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Abstract: The built environment has the potential to contribute to maintaining a reliable grid at the
demand side by offering flexibility services to a future Smart Grid. In this study, an office building is
used to demonstrate forecast-driven building energy flexibility by operating a Battery Electric Storage
System (BESS). The objective of this study is, therefore, to stabilize/flatten a building energy demand
profile with the operation of a BESS. First, electricity demand forecasting models are developed and
assessed for each individual load group of the building based on their characteristics. For each load
group, the prediction models show Coefficient of Variation of the Root Mean Square Error (CVRMSE)
values below 30%, which indicates that the prediction models are suitable for use in engineering
applications. An operational strategy is developed aiming at meeting the flattened electricity load
shape objective. Both the simulation and experimental results show that the flattened load shape
objective can be met more than 95% of the time for the evaluation period without compromising the
thermal comfort of users. Accurate energy demand forecasting is shown to be pivotal for meeting
load shape objectives.
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1. Introduction

The European Union agrees on drastically lowering CO2 emissions in order to mitigate the effects
of climate change [1,2]. Currently, in the Netherlands, electricity generation is mostly achieved by
means of fossil fuels and is responsible for a significant portion of the total emissions [3]. To meet
European targets, a transition to more sustainable energy generation is necessary within the country
to decarbonize the grid [4,5]. When transitioning towards a low-carbon society, not only sustainable
generation, but also energy saving on the demand side is even more important [6,7]. Transport and
the built environment account for approximately 24% and 36% of total energy consumption in the
Netherlands and are therefore responsible for much of the emissions due to fossil fuels [3,8]. It is evident
that an effective transition to a sustainable future also requires technologies on the demand side [9,10]
that can be powered by Renewable Energy Sources (RES), such as electric heat pumps [11,12] to fulfill
the heating demand of buildings and electric vehicles for transport [13], in the Dutch context [4].

A transition to more sustainable energy generation is expected to bring about a variety of
challenges. Firstly, the foreseen large-scale deployment of RESs may seriously affect the stability of
energy grids [14,15]. An increase in power grid-connected RESs results in a change in power generation
characteristics and grid operation [16]. In contrast to conventional fossil power plants, RESs are
often relatively small power generators and are distributed throughout the low- and medium-voltage
grid levels [17]. When RESs are integrated into the built environment, buildings will both consume
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and supply energy to the grid and become active ‘prosumers’ [18]. This creates multi-directional
energy flows on the low- and medium-voltage grid levels [19]. Additionally, through the continuing
electrification of space heating by heat pumps and transport by electric vehicles, the pressure on the
transmission and distribution grids will increase further, thereby increasing the risk of congestion [20,21].

A specific problem that can be encountered is “overgeneration,” with increasing penetration of
solar photovoltaics (PVs). The Californian Independent System Operator published a “duck chart”
which shows during springtime a significant drop in midday net load as more PVs are added to the
system [22]. This introduces a huge problem in ramping up the generation, as PV power production
rapidly decreases as the sun sets in the evening. Notably, no research reports, papers, or other
documents were found which describe the duck curve or a similar problem explicitly in the Dutch
context. However, a quick analysis of the installed PV capacity growth over the years and the grid
loads in the Netherlands indicate that the problem increases as the current PV growth trend progresses.
Large-scale integration of PV generation could also lead to local problems. The decentralized generation
of PV power could lead to overvoltage and congestion in the low-voltage grid level when there is high
PV power generation but low demand [23].

All the aforementioned problems call for more intelligent ways of consuming electricity.
One possible way is a Smart Grid [24], where both demand and local production in the distribution
grid are controlled in order to stabilize the grid [14]. Many definitions of a Smart Grid exist [25].
According to the Institute of Electrical and Electronics Engineers (IEEE) [26], the Smart Grid has come
to describe a next-generation electrical power system that is typified by the increased use of information and
communication technology (ICT) in the generation, delivery and consumption of electrical energy. The future
power grid is expected to provide unprecedented flexibility in how energy is generated, distributed
and managed [27]. The Dutch branch organization of energy network operators (Netbeheer Nederland)
estimates that the total need for flexibility in the Netherlands will double towards 2030 compared to
2015, and increase even further by a factor of three towards 2050 [28].

Power system flexibility can be achieved through a variety of different interventions at both the
supply and demand side [29]. The traditional approach is supply-side flexibility, which could be
delivered by supply-side energy storage, power plant response, curtailment of variable renewable
electricity generators or dedicated power plants such as combined heat and power (CHP) and combined
cycle gas turbines [29]. The demand side, which includes the built environment, can also adapt its
electricity demand according to grid needs through the adoption of Demand Side Management (DSM)
programs. Gellings [30] describes DSM as: “the planning and implementation of those electric utility
activities designed to influence customer uses of electricity in ways that will produce desired changes in the
utility’s load shape”. Techniques such as peak shaving and valley filling could be used to accomplish
the load shape objective [31], especially with the use of storage systems. The built environment could
thereby provide energy flexibility, which is defined by the International Energy Agency (IEA) Annex
67 as a building’s ability to manage its demand and generation according to local climate conditions, user needs
and grid requirements [32].

Building energy flexibility is not just limited to the utilization of storage systems but also energy
systems inside the buildings to create a balance with the building-integrated renewable energy
production. Of the energy systems present in a commercial office building, Heating Ventilation and Air
Conditioning (HVAC) [33] systems account for approximately 63% of the energy requirements (in the
Netherlands in 2017) [34]. Therefore, the employment of HVAC systems for realizing Demand-Side
Flexibility (DSF) services is interested and driven by the following factors [19]:

- HVAC systems are equipped with automation and control systems that enable implementation of
strategies for DSF actuation;

- HVAC systems have significant thermal inertia, thereby they can function as a buffer for the
electricity grid for short periods of time by reducing air-handling unit (AHU), chiller or heat
pump loads;
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- HVAC systems have continuous control systems that allow operational cycle modification for
energy advantages, rather than on–off control.

The significant energy demands and the aforementioned control advantages allow HVAC systems
and energy storage systems to provide effective energy flexibility and management services for the built
environment. Buildings could, therefore, offer DSF by manipulating installations to respond to power
system requirements by increasing or reducing electricity consumption patterns while maintaining
a comfortable and productive environment for the occupants [19]. Additional DSF could also be
delivered through the control of lighting and plug loads [35].

