whereas B2 and B3

represent the supply side associated with hydropower (V) and fossil fuel (P) generation, respectively.
As mentioned above, the Colombian electricity generation is dominated by hydroelectricity, which is
considered a variable source of generation because it is annually affected by the climate variability
of the country; therefore, (V) in Figure 1 refers to the variable hydropower generation. In the same
manner, the second-largest source of generation (thermal power) is considered a permanent source of
generation considering that its availability remains constant; consequently, (P) is used to refer to this
technology.

As one can see, the balance loop B1 indicates that increasing the values of market price
incentives reductions in energy consumption, which in turn affects the reserve margin positively.
Similarly, when the electricity market is experiencing a reserve margin shortfall, B2 explains that
consumers must pay a higher price. However, this turns out in greater returns on investment for the
producers. Clearly, these incentivize the expansion of both variable and permanent capacity, since the
market price causalities affect not only the balance loop B2 but also B3; therefore, the reserve margin is
affected positively. Note that this increase in the reserve margin balances the subsequent causalities.

Figure 1. Dynamic hypothesis derived from [26].

3.2. Stock-Flow Diagram

The second step of our work implies, as the SD approach suggests [12], a stock and flow building
process to perform a quantitative analysis. This process allows us to transform the causal loop diagram
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into a stock-flow diagram, which can describe the system in more detail involving the formulation of
the dynamic equations.

First, the supply side of (P) generation (referring to all Colombian’s fossil fuel power plants)
involves the expansion of this sector, comprised of two stock variables, its capacity under construction,
and installed capacity (Figure 2). The construction of new plants depends on the investment decision
of the producers, which is determined by their returns on investment. The higher the electricity tariff,
the higher the investment incentives for new capacity. In Colombia, the highest price is usually reached
when thermal plants are used to produce electricity, since the cost of fuel is more expensive than
producing energy with water resources.

Figure 2. Electricity supply from (P) generation.

Similarly, as shown in Figure 3, the supply side of (V) generation (for all Colombian hydroelectric
power plants) is also associated with the expansion of this sector. Installing new capacity is highly
dependent on generating producer profit. In other words, high electricity tariffs benefit the capacity
under construction because producers’ desired for investment is stimulated, which eventually increases
the installed capacity of hydropower generation.

Conversely, the thermal and hydroelectric power plants will eventually become obsolete, affecting
the installed capacity negatively since they will need to be removed from the system. In fact,
the dynamics of the installed capacity in both technologies are affected similarly by two flows,
the retirement of old plants and the retirement of initial ones, as shown in Figures 2 and 3. The flow
retirement of initial plants is used to remove the initial value of the installed capacity, i.e., the current
state of the permanent installed capacity, or the current state of the variable installed capacity. The initial
installed capacity refers to all hydroelectric and thermal power plants which were previously built and
are still in operation. However, determining their lifetime is challenging mainly because most of them
became part of the system in different years, and others do not have accurate information of when they
started to participate in the Colombian electricity market; consequently, they are smoothly removed
from the installed capacity, considering the average lifetime of a general hydroelectricity (or thermal)
power plant, using a first-order delay [27]. In contrast, to gain accuracy in the model, new installed
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capacity is removed from the system, once the power plants become obsolete, using a pipeline delay
(infinite order delay) through the flow retirement of old plants [27].

Figure 3. Electricity supply from (V) generation.

Figure 4 shows that the power demand plays an important role in market dynamics.
The interaction among generators, which compete for providing energy services at the price set
by the market, influences the reserve margin of the electricity system. Furthermore, the market price
formation depends on not only the reserve margin, which set a rationing price when its level reaches a
critical value, but also the last technology of generation participating in the dispatch process to meet
the total ed. Moreover, this market price is slightly delayed since the consumers in Colombia perceive
the current electricity price with a certain lag. Consequently, and as it is expected in the real system,
the market price, together with the elasticity of demand (also known as price elasticity of demand) in
Colombia [28], causes either a positive or negative effect on the demand behavior. In fact, the effect of
price on demand (epd) depends entirely on the market price, delayed market price, and elasticity of
demand (see also Equation (A6)). The epd has been modeled as an index that can take values below
and under 1 to capture how changes in the market price stimulate changes in the ed. An epd > 1 means
a decrease in the market price, which in turn, influences an increase in the ed; in contrast, an epd < 1
means an increase in the market price, which causes a decrease in the ed, demonstrating how the
supply and demand forces work in power markets [29–32].