To provide the above-mentioned decision-making requirement, it is necessary to perform accurate
short-term and small-scale electricity load forecasting on subsystem levels of individual buildings [36].
The energy behavior of a building is influenced by many factors, such as weather conditions, building
construction, the thermal properties of the building, the occupancy, and occupant behavior [37].
Forecasting subsystem-level loads is therefore considered a complex and challenging problem [36].
However, this type of demand prediction could be a valuable contribution to maintaining a reliable
electricity grid.

Contributing to solving the mentioned problems, the objective of this research is to identify and
implement building energy management opportunities using subsystem-level electricity demand
prediction and a Battery Electric Storage System (BESS). The objective of this study is to stabilize/flatten
a building energy demand profile to demonstrate energy flexibility for a future Smart Grid without
compromising user comfort. The proposed methodology in Section 2 is advantageous to the research
community because it discusses the demand prediction of several subcomponents (AHU, HVAC,
chiller, lighting, and plug loads) of buildings, which is otherwise rare in the existing literature.
Moreover, a major contribution would be the implementation of the discussed methodology in a
real-life office building. Next, the quantitative results and qualitative findings have been presented in
Sections 3 and 4.

2. Materials and Methods

This section first introduces the case study building and its electrical load groups. Subsequently,
three steps are described in the methodology used:

- Step 1: Prediction models are established for each load group and the performance metrics that
are used to analyze prediction accuracy are described;

- Step 2: The operational strategy of the Battery Electric Storage System (BESS) is described
alongside key performance indicators (KPIs) that are used to quantify the impact of the energy
flexibility provided;

- Step 3: The implementation procedure in the real BMS system is described.

2.1. Case Study Building

The case study office building is located in The Netherlands, which is a European country with
a temperate oceanic climate (Cfb type) according to the Köppen–Geiger climate classification [38].
The office was built in 1993 and can be described as a traditional office building. The building has an
approximate floor area of 1500 m2 and a practical maximum occupancy count of 35 [19]. The building
is provided with a photovoltaic system and a Battery Electric Storage System. An impression of the
building is shown in Figure 1. A general overview of the loads of the building is shown in Figure 2.
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Figure 1. (Left) Impression of the building. (Right) A Battery Electric Storage System (BESS) installed 
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A detailed description of the subcomponents of the building follows: 

a) AHU and HVAC control unit: The ventilation system of the building is designed for two 
functions: refreshing the air in the building and transporting the desired cooling capacity into 
the building [39]. This group is composed of a variety of different components including 
supply and return fans, HVAC controls, a heat recovery wheel, and the pumps for the 
heating system and cooling system. 

b) Chiller: The chiller is an electric, double-stage air-source compression cooling machine. It is 
an on–off operated machine, which means that it starts and stops multiple times per hour 
depending on the cooling load. This cooling machine is equipped with a small buffer. The 
distribution system supplies cold temperature to the rooms utilizing water-to-air 
aftercoolers. 

c) Lighting: The building is largely equipped with fluorescent lighting. One office space has an 
LED lighting system with motion sensors and the ability to individually set light temperature 
settings for each workplace.  

d) Plug loads: Plug loads consist of all the remaining electricity consuming devices such as 
computers, printers, coffee machines, etc.  

e) PV system: The case study office has 65 solar Photovoltaic (PV) panels on its roof, with 260 
Wp per panel, corresponding to a total installed capacity of 16.9 kWp [40], with a 15 kW 
inverter. Each solar panel is individually optimized to its Max Power Point (MPP) with the 
use of DC/DC optimizers.  

f) Battery Electric Storage System: The building is equipped with a Nilar NiMH Battery 
Electric Storage System (BESS) with 48 kWh of storage capacity. The power conversion 
system is formed by the combination of a bi-directional inverter and transformer in a single 
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Figure 2. Electrical load diagram of the building.

A detailed description of the subcomponents of the building follows:

(a) AHU and HVAC control unit: The ventilation system of the building is designed for two
functions: refreshing the air in the building and transporting the desired cooling capacity into the
building [39]. This group is composed of a variety of different components including supply and
return fans, HVAC controls, a heat recovery wheel, and the pumps for the heating system and
cooling system.

(b) Chiller: The chiller is an electric, double-stage air-source compression cooling machine. It is an
on–off operated machine, which means that it starts and stops multiple times per hour depending
on the cooling load. This cooling machine is equipped with a small buffer. The distribution
system supplies cold temperature to the rooms utilizing water-to-air aftercoolers.

(c) Lighting: The building is largely equipped with fluorescent lighting. One office space has an
LED lighting system with motion sensors and the ability to individually set light temperature
settings for each workplace.

(d) Plug loads: Plug loads consist of all the remaining electricity consuming devices such as
computers, printers, coffee machines, etc.

(e) PV system: The case study office has 65 solar Photovoltaic (PV) panels on its roof, with 260 Wp per
panel, corresponding to a total installed capacity of 16.9 kWp [40], with a 15 kW inverter. Each solar
panel is individually optimized to its Max Power Point (MPP) with the use of DC/DC optimizers.
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(f) Battery Electric Storage System: The building is equipped with a Nilar NiMH Battery Electric
Storage System (BESS) with 48 kWh of storage capacity. The power conversion system is formed
by the combination of a bi-directional inverter and transformer in a single cabinet. The advantage
of this configuration is that the equipment can be disconnected completely. This prevents
unnecessary power loss when the battery is not utilized. Table 1 provides an overview of the
specifications of the Nilar BESS and energy conversion system.

The method used to ultimately flatten the electricity demand profile for the case study building
consists of three steps elaborated in Sections 2.2–2.4.

Table 1. Battery storage and conversion system specifications.