Finally, the dispatch process is considered in Figure 5. Under the assumption of a perfect electricity
market competition, the firms cannot influence the market price. In fact, the dispatching merit order
is determined by the market, which sorts the available technologies of generation according to their
marginal costs, from the cheapest to the most expensive. This means that the first power plants called
to dispatch their energy are those that offer the cheapest electricity price. Once the supply equals the
demand, the market price is set by the most expensive technology of generation, which is in operation
at that time. This price determines the returns on investment, which eventually influence the system
capacity expansion, as it is included in the supply side modeling. Moreover, in the dispatch side,
some other variables are determined; for example, the utilization factor, which is a percentage measure
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of the participation of power plants in the dispatch process, is used to directly affect the returns on
investment together with the market price. In other words, the amount of energy dispatched by
each technology per its generation capacity (generation) provides a rate of usage of that technology
(utilization factor), which is used to compute its return on investment. Conversely, the generation
capacity depends on the source of generation, essentially, its availability. For example, thermal power
plants, are considered as the permanent sources of generation as their availability is mostly constant
and only restricted by fuel availability; consequently, the availability factor can be kept constant.
However, the generation capacity of hydroelectric power plants is highly determined by either the
amount of water in the reservoirs or the flow of rivers, both of which are strongly affected by weather
conditions; consequently, its availability factor cannot be constant but is modeled by considering the
water contributions of Colombian rivers. Although this availability factor could reach values > 100%,
the capacity factor always reduces it because of the technical constraints of power plants.

Figure 4. Demand component.

Figure 5. Electricity dispatch.

3.3. Block Diagrams of Simulink

As a final step in the modeling process, we transformed the above stock-flow structure into a
block diagram of Simulink to investigate our problem with the support of DS tools. As we already
discussed above, the transformation of a stock-flow structure into a block diagram of Simulink is
very intuitive and does not require us to program numerical methods to solve ODEs, and Simulink
provides more advantages than other SD software packages, such as Vensim, Powersim, and Stella.
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Once we have the model in Simulink, any strategy of analysis can be implemented for investigating its
dynamics because DS tools can be easily implemented or applied in Simulink than having the normal
system equations programmed in MATLAB, C++, or Python. The detailed explanation of the Simulink
block diagrams is provided in Appendix A.

4. Modeling the Seasonality and ENSO Phenomenon

Figure 6 shows the real variability of the hydropower generation (red line), which reproduces
both the seasonality and ENSO phenomenon and has a high random component. Accordingly,
involving probabilistic techniques would be appropriate for modeling such random variability.
Nevertheless, we continued looking for solutions involving deterministic equations or functions
to model the variability, as stated in our previous paper [20]. Therefore, we used a chaotic attractor,
which represents the ENSO dynamics. More precisely, the Lorenz attractor is used to model the
ENSO phenomenon, whereas seasonality is represented by Equation (1). Others have also shown that
strange attractors (or chaos) influence the Colombian hydroclimatology [21], confirming the existence
of chaotic deterministic components in the Colombian hydrology.

Figure 6. a fv. The red signal represents the real behavior of the aggregate flow series of Colombian
rivers obtained from [24]. The blue signal is computed by the author using Equations (1) and (2).
The MAPE (mean absolute percentage error) = 11.35 %

Thus, we incorporated the ENSO phenomenon in a fv through a Lorenz attractor and seasonality.
The latter has been modeled using Equation (1) [20]. See the resulting behavior of Equation (1)
(the Colombian seasonality) in [20].

a fv = 1.01 + 0.47 sin(2πt− 0.45π)× cos(2πt− 0.45π) + 0.25 sin(2πt− 0.55π) (1)

Generally, the seasonality effects tend to be more pronounced when the ENSO appears;
for example, dry seasons might bring droughts, and wet seasons, floods. Thus, we added the ENSO
component with the seasonality component so that a fv can contain both dynamics. Indeed, it has been
shown that El Niño phenomenon is a season-induced chaotic resonance between the ocean and the
atmosphere [22]. The Lorenz attractor can be shown by Equation (2) [33]:

ẋ = a(y− x)
ẏ = x(b− z)− y
ż = xy− cz

(2)

where a, b, and c are parameters used to generate chaos dynamics (Table 1) and x, y, and z are the state
variables [33].
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Accordingly, to obtain a more realistic hydropower generation variability, we implemented both
the Lorenz attractorusing Equation (2) and the seasonality using Equation (1) in a fv. The stock-flow
structure, the Simulink block diagram, and the parameter values are shown in Figures 7 and 8 and
Table 1, respectively.

Figure 7. SD modeling of the ENSO phenomenon. Stock-flow structure of a fv.

Figure 8. The DS modeling approach of the ENSO phenomenon. Simulink block diagram of a fv.



Energies 2020, 13, 2381 10 of 25

Table 1. Parameter values of the Lorenz attractor.

Parameter Value

a 10
b 28
c 2.6667

x(0) 10
y(0) 5
z(0) 20

To test our proposed a fv, we fixed the initial conditions, a, b, and c of the Lorenz attractor to
exhibit the classical butterfly effect. Then, we selected one of its three state variables to represent
the ENSO phenomenon by considering their individual dynamics; therefore, z was selected since it
exhibited a behavior like the real a fv. Finally, we ran the model and obtained the synthetic series
shown in Figure 6 through the dashed blue line. As can be seen, the simulated signal agrees with
the real one, and the MAPE = 11.35%. The MAPE measures the prediction accuracy of a forecasting
method and stands for mean absolute percentage error. It is defined as 1

n ∑n
t=1

∣∣∣ yt−ŷt
yt

∣∣∣ ∗ 100, where n is
the number of observations, yt is the real value, and ŷt is the estimated value of the time series.

The simulated a fv (dashed blue signal) was obtained by using only a determined and fixed set of
initial conditions. However, as the chaos theory states, even slight changes in the initial conditions of
a chaotic system result in very different behaviors. Thus, the simulated dashed blue line in Figure 6
is only one possible reality of the Colombian a fv, so by varying the initial conditions of the Lorenz
attractor, infinite realities can be obtained.

5. Results

5.1. Model Validation

The results of the validation process are out of the scope of this work. However, the model
robustness was tested by following the method explained elsewhere [34,35]. We also applied a highly
advanced sensitivity analysis to our model and validated the tests.

Moreover, we computed the basic time series of our proposed model in Vensim, MATLAB,
and Simulink to verify their accuracy, and all three of them showed good agreement. To further test the
accuracy of our simulation model, we decided to run it starting from 2017, so that part of the simulation
time series and sensitivity analysis can be contrasted with the real data of the Colombian electricity
market. Consequently, we found that our simulations completely reflect the real system. In much
more detail, we found that unmet ed events were expected to occur in 2019, as shown in Figure 9d.
Moreover, we found that for some GRD values, months of electricity rationing were expected to occur
in 2019. According to the upper right diagram of Figure 14, these months might be January, February,
November, and December. If we look at the 3-D diagram of Figure 14, January 2019 has the worst-case
scenario since it has a nearly 72% probability of occurrence. In contrast to the real system, we found
that 2019 was a critical year in Colombia since it was informed by one of the utilities in April 2018 that
Hidroituango (a new 2400 MW hydropower plant expected to enter into the system in 2019 [36]) had
some construction problems and needed to be delayed for 2–3 years [37]. Of course, this was a big
perturbation that caused a supply risk during 2019, especially in January and February, and November
and December [38], as suggested in our simulation model. All these supported the reliability of our
simulation model. Here, it is important to highlight that our model does not predict the Hidroituango
perturbation and that we only withdrew the Hidroituango capacity from our model to observe if our
model was going to be able to reproduce the real dynamics of the Colombian power market from 2017
to 2019.

Considering all these validation processes, and that 2019 has already passed, below we focus on
the results starting from 2020.
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5.2. Simulation of the Colombian Electricity Market

In this section, both the seasonality and ENSO phenomenon are considered for modeling the
variability of hydropower plants as explained before. The stock-flow structure is shown in Figures 2–5.
The Colombian parameter values used in this section are shown in Table 2.

Table 2. Parameters used in the model based on the Colombian electricity sector.

Parameter Value

Construction time (CT) 5 yr
Lifetime (LT) 30 yr

Growth rate of demand (GRD) 0.039
Variable cost (VC) 150 COP/kWh

Incentives (I) 0 COP/kWh
Variability fixed cost (VFC) 60 COP/kWh

y(0) 15,521 MW
z(0) 9320 MW
x(0) 0 MW

Minimum price (MP) 35 COP/kWh
Maximum increase of price (MIP) 350 COP/kWh

Elasticity of demand (ε) −0.3

Now let us show how the seasonality and the ENSO phenomenon affect the main characteristics
of the simplified Colombian electricity market in Figure 9. These simulations were obtained
by considering the BaU scenario, i.e., with the current policies and average population growth.
As can be seen, the chaotic component of the ENSO phenomenon has been introduced to the
overall market dynamics. Here, the ENSO phenomenon gives rise to several unexpected situations.
Generally, the variability of the hydropower generation produced by seasonality and ENSO
phenomenon forces the system to use more thermal generation not only in the short and long run but
also over the middle term. Clearly, the El Niño phenomenon makes the electricity supply dependent
on more permanent generation along the 33-years of simulation. The short and long runs are also the
two most critical situations. Figure 9d shows that unmet ed events are expected in 2022, 2048, and 2049,
whereas the security of supply is maintained in the middle run.

In Figure 9a,b, the dynamics of the capacity under construction of the permanent (CuCp) and
variable (CuCv) generation and the installed capacity of the permanent (ICp) and variable generation
(ICv) are shown, respectively. Similarly, Figure 9c shows the interaction of the electricity dispatch of
the permanent (dispp) and variable (dispv) generation for meeting the ed. As a result of this process,
it is measured the unmet ed (unmeted), as shown in Figure 9d. In this sense, the reserve margin can
also be observed in Figure 9e,f since it can be measured in terms of its power (Prm) and energy (Erm).
Additionally, the dynamics of the utilization factor of the permanent (u fp) and variable (u fv) generation
can also be observed in Figure 9g. Finally, the market price behavior of the system is observed in
Figure 9h.

Nevertheless, the previous simulations were obtained for only one initial condition of the Lorenz
attractor, that is, only one possible reality. As we discussed above, chaotic attractors are very sensitive
to changes in their initial conditions. Therefore, every change in the initial condition of the Lorenz
attractor can be a different possible reality and therefore in a fv. Thus, we can change the initial
condition of z and generate very different synthetic series. However, the question arises as to how
many synthetic series should be computed.