System Technical Features Value Unit

SUNSYS-PCS2-33TR (bi-directional inverter and transformer)

Maximum current (DC) 80 Adc
- limited in setup to 35 Adc

Maximum current (AC) 53 Arms
Rated current (AC) 48 Arms
Rated power (AC) 33 kW
Maximum efficiency 97 %
European efficiency 96 %

Nilar ECI-600V—48 kWh (BESS)

No. of battery packs 40
System voltage 600 V
Rated capacity 80 Ah
Energy 48 kWh

2.2. Step 1: Establish Prediction Models

Building electricity demand predictions are an essential part of developing a suitable control
strategy. The total electricity consumption of the case study building consists of 5 major load groups
and a BESS which were extensively monitored. Due to the different behavior of all load groups, different
prediction methodologies are proposed depending on the group’s characteristics. An advantage of
this approach is that the cause of prediction errors is easier to trace back to the load groups which are
inaccurately predicted, after which the model could be adjusted or optimized. Another argument for
predicting each load group separately is that relatively simple prediction methods could be used which
are specifically designed for predicting the loads of a particular load group. This also makes practical
implementation of the predictions in the BMS more transparent. A priori knowledge obtained through
inspection of the building’s individual load groups and their characteristics enabled the construction
of the prediction models as presented. On the other hand, large fluctuations in loads such as the chiller
make it exceptionally difficult to accurately predict electricity demands intra-hourly. Consequently,
predictions in this study are calculated for all load groups on a 1 hour resolution. Figure 3 illustrates
the overview of subloads and corresponding day-ahead prediction models. BMS data from 1 January
2017 to 31 December 2018 are used in the establishment of the prediction models except for Solargis®

predictions for the outdoor temperature and PV yields. The Solargis dataset contains data from 25
May 2018 to 4 April 2019 (~10 months).
(a) AHU and HVAC control unit:

For this load group, a parametric approach is chosen because of the characteristic S shape of
the data (see Figure 4). Parametric modeling techniques involve two steps [41]: first identifying the
function form, and then fitting the parameters of the mathematical model. In order to determine a
better fit for the mathematical model, the natural logarithm of the dataset is taken, which is also known
as a variance-stabilizing transformation.
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Figure 4. Demand variation in the air-handling unit (AHU) and the Heating Ventilation and Air
Conditioning (HVAC) control unit with respect to the outdoor temperature (Toutdoor).

Data points with an energy demand < 4 kWh.h−1 are considered outliers and were removed from
the dataset. The data in Figure 4 are plotted in an S shape. This shape can be described mathematically
by combining a logistic function and parabolic function. The transformation of this combined equation
back to the scale of the original dataset is achieved by exponentiation. The final equation to predict the
AHU and HVAC control unit energy demand (EAHU&controls) as a function of the ambient temperature
(Toutdoor) is given by Equation (1).

EAHU&controls,t=i = exp
(
(A·Toutdoor

2 + B·Toutdoor + C)

·

[
α+

β
1+exp(−γ·(Toutdoor−δ))

]) [
kWh.h−1

] (1)

(b) Chiller:
Figure 5 shows a scatter plot of the hourly electricity demand of the chiller as a function of the

outdoor temperature. Considering the shape of the data, a linear regression model will be used in this
case. Engineering expertise also tells us that measurements at the previous time step (t−1) may have
the largest impact on the building cooling load at time t [42]. Therefore, one of the proposed models is
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a multi-variable linear regression model that uses a time series of Toutdoor as an input and provides
a prediction for the chiller’s energy demand at t = i (Echiller,t = i) as the output. The mathematical
definition of this model is shown in Equation (2). By fitting the coefficients ai to the dataset, a single
equation is obtained which is capable of providing predictions. The number of terms/variables that
should be included in the model is determined through k-fold cross-validation [41] with k = 10. Note
that k-fold cross-validation is used for the establishment of the chiller model.

Echiller,t=i = a0 + a1·Toutdoor,t=i + a2·Toutdoor,t=i−1 + a3·Toutdoor,t=i−2 + · · ·+ an

·Toutdoor,t=i−(n−1)

[
kWh.h−1

] (2)
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(c) Plug loads and lighting:
Occupancy is known to be related to plug loads [43]. However, because the day-ahead occupancy

cannot be predicted accurately, an approach is chosen wherein the future plug load and lighting demand
are based on (recent) historic demands. The proposed model makes energy demand predictions for
an hour i (Epred,t=i), based on the historic demands of the same clock hour. This model predicts hour
i based on the power demands at hour i of the N most recent workdays when predicting workdays,
likewise for weekend days. Equation (3) describes the model. In this equation, 24 describes the number
of hours per day. This prediction model is hereby named the “recent day model”.

Epred,t=i =

∑N
k=1(Et=i−24∗k)

N

[
kWh.h−1

]
(3)

(d) Photovoltaic panels:
Solargis® is a Slovakian company that provides solar, weather, and PV yield forecasts for almost

any location on earth. The case study building has been using its services since May 2018. Solargis®

provides both temperature and PV yield predictions on an hourly basis for every hour of the day and
up to 48 hours ahead.
(e) Outdoor temperature:

Some of the aforementioned models use the outdoor temperature as a predictor variable. Making
future predictions with these models, therefore, requires outdoor temperature predictions. Solargis®

services are again used to provide predictions for the outdoor temperature. The data obtained are
post-processed with elevation correction and bias correction [44].
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2.2.1. Performance Evaluation of Predictions

The performance of the prediction models requires quantification. This is achieved by introducing
various error metrics [45]. Two types of error metrics are used: those without dimensions (without units)
and those with dimensions (with units). Error metrics without dimensions are essentially normalized
errors which are necessary for comparing results with studies with different sized installations [46].

To normalize the data, error metrics with dimensions use the sum of all measured points or
the average of all measured points in their denominators. This denominator has a downside when
interpreting these error metrics for parameters such as the temperature or when assessing the seasonal
performance of the PV predictions, since there is the possibility that the temperatures of a dataset,
for example, may average to approximately 0 ◦C in wintertime, which in turn gives an unreasonable
scaling to the performance metrics. Choosing an error metric with dimensions omits this problem and
gives an intuitive value with units.
(a) The Coefficient of Determination (R2)

R2 evaluates how much of the variability in the actual values is explained by the model [41].
Generally, R2 takes a value between 0 and 1, wherein 1 represents the best performance. It should
be emphasized that while R2 is a powerful metric when assessing linear models, it is an inadequate
measure when assessing non-linear models [47]. R2 is therefore only used for the assessment of the
chiller model in this research. The mathematical definition of R2 is given by Equation (4).

R2 = 1−

∑N
i=1(x̂i − xi)

2∑N
i=1(xi − x)2

[−] (4)

where
x̂i The predicted value for data point i (e.g., power demand),
xi The measured (observed) value for data point i, and
x The mean of all observed values in the dataset.