To address this question, we computed the variance of one of the market variables under many
different initial conditions (synthetic series). Then, we determined the number of synthetic series that
should be computed to always guarantee the generation of different synthetic series or realities of a fv.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Simulation of the Colombian electricity market under seasonality and ENSO, considering the
BaU scenario. (a) Capacity under construction (P) - CuCp and capacity under Construction (V) - CuCv,
(b) installed capacity (P) - ICp and installed capacity (V) - ICv, (c) electricity demand - ed, dispatch (P) -
dispp and dispatch (V) - dispv, (d) unmet ed - unmeted, (e) power reserve margin - Prm, (f) energy reserve
margin - Erm, (g) utilization factor (P) - u fp and utilization factor (V) - u fv, and (h) market price - mp.

In this context, let us show Figure 10, which shows the variance of the unmeted. Note that by
setting different initial conditions to the Lorenz attractor, different scenarios or the behaviors of the
unmeted were obtained, especially in the first 2000 simulations. After 4000 simulations, although the
initial condition was still being changed, the variance reached an equilibrium point. Thus, irrespective
of the continued variation in the initial condition of z, the resulting synthetic series do not change
significantly. Consequently, by simulating the electricity market model up to 4000 times, we guarantee
4000 different synthetic series. In fact, we can consider such 4000 possible realities for studying
different GRD scenarios.
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Figure 10. Variance of the unmeted (Var(unmeted)) computed for 6000 simulations. Each simulation was
obtained from a different initial condition of z (z(0)).

5.3. Demand Growth Scenarios: A Bifurcation Perspective

So far, the BaU scenario under seasonality and ENSO phenomenon is explained with only one
possible reality out of 4000. However, population, economic growth, energy efficiency improvements,
and diffusion of self-generation with solar panels, are all key influences in energy demand. Therefore,
in this section, we provide low and high demand growth scenarios, as well as a broad spectrum of
GRD scenarios by simulating 4000 possible realities of the Colombian power market.

To perform this study, we used the parameter GRD shown in Figure 4. This parameter represents
the population and economic growth, which directly influences the ed dynamics. Accordingly, the GRD
was varied from −0.04 to 0.1. For each GRD value, our model was simulated 4000 times. However, for
representation purposes only, the average dynamics of all 4000 synthetic series are illustrated, which
enables us to observe a smoother behaviour of the system variables. Considering that the simulation
of such a huge number of synthetic series is limited by computational power, we only computed 200
GRD scenarios. This means that we computed a total of 800,000 synthetic series.

A more advanced sensitivity analysis diagrams are shown in Figure 11 based on the concept of
bifurcation diagrams. Notably, our model is characterized for exhibiting an infinite transient behavior
(stable solutions are not achievable) due to the strong dependence on continuously growing investment
decisions and demand. Nevertheless, the concept of bifurcation diagrams is used for not only the last
values of the synthetic series (as commonly done for physical systems), but also the short, middle,
and long run values of the simulations, as stated in [19,39], as a map of all possible scenarios.

As shown in Figure 11a,b, the seasonality and ENSO phenomenon do not significantly influence
the dynamics of ICv and ICp; chaotic or variability components are not displayed in both diagrams.
Only a continuously growing pattern can be observed as GRD increased. Since all synthetic series
were averaged, the sensitivity diagrams show a smoother behavior pattern. In fact, as we explained
before, because of the merit order effect, the ICv is always above the ICp. This suggests that, regardless
of the variability of hydropower generation and the GRD scenario, renewable and fossil fuel capacities
tend to increase in the short term and in the long term. Nevertheless, the hydropower capacity always
grows faster than the thermal capacity for well-known environmental reasons.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. GRD scenarios under seasonality and ENSO phenomenon. GRD was varied from −0.04 to
0.1. The green rectangles marked in all figures represent the current Colombian scenario (GRD = 0.039)
(a) ICp, (b) ICv, (c) Prm, (d) Erm, (e) u fp, (f) u fv, (g) unmeted, and (h) mp.

Note that for the Colombian case (green rectangle), ICp and ICv reach maximum values of 14 and
72 GW, respectively, close to the possible reality shown in Figure 9b. ICv reaches this value almost at
the end of the simulation (2046), whereas ICp, near 2028. Thus, the variability imposed by the ENSO
episodes is very strong and thus forces the thermal capacity to grow and the hydropower capacity
to decrease correspondingly. The electricity market tries to mitigate such strong variability by using
more permanent or thermal generation. Accordingly, we can expect to have the same conclusion for
all GRD scenarios.

Conversely, note that negative values of the GRD do not incentivize the expansion of both ICp

and ICv, which is explained by the continuous drop in consumption due to decreasing ed. Moreover,
by increasing the value of the GRD, one can see a clear growth in both installed capacities. Particularly,
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the ICv exhibits exponential growth. The ICp, conversely, presents a slower exponential growth more
concentrated for large values of GRD, and no intermittent complex dynamics are observed because
the permanent capacity is larger and thus less critical values of Erm are exhibited or, at least, Erm does
not abruptly change (see Figure 11d). Both the nearly smooth growth of ICp and ICv and the larger
share of permanent generation give rise to a less variable Erm.