(b) The Weighted Average Percentage Error (WAPE)
The WAPE describes the average magnitude of error produced by the model, relative to the

measured values. It is widely used as a performance measure in forecasting, since it is easy to interpret
and understand [48]. This metric is robust to outliers. Forecasting is best when the WAPE is close to 0.
Equation (5) shows the mathematical definition of the WAPE [48].

WAPE =

∑N
i=1

∣∣∣∣ x̂i−xi
xi

∣∣∣∣xi∑N
i=1 xi

=
∑N

i=1 |xi−x̂i |∑N
i=1 xi

[%]

f or xi ≥ 0
(5)

(c) The Coefficient of Variation of the Root Mean Square Error (CVRMSE)
The CVRMSE is a performance metric that penalizes larger errors more than the WAPE [49].

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)
recommends CVRMSE values below 30% [50] for hourly predictions and so this standard is also
adopted in this research. The mathematical definition is provided in Equation (6) [49].

CVRMSE =

√∑N
i=1(xi−x̂i)

2

N

x
[%] (6)

(d) The Mean Absolute Error (MAE)
The MAE is the average of the absolute difference between the predicted values and observed

value; see Equation (7) [51]. The closer the value is to 0, the better the prediction performance.

MAE =

∑N
i=1|xi − x̂i|

N
(7)
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(e) The Root Mean Square Error (RMSE)
The RMSE is the same as the CVRMSE, except for scaling by the average of all observations; see

Equation (8) [52].

RMSE =

√∑N
i=1(xi − x̂i)

2

N
(8)

(f) The Mean Bias Error (MBE)
The MBE indicates whether a forecasting model, in general, tends to overestimate or underestimate

in comparison to the actual values [46]. This metric could then be used to correct such systematic
deviations. The MBE can be calculated according to Equation (9) [52]:

MBE =
1
N

N∑
i=1

(x̂i − xi) (9)

2.2.2. Total Demand Prediction of the Building

Finally, in order to predict the total day-ahead (lead time: 24 h) electricity demand of the building,
the established prediction models for all load groups and Solargis® temperature and PV prediction
services are integrated into one combined model (see Figure 6). The predictions are performed each
day at 00:00 and error metrics are computed. The dataset used in the integrated model consists of
Solargis® and historic building energy demands from 25 May to 4 April 2019. MATLAB is used for the
integration of the models and assessment of the data. After combining the predicted energy demands
of each subcomponent, the resulting total building demand prediction with the hourly resolution data
in kWh.h-1 is taken as the power demand in kW.
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2.3. Step 2: Establish the Operational Strategy and BESS Simulations

The objective of this study is to stabilize/flatten a building energy demand profile during office
work hours using a BESS. Peak shaving and valley filling are necessary to meet the load shape objective.
A peak refers to a significantly higher power demand than desired, and a valley to a significantly lower
power demand than desired. Before peak shaving and valley filling can be considered, a ‘desired power
demand profile’ of the building should be established. A comparison between the actual building load
and the desired load then allows for the identification of peaks and valleys. Instead of the term ‘desired
power demand’, henceforth, the term ‘baseline’ (BL) is used. An illustrative example of a BL which is
set between 07:00 and 17:00 (working hours of the building) is shown in Figure 7. By charging and
discharging the BESS, load shape objectives can be met. In principle, this baseline can be developed to
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reflect the different objectives of the building owners such as maximizing self-energy consumption,
minimizing electricity costs, and matching flexible Smart Grid demands.

Energies 2020, 13, x FOR PEER REVIEW 10 of 27 

 

 
Figure 7. Peak shaving and valley filling depending on the established baseline. 

The operation of the BESS relies heavily on the established BL. When the baseline is too high, 
power demands are unnecessarily high, and the BESS may not be able to fill all valleys. On the other 
hand, when the BL is too low, the BESS may not be able to deliver the power necessary to shave all 
the peaks. Another important parameter that is dependent on the baseline (and vice versa) is the 
initial state of charge (SoCini) of the BESS before the load balancing period starts. In this case, the load 
balancing period starts at 07:00. The mutual dependence of BL and SoCini calls for a strategy to 
determine the best balance. The steps taken to determine the best balance are described below. For 
both workdays and weekend days, the predictions are calculated at 00:00 for the upcoming 24 h and 
then used when determining the BL and SoCini.  

2.3.1. Workdays 

The determination of suitable values for the BL and SoCini is a dynamic process performed by 
using the established energy predictions for each day. On the other hand, battery operation is 
constrained to work between a 0.8 SoC and 0.2 SoC margin, which means a capacity of ~28.8 kWh 
out of the total 48 kWh is available for operation throughout the day. The other operational 
constraints, e.g., the limited number of charging cycles, which affect the degradation of the battery 
are not taken into account. 

The algorithm starts at 00:00 by receiving the predicted energy demand profile for the upcoming 
day. Based on the maximum predicted power demand of the prediction profile, a series of test 
baselines (BLtest) are generated as shown in Figure 8a. Next, for different SoCini values ranging from 
20% to 80% (20%, 30%, …, 80%), the charging and discharging patterns of battery storage are 
evaluated for each BLtest profile as illustrated in Figure 8b. For the evaluation, the charging efficiency 
is taken as 85.5%, and the discharging efficiency is taken as 95%. 

 

Figure 7. Peak shaving and valley filling depending on the established baseline.

The operation of the BESS relies heavily on the established BL. When the baseline is too high,
power demands are unnecessarily high, and the BESS may not be able to fill all valleys. On the other
hand, when the BL is too low, the BESS may not be able to deliver the power necessary to shave
all the peaks. Another important parameter that is dependent on the baseline (and vice versa) is
the initial state of charge (SoCini) of the BESS before the load balancing period starts. In this case,
the load balancing period starts at 07:00. The mutual dependence of BL and SoCini calls for a strategy
to determine the best balance. The steps taken to determine the best balance are described below.
For both workdays and weekend days, the predictions are calculated at 00:00 for the upcoming 24 h
and then used when determining the BL and SoCini.

2.3.1. Workdays

The determination of suitable values for the BL and SoCini is a dynamic process performed
by using the established energy predictions for each day. On the other hand, battery operation is
constrained to work between a 0.8 SoC and 0.2 SoC margin, which means a capacity of ~28.8 kWh out
of the total 48 kWh is available for operation throughout the day. The other operational constraints,
e.g., the limited number of charging cycles, which affect the degradation of the battery are not taken
into account.

The algorithm starts at 00:00 by receiving the predicted energy demand profile for the upcoming
day. Based on the maximum predicted power demand of the prediction profile, a series of test baselines
(BLtest) are generated as shown in Figure 8a. Next, for different SoCini values ranging from 20% to 80%
(20%, 30%, . . . , 80%), the charging and discharging patterns of battery storage are evaluated for each
BLtest profile as illustrated in Figure 8b. For the evaluation, the charging efficiency is taken as 85.5%,
and the discharging efficiency is taken as 95%.

For each case, the cumulative energy which could not be delivered by the BESS to shave the peaks
throughout the day, denoted by Xdischarge (read: ‘inability to discharge’), and the cumulative energy
which could not be stored by the battery to fill the valleys throughout the day, denoted by Xcharge (read:
‘inability to charge’), are calculated. Performing the simulations for each case results in a complete
overview with all different combinations of BL and SoCini, and corresponding values for Xdischarge and
Xcharge. This information forms the basis in order to decide which case is expected to perform the best.
Then, the chosen BL and SoCini are used for the operation of the specific workday.
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2.3.2. Weekend Days and Holidays

The operational strategy of the weekend/holiday is to maximize PV self-consumption and prevent
net power injection into the grid, meaning BL = 0 kW is chosen for weekends. At 00:00, an energy
demand profile of the building is generated based on the predictions for the upcoming 24 h. By using
these energy predictions and the assumed charging efficiency of the battery, the expected required
storage capacity of the battery to prevent net injection between 07:00 and 17:00 is estimated. From this,
the required SoCini is calculated. Figure 9 shows a visual representation of an example weekend day.
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Figure 9. Foreseen excess photovoltaic (PV) production depending on building energy demand forecast
on weekend days and holidays.

An illustration of the operational strategy to maintain the flattened demand profile on weekdays
and weekends/holidays is shown in Figure 10. Before implementing it in the real building, the prediction
models that are established in Section 2.2, the operational strategy and algorithm to determine the BL
and SoCini, as well as a BESS model are implemented in MATLAB.
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Figure 10. BESS operational schedule.

Even though the demand predictions are carried out with hourly resolution data, after the
determination of the required baseline (BL) and SoCini, operational strategies are simulated with the
highest-resolution data available, i.e., 1 min resolution data. This is becausecontrol of the real system
occurs on the time scale of seconds rather than hours. Furthermore, battery behavior can only be
accurately modeled when simulating with very high-resolution data. After simulation of the power
flows in the BESS, the 1 min operation data are averaged to 15 min resolution data. The 15 min
resolution is of interest because national electricity grid balancing in the Netherlands is carried out in
time blocks of 15 min (clock quarters), also known as the program time unit (PTU) [53]. It is, therefore,
reasonable to assess the performance of flexibility efforts at the same resolution.

2.3.3. Assessment of Operational Strategy

Because this research focuses on assessing the building’s electrical energy flexibility, key
performance indicators (KPIs) are chosen wherein the actual impact of energy flexibility is quantified.
Important KPIs that evaluate overall building energy performance and which are used in this
research are:

(a) KPI 1: Total energy consumption (excluding PV power generation) [54]. In this paper, this is
limited to electricity only;

(b) KPI 2: Exported electricity (feed in from the building’s PV system into the AC grid) [54];
(c) KPI 3: Imported electricity (power from the grid) [54];
(d) KPI 4: Battery Electric Storage System (BESS) losses;
(e) KPI 5: Self-consumption [55];
(f) KPI 6: Self-sufficiency [55];
(g) KPI 7: Percentage indicating the proportion of working hours wherein the baseline is

successfully maintained.

Furthermore, a qualitative assessment is included using the load duration curves only for working
hours and for both working and non-working hours. In addition, similar to the load duration curve,
a Baseline Deviation Duration Curve (BDDC) is defined, since the aim of the model is to maintain the
power demand as set by the baseline for the building through the operation of the BESS. This curve
visualizes how well the system can maintain the baseline during the operational hours. The BDDC can
be constructed by calculating the offset between the baseline and electricity consumption from the grid
(Pbuilding,net) for all working hours, as shown in Equation (10).

Pbaseline,deviation,t=i = Pbuilding,net, t=i − Pbaseline,t=i [kW] (10)

Then, the values of Pbaseline,deviation are sorted in descending order. This leads to a curve that is
analogous to the load duration curve. The obtained Baseline Deviation Duration Curve visualizes how
well the BESS strategy can maintain the baseline.
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2.4. Step 3: Real Building Management System (BMS) Implementation

The final step concerns the practical implementation of the prediction models, algorithms,
and BESS control strategies in the InsiteView® Building Management System (BMS). The BMS platform
coordinates sensor-based measurements, actuators, and monitoring data at all operational levels in
the building and provides an environment where advanced control algorithms can be implemented.
After beta testing for ~4 weeks, an experimental phase was conducted for 13 days, from 7 August 2019
to 19 August 2019.

An overview of the general methodological steps that are used to structure Section 2 and the
results (Section 3) is provided in Figure 11.Energies 2020, 13, x FOR PEER REVIEW 13 of 27 
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3. Results

The results are discussed following the steps described in Sections 2.2–2.4.

3.1. Step 1. Establish Prediction Models

(a) AHU and HVAC control unit: Parametric model
As mentioned in Section 2.2, from the scatter plot obtained for the energy demands of the AHU and

HVAC control unit load group (EAHU&controls) against the outdoor temperature (Toutdoor), a parametric
approach was considered for demand prediction. Figure 12 shows the results of the curve fitting,
where (a) shows the measurements and fitted curve, and (b) the residuals. The fitted parameters to
Equation (1) are provided in Table 2. Thereby, the parametric model is represented by Equation (11).

EAHU&controls,t=i = exp
((

0.0075·TOutdoor
2
− 0.3576·TOutdoor + 123.8934

)
·

[
0.01555 + −0.0016

1+exp(−(−1.0342)·(TOutdoor−21.2692))

]) (11)

A major factor for the deviations from the function fit above the curve is found to be the opening of
the variable air volume (VAV) valve depending on the indoor CO2 concentration. The error calculation
metrics for the fitted curve are a WAPE of 2.81% and a CVRMSE of 4.36%. Since these values are in line
with the requirements, the model is considered accurate enough for its predictions.
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Table 2. Numerical values for parameters.