Figure 11c shows that Prm shows positive margins for all GRD values. However, although more
permanent capacity is installed when the ENSO is part of the model, its stronger variability leads Prm

to more critical instances as GRD increases; consequently, negative Erm values are more likely to occur
for larger GRD scenarios, as shown in Figure 11d. Almost all positive GRD scenarios lead to a similar
negative Erm value, which is more pronounced around GRD = 0.09. The question arises whether it
occurs in the short or long run, which we discuss in the following section.

Furthermore, when the ed is decreasing (GRD < 0), both Prm and Erm grow higher than other
GRD scenarios, but critical values are reached as well at some time in the simulation. In fact,
when we further increase the GRD, Prm and Erm smoothly decrease and become more critical. For the
Colombian case, particularly, Erm might cross the red line in 2021–2022, 2048, and 2049, as shown
in Figure 9d. The Colombian case is part of the most dangerous GRD scenarios seen in this figure
(for GRD = 0.02 onward).

Our electricity market model, which now incorporates the ENSO phenomenon, exhibits unmeted
events for all GRD scenarios, as illustrated in Figure 11g. Note that for some parameter values unmeted
could be very high, whereas others could be low. In Colombia, the GRD is close to 0.039, and as
shown in Figure 9d, it might be possible to have unmeted ≈ 12%, 35%, and 22% in 2022, 2048, and 2049,
respectively. However, these values correspond to only one of the 4000 possible realities computed;
therefore, after averaging all the 4000 synthetic series of unmeted, a maximum value of 8% is obtained
for the Colombian case, as illustrated in Figure 11g, which we further investigated in this work. In fact,
the risk to have unmeted events is imminent. Indeed, it might be the worst if the GRD increases.
It appears that the only way to avoid such critical situations is by installing new permanent or variable
capacity before 2021, only by doing so, Colombia might change its energy future landscape. Colombia
urgently needs a new capacity to change its overall energy future prospective. Considering that it
is expected to have a larger GRD over time, Colombia could be subjected to an increasing risk of
undergoing significant unmeted episodes.

From Figure 11h, one can see that unmeted events can also be detected from the mp. Recall that
when Erm becomes zero or negative, the system sends a signal of setting a RAP in the mp; therefore,
one can see in the mp that the signal of RAP is set in all GRD scenarios since the maximum price
reached by the system is above Pp. In other words, the mp takes values between Pp and Pv, and at
some time, it also takes a RAP. For this reason, the sensitivity diagram captures values ranging
from 0 to 800 COP/kWh. The smaller the value of the GRD scenario, the cheaper the mp will be for
consumers. Obviously, a small GRD value leads to fewer rationing episodes over time, which in turn,
guarantees cheaper prices for consumers. The question arises whether the RAP is set in the short or
long term, which shall be further investigated, but it can be partly inferred from the unmeted dynamics
explained above.

Additionally, Figure 11e,f illustrate the participation of each technology of generation in the
dispatch merit order. As shown, hydroelectricity power plants (u fv) are used in all GRD scenarios
ranging from no less than 12% and up to 100%. However, this interval of participation shrinks as the
GRD further increases, basically because it is necessary to mitigate the ENSO variability by installing
more permanent capacity and reducing the variable one. For instance, in the Colombian case u fv

ranges from 35% to 100% depending on different conditions, whereas for GRD = 0.1, one would expect
u fv ranging from 53% to 100%, 18% less participation than the Colombian scenario. The thermal
plants are not used at their full potential (u fp = 100%) because more thermal and less variable
capacities are installed so that less participation from permanent generation is needed to meet the ed.
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However, for negative values of GRD, the participation of renewable power plants can be larger since
the appearance of rationing events is less unlikely.

Evidently, the larger the values of GRD, the more electricity is needed to be able to meet the
increased ed; therefore, the participation of thermal power plants is larger for those GRD scenarios.
The thermal power plants are less used for all GRD scenarios (a large permanent capacity together
with a significant variable one can meet the required ed sufficiently), for u fp between 0% and 95%.
Under the current market structure, the full potential of thermal plants is not necessary for supporting
the hydropower generation, meeting the ed, and avoiding the rationing events; however, it can be
unavoidable because of the complex dynamics of the hydropower variability, as shown in Figure 11d,g.

5.4. Confidence Limits and Their Occurrence

Advanced sensitivity diagrams based on bifurcation theory were obtained above to provide a
deeper insight into the Colombian electricity market against GRD variations and under variability
imposed by seasonality and ENSO phenomenon. However, it is essential to investigate the confidence
limits together with their time of occurrence. We applied DS tools to reach our goal and incentive
this novel form of analysis for SD models that can extract more and complete information of
possible scenarios.

As shown in Figures 12 and 13, under the DS perspective, more information can be extracted from
our SD model based on the bifurcation theory by illustrating the confidence limits together with their
corresponding year of occurrence. In other words, the maximum and minimum values reached by the
key market variables were plotted for each GRD scenario.