Parameter Value

A 0.0075
B −0.3576
C 123.8934
α 0.0155
β −0.0016
γ −1.0342
δ 21.2692

(b) Chiller: Multi-variable linear regression
For chiller demand prediction, multi-variable linear regression is used. The results of the k-fold

cross-validation for different numbers of variables involved in the regression formula (see Equation (2))
are shown in Figure 13. Overall, the performance is very similar regardless of the number of variables
involved. At first, there is a (slightly) increasing performance when using one variable compared to
two variables. This behavior is in line with the literature claiming that temperatures at previous time
steps (t−1) may have the largest impact on the building cooling load at time t [42]. Including more
variables in the regression results in unexpected behavior; at first, the performance decreases, and then
it appears to increase again. Since this observed behavior cannot be proven, the sudden increase in
performance using ≥ 6 variables is thought to have a mathematical or coincidental origin rather than a
physical origin.
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The results of the k-fold cross-validation for different numbers of variables involved in the
regression formula are investigated for up to 10 variables; see Figure 14. As discussed in the previous
section, k-fold cross-validation where k = 10 is used—this means that the process of taking the 9 training
folds, determining the regression coefficients, and then inputting the validation fold as input is repeated
10 times in total until all folds are used once as a validation set. Each repetition of this process yields
a set of regression coefficients. These regression coefficients are plotted in Figure 14. It is observed
that the value for a1 is nearly the same value for all folds, indicating a low uncertainty in the value of
this parameter. The results for parameter a2 show that most values are slightly below zero, indicating
a weak negative correlation. For a3 and beyond, parameter values become extremely uncertain; as
shown by the distribution of values around zero, it can be concluded that it is not even clear whether
there is a small positive correlation, small negative correlation, or no correlation at all. Therefore, these
and subsequent terms were not considered.
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Figure 14. Regression coefficients for k-fold cross-validation using 10 variables.

The regression with two variables reaches a local performance maximum with an R2 value of 0.89,
a WAPE of 19.7% and a CVRMSE of 27.6%. Since the best results are obtained by using two variables,
a model of the form as shown in Equation (12) is used and fitted to the dataset. The corresponding
coefficients are provided in Table 3.

Echiller,t=i = a0 + a1·Toutdoor, t=i + a2·Toutdoor,t=i−1

[
kWh.h−1

]
(12)

Table 3. Fitted parameters to the multi-linear regression model.

Parameter Value

a0 −10.9190
a1 0.7902
a2 −0.1223

(c) Plug loads and lighting: Recent day model
The results of the performance assessment for the lighting and plug load predictions according to

the model described by Equation (3) are shown in Figure 15. The performance for all hours (= working
+ non-working) of the dataset is shown in blue, and the prediction performance for only work hours,
is shown in orange.
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predictions for plug loads.

The predictions show a sharp increase in performance between N = 1 and N = 2 for both lighting
and plug loads. Using multiple historic data points for the prediction of a future data point is thought to
have a stabilizing effect because the outliers which may be present in the historic data are combined with
more representative historic values. The predictions, which are made by taking the average of these
historic data points, are therefore less affected by outliers. Both the lighting and plug load predictions
reach optimum performance when using five historic days (N = 5) in the forecast. With N = 5 for work
hours, the lighting load predictions yield a WAPE of 8.6% and a CVRMSE of 12.0%, and the plug load
predictions yield a WAPE of 10.6% and a CVRMSE of 13.8%.
(d) PV power: Solargis®

During the night, there is no sunlight, and PV power predictions for these hours are always zero.
These predictions are of course always 100% accurate. These predictions should not be considered in
performance evaluation. Specifically, predictions which are done for hours between 17:00 and 07:00
are not included in the Solargis® PV prediction evaluation. Prediction accuracy is determined by
comparing Solargis® predictions with the AC-side power measurements of the PV system.

Figure 16 gives an overview of the Solargis® prediction performance as a function of the lead
time for the case study building. The overall performance of the predictions shows a rapid decrease
in prediction accuracy in the first few lead hours. A peak at 5 lead hours is followed by a sharp
decrease in the MAE and the RMSE, after which a long approximately stable period follows. The peak
and subsequent decrease mark the transition between satellite-based models and numerical weather
prediction models used by Solargis® [46].

The subplots for the different seasons all show similar behavior in terms of the MAE and the RMSE.
However, the MBE clearly shows different fluctuations depending on the season and the lead time.
As stated earlier, the MBE indicates whether there is systematic overestimation or underestimation
in the predictions. In principle, the MBE can be used to easily correct prediction inaccuracy, e.g.,
by subtracting the value of the MBE in case of overestimation. Due to the various fluctuations, there
will be no attempt to improve prediction accuracy through MBE compensation. Such an analysis is
beyond the scope of this research.

(e) Outdoor temperature: Solargis®

The accuracy of the temperature predictions is assessed by comparing Solargis® temperature
predictions with the temperature measurements which are calculated by the weather station on the
roof of the building; see Figure 17.
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The results of the analysis of the temperature forecasts for the case study building are shown in
Figure 18. The overall performance of all data points is shown as well as subplots for the performance
during the different seasons. From the magnitude of the MAE and the RMSE (without MBE correction),
it can be seen that temperature predictions are quite accurate overall. The autumn and winter
temperatures are predicted best. The errors increase only gradually for longer lead times. For an
unknown reason, a small spike at lead time = 25 h is observed. The behavior of the MBE in the overall
assessment shows a steady underestimation, with a value of –0.5 ◦C. Although this value is slightly
changed for the different seasons, a systematic underestimation (indicated by the “–” sign) occurs
throughout the seasons. MBE correction can be used to improve the predictions. This is achieved by
adding a value of 0.5 ◦C to all the Solargis® temperature predictions of the dataset. The dashed lines
in Figure 18 show the modified results. The figure clearly shows that the MBE has shifted upwards to
the desired value of ~0 ◦C. The lower values for the MAE and the RMSE in all plots show that this
correction is an appropriate measure to better align the predictions with the measurements.
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3.1.1. Summary of Subcomponent Prediction Models

The subprediction models and Solargis® services that were demonstrated in Section 2.2 form the
building blocks of the complete building energy demand prediction. A summary of the developed
models and corresponding performance metrics for each load group is provided in Table 4. For the
purpose of this research, the proposed model accuracies are considered sufficient.