As a first step, let us consider Figure 12a, which illustrates the confidence limits of ICp under
different GRD scenarios. Note that 50% of the GRD scenarios (i.e., for negative GRD values and
some positive ones, up to 0.028) indicate that the permanent capacity tends to increase and gets a
maximum value in the short or middle run, after which it starts to drop until it reaches a minimum
value (close to 0 MW) in the long run, near 2045. Under negative and small positive values of GRD,
the power market might expect to have a significant permanent capacity installed for 8–11 years.
Then, after about 25 years, one can expect a considerable reduction in thermal capacity. However, if the
ed of Colombia is 0.029 ≤ GRD ≤ 0.044, Colombia might expect to have a significant reduction of its
permanent share in the short run (2020) caused by its natural depreciation, but also a large increment
of it in the middle term (2028) caused by the critical rationing events expected to occur in the short
run, which then incentive the thermal capacity expansion. In fact, if the ed of Colombia increases
(GRD > 0.045), the permanent capacity decreases in the short run, in 2020, but it might be necessary
to incentivize a large increment of this capacity in the long run, about 2048, for supporting the variable
renewable generation of such time. The GRD scenarios together with the ENSO variability give us
three possible energy prospects for thermal power generation. One of them (for GRD < 0.029) suggests
that the permanent capacity would continue to grow for at least 8 years, but it could disappear in
the long term. The other one (0.029 ≤ GRD ≤ 0.044) suggests that the permanent capacity tends to
disappear in the short term, but it might become important in the middle term because of the new
capacity investments conducted in previous years to overcome the critical situations encountered in
the short run. In contrast, if the GRD exceeds 0.045, it is very likely that the permanent capacity drops
a lot in the near future but increases significantly in the long term to support the increasing variable
renewable capacity.

Conversely, the behavior patterns of ICv (see Figure 12b) never drop significantly in the long run
regardless of the GRD scenario; its minimum value is always expected to occur around 2022 for the
same reason explained above. Additionally, note that for−0.04≤ GRD ≤ −0.015, the maximum ICv is
achieved close to 2030. Conversely, for −0.015 ≤ GRD ≤ 0.1, the maximum ICv is normally achieved
at the end of the simulation since the ed is large enough to provoke critical values of Erm in prior years,
which immediately incentivizes the investments in new hydropower capacity; however, the resulting
increase in ICv occurs 5-years later (≈2049) because of issues associated with construction delays.
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(a) (b)

(c) (d)

Figure 12. Confidence limits of the GRD scenarios together with their time of occurrence, when
seasonality and ENSO phenomenon are considered. The marked green vertical line represents the
Colombian case (GRD = 0.039) (a) ICp, (b) ICv, (c) Prm, and (d) Erm.

Furthermore, as shown in Figure 12c,d, Prm and Erm differ by a number of properties. In general
terms, both Prm and Erm always exhibit their lowest values in the short run (around 2020) because of
the natural depreciation of power plants, which is expected to significantly affect the margin level until
the first new capacity is ready to operate. Additionally, our electricity market model is expected to
attain the maximum Prm and Erm levels, principally, in the middle term and in the long term. It means
that all power plants that are built to support the critical situations in the twenties give rise to a margin
level overshoot a few years later. After that, both Prm and Erm start to drop again but do not reach a
critical value in the long run.

Moreover, Figure 13a,b illustrate the confidence limits of u fp and u fv, respectively. u fp shows
that the highest participation of thermal plants is basically required in the short run for all GRD
scenarios. Clearly, 2020–2021 can be cataloged as very critical years for the environment since almost
the full potential of the fossil fuel power plants might be necessary to cover the total ed regardless
of the GRD scenario. The lowest participation of thermal plants (Consequently, less CO2 emissions
provided by fossil fuel generation) took place during 2019, once again regardless of the GRD scenario.
Thus, the ENSO phenomenon makes thermal power crucial for all GRD scenarios to guarantee the
security of supply, especially in the short run as the risks of blackouts persist.
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(a) (b)

(c) (d)

Figure 13. Confidence limits of the GRD scenarios together with the time of occurrence, under
seasonality and ENSO phenomenon. The marked green vertical line represents the Colombian case
(GRD = 0.039) (a) u fp, (b) u fv, (c) unmeted, and (d) mp.

Moreover, u fv shows that hydroelectricity plants participated with their full power in 2018, 2020,
and 2021, indicating that the short run might be a very critical time for the Colombian power market if
new and significant capacity is not installed prior to 2021. The worst cases for hydropower generation
appear to be for negative and few positive GRD scenarios and in the very long run; as shown,
its participation goes from 12% to 25%. However, for most of the positive GRD scenarios, the lowest
participation of hydroelectricity plants (ranging from 25% to 52%) starts in the middle run because
Prm and Erm have a safe value during this time. Clearly, as GRD increases, the lowest participation of
hydroelectricity plants becomes higher as well.