Table 4. Summary of the prediction performance of the best performing model for each load group.

Load Group Model R2 WAPE CVRMSE

AHU and controls Parametric fitting N/A 2.8% 4.4%
Chiller Multi-variable linear regression 0.89 19.2% 27.1%

Lighting Recent day model N/A 8.6% 12.0%
Plugs Recent day model N/A 10.6% 13.8%

3.1.2. Total Demand Prediction of the Building

The established prediction models for all load groups and Solargis® temperature and PV prediction
services are integrated into a combined model, wherein the building’s total energy demand is predicted.
The dataset used in the integrated model consists of the Solargis® and historic building energy demands
from 25 May 2018 to 4 April 2019. The error metrics are computed for the predictions which are
calculated at 00:00. Only the predictions calculated for workdays between 07:00 and 17:00 are included
in quantifying the error matrices. Figure 19 shows the prediction accuracy of all the models on average
for all the months. Predictions for lighting and plug loads are combined and simultaneously assessed
for convenience.

From Figure 19b it can be seen that prediction errors are largest during the summer months.
Since the chiller operates the most during these months, and with the highest energy demands,
the magnitude of error is also larger. During the colder months, the chiller is mostly in standby mode
and is thus nearly perfectly predicted because standby power is constant. In Figure 19c, the months
January and February show an above-average error magnitude. From the large relative difference
between the MAE and the RMSE, it follows that there were a few moments with a relatively large
prediction error. These are caused by the opening of the variable air volume (VAV) valve due to CO2

concentration, which is not a factor that is considered in the predictions.
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caused by anomalously low occupancy, the predictions are far off, resulting in a large prediction 
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Lighting and plug load prediction accuracy show above-average larger errors in January and
March. As can be seen for the first day in Figure 20a, and in Figure 20b, the building shows completely
different behavior compared to expectations. Due to abnormal building operation, which is probably
caused by anomalously low occupancy, the predictions are far off, resulting in a large prediction
error. Additionally, due to the history-based model used for lighting and plug-load predictions,
these abnormal days are still incorporated in the predictions for the next day. Since data from historic
days are used to make the forecasts, this again results in the estimation of the demand in the upcoming
days. One abnormal day could, therefore, trigger a cascade of prediction accuracy deviation for several
days. Nonetheless, overall, prediction errors for this load group are comparatively small and prediction
results are satisfactory.
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3.2. Step 2: BESS Simulations

In the previous step, multiple prediction models were developed and ultimately combined to
predict the total demand of the building. The prediction models are integrated with the proposed
operational strategy and simulated in MATLAB. The results of the simulations are evaluated in this
section. Table 5 provides an overview of the assessed Key Performance Indicators (KPIs). The overview
shows that total energy consumption (KPI 1) has increased by 2.2%, which is caused by conversion
loss in the BESS (KPI 4). From a decrease of 60.9% in exported electricity (KPI 2), it follows that
the operational strategy has significantly increased self-consumption (KPI 5) from 82.3% to 93.1%.
Due to the storage of this excess PV power that would otherwise be exported, the amount of imported
electricity (KPI 3) is reduced by 0.4%, as the BESS was capable of providing (some of) the required energy.
Overall, self-sufficiency (KPI 6) has increased by 2%, which means that the ratio of self-consumed
electricity from PV to total energy consumption (KPI 1) has improved. KPI 7, which quantifies the
ability of the system to maintain the baseline, shows that the baseline was successfully maintained for
97.2% of the time on weekdays between 07:00 and 16:33 (see also Figure 10).

Table 5. Assessment summary.

Key Performance Indicator Without BESS With BESS Load Balancing Difference [%]

KPI 1: Total energy consumption (excluding PV power
generation) [54] (in this paper, this is limited to electricity only) 55,538 kWh 56,781 kWh +2.2%

KPI 2: Exported electricity (feed in from the building’s PV
system into the AC grid) [54] 2309 kWh 902 kWh −60.9%

KPI 3: Imported electricity (power from the grid) [54] 44,769 kWh 44,604 kWh −0.4%

KPI 4: Battery Electric Storage System (BESS) losses 0 kWh 1245 kWh N/A

KPI 5: Self-consumption [55] 82.3% 93.1% +10.8%

KPI 6: Self-sufficiency [55] 19.4% 21.4% +2%

KPI 7: Percentage indicating the proportion of working hours
wherein the baseline is successfully maintained N/A 97.2% N/A

In Section 2.3.3, the Baseline Deviation Duration Curve (BDDC) was defined. This curve provides
a visual impression of the ability of the demand curve to maintain the baseline throughout the day.
Figure 21 illustrates the baseline deviation.
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It is important to realize that the BESS cannot always store/deliver power due to the applied
constraints—this means that whenever the difference between Pbuilding,net and the baseline is too small,
the battery will not deliver or store power. A slight deviation from the baseline (BL) value cannot be
prevented, and it is not a problem. This is why the tolerance band, which marks the baseline deviation
between which the deviation is considered acceptable, is defined. The green area marks the bandwidth
around the zero line of –3.51 kW to 2.85 kW. These values naturally follow when considering the
minimum requirement of a 3 kW charging/discharging power constraint before the BESS starts to
operate and charging/discharging efficiencies (85.5% and 90% are the charging/discharging efficiencies):

• The BESS is controlled such that it starts charging when there is at least 3 kW/0.855 = 3.51 kW of
AC power available. Or in other words, when Pbuilding,net−BL ≤ −3.51 kW.

• Similarly, the BESS starts discharging when at least 3 kW × 0.95 = 2.81 kW of AC power is required
by the building. This means that when Pbuilding,net−BL ≥ 2.81 kW, then the BESS starts discharging.

Therefore, whenever the baseline deviation ≤ –3.51 kW, the BESS should have charged to fill the
valley. Whenever the baseline deviation ≥ 2.85 kW, the BESS should have discharged to shave the
peak. Finding baseline deviation values outside of the tolerance means that the BESS was incapable of
maintaining the BL and this was not caused by the minimum power constraint.

From the parts of the load duration curve outside of the green area, it can be seen that it was
not always possible to discharge/charge to deliver/store the power necessary to maintain the baseline.
The peaks which could not be shaved by the BESS are marked by the red area and have a total duration
of ~32 hours during the evaluated period. The valleys which could not be filled by the BESS are
marked by the yellow area and have a total duration of ~19 hours. Nevertheless, it can be concluded
that the system is well capable of actively maintaining the baseline 97.2% of the time (within the green
tolerance band). From Figure 22 it can be seen that, overall, there is a decrease in load duration of high
positive power and an increase in the duration of low positive power. This is the direct consequence of
the load balancing strategies wherein peaks are shaved and valleys are filled.
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3.3. Step 3. BMS Implementation

The KPIs of the building when operating the BESS can readily be calculated from the measurements
that are extracted from the Building Management System (BMS) during the experimental period from
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7 August 2019 to 19 August 2019. An overview of the resulting KPIs for the experimental period is
shown in Table 6.

Table 6. Key performance indicator (KPI) assessment for experimental results.

Key Performance Indicator Base Case With BESS Load Balancing Difference [%]

KPI 1: Total energy consumption (excluding PV power
generation) [54] (in this paper, this is limited to electricity only) 2190 2317 +5.8%

KPI 2: Exported electricity (feed in from the building’s PV
system into the AC grid) [54] 115 70 −39.1%

KPI 3: Imported electricity (power from the grid) [54] 1500 1582 +5.5%

KPI 4: Battery Electric Storage System (BESS) losses 0 127 -

KPI 5: Self-consumption [55] 85.8 91.3 +5.5%

KPI 6: Self-sufficiency [55] 31.5 31.7 +0.2%

KPI 7: Percentage indicating the proportion of working hours
wherein the baseline is successfully maintained N/A 96.2 -

After introducing the BL strategy, total energy consumption increased due to BESS losses.
Furthermore, it follows that exported electricity to the national grid is reduced from 115 to 70 kWh,
and imported electricity increased from 1500 to 1582 kWh. Self-sufficiency has increased from 31.5% to
31.7% and self-consumption from 85.8% to 91.3%. Finally, during 96.2% of the time, the BESS was
able to successfully maintain the BL within the tolerance, thereby, demonstrating that the load shape
objectives are most often met. In the future, the value of flexibility can be established if the relevant
guidelines and regulations are provided by the energy markets. The load duration curves for the
experimental period on the real building are shown in Figure 23.
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The ability of the demand curve to maintain the BL is visualized in Figure 24 using a Baseline
Deviation Duration Curve (BDDC). During 96.2% of the time, the BL was maintained within the
constraints. There was a total duration of 3 hours wherein peaks were not shaved. However, all valleys
were effectively filled during the experimental period.
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4. Discussion

The objective of this study was to stabilize/flatten a building energy demand profile during
office hours by means of peak shaving and valley filling using a Battery Electric Storage System.
This was achieved by defining load shape objectives in the form of a baseline that is determined
based on electricity demand forecasts for the building. Before doing so, predicting the electricity
demand of the various load groups in the building was achieved through relatively simple models.
All individual prediction models of each load group proved to be sufficiently accurate for use in the
control strategy of the BESS. Finally, testing the operational strategy with BESS after the predictions
resulted in meeting the flattened load shape objectives over 95% of the time in both simulations and
practical implementation. The practical implementation was performed without compromising the
thermal comfort of the building users. Peak loads, which increase the risk of congestion, were also
successfully reduced both in magnitude and duration. Due to BESS losses, total energy consumption is
shown to have increased marginally.

Total energy demand forecasting of the building was achieved by combining the separate
predictions for each load group. The level of detail required to assess these separate models in order to
determine the best performing algorithm makes this approach a labor-intensive process. Even though
data-driven machine learning prediction methods are expected to increase prediction accuracy while
allowing for higher levels of abstraction, with the current BMS structure of the case study building,
the question remains whether that would be practically implementable. The prediction models that
were developed in this work were constrained by practical considerations. Nevertheless, the relatively
simple prediction models that were developed and optimized proved to be well capable of predicting
the building’s energy demands with sufficient accuracy within the practical setting.

5. Conclusions

Utilization of flexibility in the future Smart Grid will occur through information and communication
technology (ICT) regardless of the exact market design. In the future, it is unknown whether a steady
load profile as demonstrated in this paper will be the true load shape objective of a Smart Grid.
However, because no operational Smart Grid exists that can be used to define the load shape objective
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in the Dutch context, and since the method introduced in this article has proven to be successful
after implementing in the building, it is safe to conclude that the baseline approach is adequate for
demonstrating load flexibility for a future electricity grid setting.

As an extension of this work, in the future, the baseline approach can be extended to a dynamic
baseline which varies hourly depending on the grid’s needs. BESS flexibility, as well as other sources
of flexibility (e.g., HVAC system flexibility), could then be integrated to achieve even greater flexibility.
The optimal load shape could be determined based on the combination of the predicted energy demand
of the buildings or neighborhoods according to the Smart Grid’s needs. However, this work did not
include an economic assessment of a Smart Grid using PVs and a BESS. An extension of this study
could also be made with an added economic assessment. However, in such a study, a time-of-use tariff
structure and the economic value of provided flexibility should be incorporated.

The built environment has the potential to contribute to maintaining a reliable grid by actively
participating in future grids. The case study building provided a perfect opportunity for demonstrating
and investigating such characteristics.
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Nomenclature

AHU air-handling unit MBE mean bias error
BDDC baseline deviations duration curve PVs photovoltaics
BESS battery electric storage system R2 coefficient of determination
BL baseline RES renewable energy sources
BMS building management system RMSE root mean square error
CVRMSE coefficient of variation of the root mean square error SoC state of charge
DSF demand-side flexibility SoCini initial state of charge of the BESS
DSM demand-side management t time
EAHU&controls predicted energy demand of AHU and HVAC control unit Toutdoor outdoor temperature
Echiller predicted energy demand of the chiller WAPE weighted average percentage error
Epred,t=i predicted energy demand at t = i x the mean of all observed values in the dataset
HVAC heating ventilation and air conditioning Xcharge inability of the BESS to charge
i index Xdischarge inability of the BESS to discharge
KPI key performance indicators xi the measured (observed) value for data point i
MAE mean absolute error xî the predicted value for data point i
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