Finally, Figure 13c,d show unmeted and mp, respectively. The ENSO phenomenon causes unmeted
episodes to appear for all GRD values. For negative GRD, electricity rationing is much less than
in other cases. Within the GRD range (−0.04, −0.008), the worst unmeted events occur in the very
short run, whereas for GRD (−0.007, 0.1), including the Colombian case, the worst unmeted cases are
expected to occur close to 2021. In fact, the exponential shape of unmeted corresponds to rationing
events taking place in a relatively further run (and no electricity rationing events appear in the long
run), whereas the flat shape of unmeted suggests rationing events appearing in the very short run
but also fewer pronounced rationing events than the exponential one. Accordingly, it can be seen
in Figure 13d that the RAP is present in all GRD scenarios and that the maximum mp is reached
close to 2021 regardless of the GRD scenario, whereas the hydroelectricity price (Pv) is detected as the
minimum price in the short run, once again regardless of the GRD scenario. Although some rationing
events appear and both thermal and hydropower plants dispatch electricity to meet the total ed, it is
expected that mp that consumers perceive are mostly set by thermal producers, as shown in Figure 9h.
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As can be seen from Figures 12 and 13, the policymakers can determine, for each market variable,
the extreme conditions and when they are going to take place; this has never been constructed using
SD models and has recently been introduced in [20].

5.5. Detailed Rationing Events: A Control Theory Pperspective

Now let us consider in more detail all the possible rationing events of the GRD scenarios under
the presence of the ENSO phenomenon in our model. As we discussed and showed above, all GRD
scenarios may exhibit unmeted or rationing events if the ENSO phenomenon is incorporated in the
model; therefore, here, we estimate the number of months expected to be under electricity rationing,
their specific year, and even the exact month.

By using the input-output relationship diagram widely used in control theory through describing
functions [40], we develop a graphical tool that can specifically determine how long rationing events
are expected to undergo, their year and month of occurrence, and the probability of such episodes.

Figure 14 shows the input-output relationship diagram computed for every GRD scenario;
the bottom left diagram shows the FRM (frequency of rationing months), the upper left and right
diagrams illustrate their corresponding year and month of occurrence, and the bottom right diagram
shows their corresponding probability of occurrence. In fact, our model undergoes different FRM
for each GRD scenario; particularly, note that for GRD values above 0.02, five or more months of
electricity rationing are expected to occur during 2020–2023 and 2041–2050. According to the upper
right diagram, these months might be mainly January, February, November, and December. However,
January is prone to be the driest month of the year; hence, we infer January would most likely be the
worst-case scenario for most of the GRD values. Then, the 3-D diagram shows that January 2021 is one
of the possible worst-case scenarios since it has a nearly 30% probability of occurrence. We conclude
that if the GRD reaches positive values, it is very likely that the power market undergoes an electricity
crisis mainly in January in the short run and in the long run. Since Colombia went through a serious
electricity shortage in 2019 due to the Hidroituango delay, which is also shown using our simulation
model, the government should pay attention to the coming years to avoid unmet ed events.

In more detail, Figure 14 shows that Colombia might undergo 5 months of electricity rationing.
If we look at the mapped upper left diagram, it can be observed that these 5 months might take place in
2021, 2022, 2048, or 2049. However, it is possible to verify from the BaU Colombian scenario shown in
Figure 9d, that events of unmeted are expected to occur in 2022, 2048, and 2049. Accordingly, and looking
very carefully to the unmeted of the BaU scenario and at the corresponding mapped upper left
diagram of Figure 14, we can conclude that Colombia might have 5 months of electricity rationing in
2021–2022, and 2048–2049 in January and February, July and August, and November and December.
Finally, the bottom right 3-D diagram shows that January and February of 2021–2022 are some of the
worst-case scenarios with probabilities of occurrence of 32% and 45%, respectively, which are followed
by January of 2048 and 2049 with probabilities of occurrence of nearly 44% and 12%, respectively.
Thus, officials must pay attention to mainly January 2021–2022 to avoid shortages. Our model shows
that Colombia needs new power to be installed before 2022 to avoid probable rationing events.

The critical situations expected to happen in the short run can also incentive a safe period of time
(from 2024 to 2040) in the middle run for the Colombian electricity market. These investments can be
expected to provide sufficient power and competitive edge to the Colombian electricity market, if not
in the short run, in the medium run (Figure 14).
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Figure 14. Diagram of the GRD scenarios once the ENSO phenomenon is incorporated in the
model. FRM stands for frequency of rationing months. The Colombian case is marked by the green
horizontal line.

6. Conclusions

The chaotic component intended to represent the variability of hydropower generation is highly
transferred to ICp rather than ICv (which is the technology bringing variability to the system). This is
basically explained by the dispatch merit order effect together with environmental and price issues.
hydropower plants are built in accordance with the ed growth, whereas thermal plants are built when
hydroelectricity is not able to meet the total ed. However, since all the market variables are averaged,
the chaotic components are not well pronounced.

Since the ENSO phenomenon onsets a stronger variability, ICp tends to develop its capacity.
Generally, stronger variability influences more investments in permanent capacity to mitigate such
variability. Therefore, less renewable capacity is installed. Indeed, we have validated with historical
data that this conclusion has been present in the installation of permanent and variable capacity during
the past decade.

Because of the nearly smooth growth of both ICp and ICv, and the installation of a larger share of
permanent generation as the GRD varies, less variable Erm is achieved. Even though more permanent
capacity is installed when the ENSO is part of the model, its variability leads Prm to critical instances
for large GRD values. In fact, even for the negative values of GRD, Erm reaches critical episodes and
cannot avoid dropping to negative ones for larger GRD values.

The ENSO phenomenon scenarios mainly show that variability, together with other issues,
might provoke serious CO2 emission episodes in 2021–2022 since a very high potential of fossil fuel
generation plants might be necessary to cover the total ed, regardless the GRD scenario. This case
has already been happening in Colombia because of the Hidroituango plant delay. Although there
have not been unmet demand episodes, it caused a serious alert in the electricity system so that the
government immediately called for a renewable auction in October 2019. Regardless of the GRD
scenario, the lowest participation of thermal plants (consequently, less CO2 emissions) is taking place
nowadays during 2019.
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Despite the chaotic variability of the ENSO phenomenon, certain patterns can be observed in the
market variables with specific periods of time suffering from dry months, such as January, February,
July, August, November, and December; the behavior patterns of the seasonality dominate the market
dynamics, although the ENSO phenomenon chaotically disturbs its behavior.

Inspired by the control theory, the stock-flow structure of our proposed model was successfully
and easily transformed into its equivalent block diagram of Simulink. Transforming the stock-flow
structure in a block diagram of Simulink has shown to be the easiest way to have access to any DS tool.
This transformation is very simple (as shown in [20,41]) and does not require mathematical equations.
The same steps applied in Vensim, Stella, or Powersim to formulate the stock-flow structure can be
applied in Simulink, just that some functions can change when using a different software package.
In fact, irrespective of the level of abstraction or how big our model is, Simulink gives even more
advantages than SD software. However, it is mandatory to construct the stock-flow structure in any
SD software as usual, before resorting to Simulink.

Finally, further research will be developed to incorporate the import and export of electricity in
our model and, in turn, explore how the Colombian power market might be affected by the ENSO
phenomenon together with the import and export of electricity.
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Abbreviations

The following abbreviations are used in this manuscript:

SD System Dynamics
DS Dynamic Systems
FRM Frequency of Rationing Months
ENSO El Niño-Southern Oscillation
GRD Growth Rate of Demand
COP Colombian Pesos
BaU Business as Usual
ICv Installed Capacity (V)
ICp Installed Capacity (P)
CuCv Capacity under Construction (V)
CuCp Capacity under Construction (P)
ed electricity demand
dispp dispatch (P)
dispv dispatch (V)
unmeted unmet ed
Prm Power reserve margin
Erm Energy reserve margin
u fp utilization factor (P)
u fv utilization factor (V)
mp market price
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Appendix A. DS Modeling

Appendix A.1. Simulink Block Diagrams

Figure A1. Supply side from (P) and (V) generation.

Figure A2. Demand component.

Figure A3. Electricity dispatch.



Energies 2020, 13, 2381 23 of 25

Appendix A.2. System Equations

CuCp = CuCp(0) +
t∫

0

(
invp − f pp

)
· dt

ICp = ICp(0) +
t∫

0

(
f pp − ropp − ripp

)
· dt

CuCv = CuCv(0) +
t∫

0
(invv − f pv) · dt

ICv = ICv(0) +
t∫

0
( f pv − ropv − ripv) · dt

PD = PD(0) +
t∫

0
dc · dt

(A1)

invp =


0

PD
PD(0) k1δ(t)

PD
PD(0) k2δ(t)

ROIp ≤ 0
0 < ROIp ≤ 10
ROIp > 10

invv =


0

PD
PD(0) k1δ(t)

PD
PD(0) k2δ(t)

ROIv ≤ 0
0 < ROIv ≤ 10
ROIv > 10

(A2)

f pp = invp(t− CTp)

f pv = invv(t− CTv)

ropp = f pp(t− LTp)

ropv = f pv(t− LTv)

(A3)

ripp =

{
ICp(0)/LTp;

0
t ≤ 2017 + LTp

other case

ripv =

{
ICv(0)/LTv;

0
t ≤ 2017 + LTv

other case

(A4)

ROIp(t) =
(mp·u fp−VCp−VFCp+Ip)

VFCp+VCp
100%

ROIv(t) =
(mp·u fv−VCv−VFCv+Iv)

VFCv+VCv
100%

(A5)

dc = GRD× epd× PD

epd =

{
1;

(mp/dmp)ε;
dmp = 0

other case
dmp = mp(t− 0.25)

(A6)

mp =


Pv;
Pp;

RAP;

(genv ≥ ed ∧ rm > 0) ∨ (genv < ed ∧ genp ≤ 0 ∧ rm > 0)
genv < ed ∧ rm > 0 ∧ genp > 0

(genv ≥ ed ∧ rm ≤ 0) ∨ (genv < ed ∧ rm ≤ 0)
(A7)

u fp =

{
0;

dispp/genp;
genp = 0

other case
; u fv =

{
0;

dispv/genv;
genv = 0
other case

(A8)

dispp =


0;

ed− genv;
genp;

genv ≥ ed
genp + genv ≥ ed

other case
; dispv =

{
ed;

genv;
genv ≥ ed
genv < ed

(A9)

Prm =
((
(ICp + ICv)− PD

)
/PD

)
100%; Erm =

((
(genp + genv)− ed

)
/ed
)

100% (A10)

genp = ICp · AFp · 30 · 24; genv = ICv · a fv · 30 · 24; ed = PD · 0.7685 · 30 · 24 (A11)
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